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1. Introduction

A smooth projective variety is said to deano if its anti-canonical bundle is
ample. The Kodaira vanishing theorem easily implies vanishing of all higher co-
homology modules of numerically effective line bundles on any Fano variety, at
least in characteristic 0. Indeed, for any positiyét implies that (X, £) =
Hi(X, (£ ® ™Y ® w) vanishes wher ® v~ is ample, and hence vanishing
holds in particular whenevet is numerically effective ané—! is ample.

In this paper, a class of algebraic varieties is introduced, the clagislwdlly
F-regular varieties.Globally F-regular varieties have strong vanishing properties,
including the vanishing of the higher cohomology groups for any numerically ef-
fective line bundle (as discussed above for Fano varieties). Indeed, the class of
globally F-regular varieties of characteristic 0 is shown to include Fano varieties,
so the vanishing just described is recovered. A nice feature of the class of glob-
ally F-regular varieties is that it is preserved under the operation of forming certain
(and conjecturally: any) GIT quotients by linearly reductive groups.

Globally F-regular varieties are closely related to Frobenius split varieties
[MRn]. Both Frobenius splitting and global F-regularity are notions defined using
the Frobenius morphism in characterigticby reduction to characteristjg, both
Frobenius splitting and global F-regularity make sense in characteristic 0 as well.
As explained within, global F-regularity turns out to be a stable version of the no-
tion of Frobenius split along a divisathat has arisen in the Indian school of alge-
braic groups [MRn; RR; R1; R2]. However, the definition of global F-regularity is
based on the theory of tight closure introduced by Hochster and Huneke in [HH1]:
roughly speaking, a projective algebraic variety is globally F-regular if it has a co-
ordinate ring in which all ideals are tightly closed.

The original motivation for this work was a question of Allen Knutson in his
study [Kn] of torus actions in symplectic geometry: ebe a semi-simple com-
plex algebraic group with fixed Borel subgrolpand maximal torug" C B.
Consider the geometric invariant theory (GIT) quotighbf the homogeneous
spaceG/B with respect to some choice of linearization of the natural left action
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of T. If £ is an ample line bundle on the quotieX then doesH (X, £) van-

ish fori > 0? Vanishing does not follow immediately from the Kodaira vanishing
theorem becausk need not be Fano (even thoughB is). In his thesis, Knut-

son posed this question for a particular choice of linearization. Knutson’s specific
guestion turned out to have an answer in [Sj], but it led to the general problem of
vanishing theorems for positive line bundles on GIT quotients of Fano varieties.
In this paper, Knutson’s question is answered affirmatively as a special case of
vanishing theorems for torus quotients of any Fano variety. A special case of one
of our main theorems is the following.

1.1. THEOREM. Let X be a quotient variety obtained by the action of a finite
group or a torus on a complex Fano variety with rational Gorenstein singularities.
Let £ be an invertible sheaf 0©x-modules that is numerically effectiyeef).
ThenH!(X, L) =0forall i > 0.

1.2. REMARK. Here, the group action is assumed to be algebraic, and by “quo-
tient” we mean a geometric invariant theory quotient in the sense of Mumford
[MFK] with respect to any choice of ample linearization of the action. In particu-
lar, although such quotients are not unique (see [DH; Th]), the vanishing theorem
holds for any of them.

1.3. REmaArk. Versions of Theorem 1.1 for an arbitrary reductive grauare
proved in Theorems 7.6 and 7.7, but at present a tricky technical point in the the-
ory of tight closure prevents me from stating Theorem 7.1 for arbitrary reductive
guotients of Fano varieties. This difficulty is explained at the end of Section 7.

The usefulness of Frobenius splitting and related techniques in establishing van-
ishing theorems is well known; see [HR1; HR2; MRn; RR; R1; R2]. On the
other hand, the idea of F-regularity first arose in the theortightt closurein
commutative algebra and had nothing to do with projective geometry. One theme
of this paper is the relationship between local (commutative algebra) and global
(projective geometry) issues. The properties of F-purity and F-regularity in com-
mutative algebra [HH1; HH3; HR1; HR2; Hu; S3] and the notion of Frobenius
splitting and related techniques [MRn; RR; R1; R2] are equivalent from a certain
point of view, as explained within. | hope this paper shows the fruitfulness of com-
bining these points of view and encourages more experts in one of these points of
view to embrace the other.

In order to make the presentation accessible to a larger audience, this paper is
partially expository and with various arguments using the Frobenius (which are
standard for experts) repeated here in detail. | hope the experts will forgive me this
lack of novelty. A basic reference for the commutative algebra language (Cohen—
Macaulayness, Gorensteinness, injective hull, etc.) used here is [Ma].

| am grateful to Allen Knutson and Michael Thaddeus for making me aware of
these interesting questions about vanishing and for conversations that piqued my
interest in them.
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2. F-Purity and F-Regularity

This section contains definitions and a quick review of some commutative algebra,
which can be revisited as necessary for reference.

Let R be an arbitrary Noetherian commutative ring. A mapRMmodules
My EN M, is pureif the induced mapVf; @ M ELLN M, ® M is injective for
everyR-moduleM. If M,/M, is finitely presented, then the purity ¢fis equiv-
alent to the splitting off; see [Ma, 7.14].

For finitely generated modules over a local ring, there is a convenient criterion
for purity that (according to Hochster) goes back to Auslander, at least in a prim-
itive form. Suppose thar is local and thafE is an injective hull of the residue

field of R. The mapM, %> M, is pure if and only ifMy ® E 22% M, ® E is
injective [HH3, 2.1e].

Now assume thak has prime characteristje. By definition, R is F-pureif the
Frobenius map

F
R = 'R,
re—rP

is pure [HR1]. The notatiofiR denotesr itself, but viewed as a®-module via
Frobeniusr € R acts orfx € ‘R by r-¢x = °(r”'x) € °R. In particular, the iterated

Frobeniusk > “R is an R-module map for each > 0.

Some basic facts about F-purity are proved in [HR1]. Among them: F-pure
rings are reduced; every regular ring is F-pure; if an itefétés pure, thenF is
pure; a ring is F-pure if and only if all its local rings are F-pure. This latter prop-
erty enables us to say that any scheme over 3pgZ is F-pure if all its local
rings are.

We assume throughout that all rings are F-finitering of characteristip is
said to be F-finite it is finitely generated over its subringtif powers. This mild
hypothesis is satisfied, for instance, by any finitely generated algebra over a per-
fect fieldk, and it is preserved under localization. With this assumption, &ch
is a NoetheriamR-module; in particular, F-purity is equivalent to the splitting of
the Frobenius map. The assumption tRas finite overR” implies thatR is ex-
cellent [Ku].

The point of this paper is to apply the notion of strong F-regularity to projective
varieties. We first recall the local notion from [HH1].

2.1. DerFiNITION.  An F-finite ring R of prime characteristigp is strongly F-
regular if, for every ¢ € R not in any minimal prime ofR, there exists an integer
e > 0 such that th&k-module map

L‘C.FL‘
R — °R,

1~ ‘%
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splits. This map is the composition of the Frobenius nkap> “R followed by
multiplication by the elemert, where the notatiorr denotes regarded as an
element irfR. This notation is used for extra clarity, to distinguish between ele-
ments irfR and the action of elements mon the unit elementifR. For instance,
note that - 1 = 7.

2.2. Some basic facts about strong F-regularity are recorded in [HH1]. Among
them: strongly F-regular rings are F-pure, reduced, normal, and Cohen—Macaulay;
regular rings are strongly F-regular;dfe R is an element (not in any minimal
prime of R) such thatR, is strongly F-regular and it F¢ splits for some: > O,
thenR is strongly F-regular; the rin@ is strongly F-regular if and only if all of
its local rings are strongly F-regular. This final property motivates the definition
of a schemeX overZ/pZ as strongly F-regular if all its local rings are.

How much stronger than F-purity is the concept of strong F-regularity? An an-
swer is provided in [S1]: an F-pure rirgyis strongly F-regular if and only iR is
a simple module over the ring @-linear differential operators oR.

Strong F-regularity first arose in connection with tight closure. Tight closure is
a closure operation performed on ideals in a Noetherian rings containing a field;
its precise definition is not important here (see [HH1; HH3]). Strong F-regularity
is conjectured to be equivalent to weak F-regularity, which is the property that all
ideals are tightly closed. Strong and weak F-regularity are known to be equivalent
for Q-Gorenstein schemes [Mac] and fis¥graded rings [LS]. In this paper, the
qualifier “strongly” is frequently dropped in discussing strongly F-regular rings.
Because we will not need the concept of weak F-regularity and since we will pri-
marily be discussing the graded case, this should not cause any confusion.

3. Relationship between Local and Global Properties

In this section, we discuss how the local properties of F-purity and F-regularity
give rise to global properties for projective varieties. This gives rise to the concept
of aglobally F-regularprojective variety.

Throughout this sectiork will be a connected projective variety over a perfect
(or, more generally, F-finite) field of prime characteristip.

The absolute Frobenius matpi X is the identity on the underlying topolog-
ical space ofX, but its corresponding sheaf mé&}, — F,.Ox is the pth power

map locally on sections. (Locally, this is the mapg IR described previously.)
The varietyX is said to bé-robenius splitf the mapOx — F,Ox splits as a map
of Ox-modules [MRn]. Note that, becauXeis of finite type over a F-finite field,
X itself is F-finite and hence the Frobenius map is finite.

If X is regular then the Frobenius mély — F.Oyx splits on every stalk, but
the existence of a global splitting of Frobenius is quite rare and forces strong re-
strictions onX. Thus the local condition of F-purity defined in the previous section
is not the same as Frobenius splitting. Rather, we can think of Frobenius splitting
of a varietyX as a sort ofjlobal F-purity.
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Nonetheless, global properties ¥fcan be studied, using the techniques of lo-
cal algebra, by passing to affine cone ovek determined by some polarization.
A polarizationfor X is a choice of an ample invertibl@x-moduleL. The cone
determined by is the spectrum of theection ring

S=@PHX. L")
neN
The section ring is a finitely generated algebra over the F-finite figle( X, Oy),
and ProjS = X. If X is normal, then so iS. Let m denote the unique homoge-
neous maximal ideak = S. ¢ of S (theirrelevant idea).
The following proposition relates the local property of F-purity to the global
property of F-splitting (see also [S2, 4.10; W2, 3.3]).

3.1. ProposITION. Let X be a connected projective variety over an F-firfeeey.
perfec) field of prime characteristic. Then the following are equivalent

(1) X is Frobenius split

(2) the section ring ofX with respect to every polarization is F-pyre

(3) the section ring ofX with respect to some polarization is F-pure.

The proof follows readily by tensoring the Frobenius nap — F,.Ox with the
sheaf of algebragd £’ and considering global sections. It is not included here,
since it can be found in [S2, Prop. 4.10] and is, in any case, a simplified version of
the proof of Theorem 3.10 offered here.

By analogy, this motivates the following definition.

3.2. DEFINITION. A projective variety over an F-finite field gdobally F-regular
if it admits some section ring that is F-regular.

By the conventions agreed upon in Section 2, the unqualified term “F-regular”
here means strongly F-regular. However, because strong and weak F-regularity
are equivalent foN-graded F-finite rings [LS], there is no possibility of confusion.

Of course, any globally F-regular variety is locally F-regular, but the converse
is far from true. Indeed, any smooth variety is locally F-regular whereas a globally
F-regular variety, for example, has the property tHatX, Ox) for anyi > 0, as
we will soon prove.

3.3. Note that globally F-regular varieties are Frobenius split. Indeed, passing
to section rings, this is immediate from the fact that strongly F-regular rings are
F-pure.

As with F-splitting, if X admits a section ring that is F-regular trearerysection
ring for X is F-regular, as we will prove in Theorem 3.10. We first recall the notion
of Frobenius splitting along a divisorgs defined by Ramanan and Ramanathan
[RR], and then introduce a stable version of it.

3.4. STABLE FROBENIUS SPLITTING ALONG A Divisor. Let D be an effective
Cartier divisor, lets be a section 0Oy (D) vanishing precisely alon, and let



558 KAREN E. SMITH

e be a positive integer. Consider the ma@p — Ox (D) sending 1~ s. This
induces a map aDx-modules

OX — F*OX - F*Ox(D),

where the first arrow is the Frobenius map and the second arrow is (the push-
forward of) the map 1> s. Consistent with the notion introduced in Section 2,
we will denote by's the element considered as an element BfOx (D). The
variety X is said to beFrobeniusD-split if this composition map splits, that is,
if there is a mapF,Ox (D) — Ox sendings — 1. This notion appears to have
been first exploited in [RR] but was not named as such until [R2].

It is convenient to consider not just the Frobenius map but also its iterates. Ac-
cordingly, we introduce the notion of stable Frobeniusplitting.

3.5. DEFINITION. Let X be an algebraic variety over an F-finite field, and let
D be an effective Cartier divisor ol defined by a section. The varietyX is
said to bee-Frobenius D-split (or e-Frobenius split alongD) if there is a map
FfOx(D) — Ox sending’s — 1. (Again, the notatioris denotes the element
considered as an element Bf Ox (D).) We will say thatX is stably Frobenius
D-splitif it is e-FrobeniusD-split for somee.

It is easy to check that X is e-FrobeniusD-split then it ise’-Frobenius split for

all ¢/ > e, thus motivating the adjective “stable”. Stable Frobeniusplitting

is weaker than FrobeniuP-splitting, yet virtually all the good properties of
FrobeniusD-splitting are applicable with only the assumption that eventually,
for large enougle, we have splitting.

Basic Properties

3.6. Stable Frobenius splitting along any divisor implies Frobenius splitting.
Indeed, becaus®x — F?:Ox (D) factors through the Frobenius mép, —
F?Ox, any splitting will also splitQOy — FfOx (sending 1 to 1). On the other
hand, any splitting of the natural ma@y — F:Ox must split the Frobenius
Ox — F.Oy because we have a factorizati®y — F.Ox — F,F Y0y =
F¢Ox (where all maps are induced by sending 1to 1). Thus the®ap> F.Ox

also splits. In particulaistable Frobenius splitting along the zero divisor is equiv-
alent to Frobenius splittingHowever, stable splitting along the zero divisor is, in
general, a strictly weaker condition than stable splitting along an effective divisor.

3.7. If X is stably Frobenius split along some effective divigorthenX is sta-
bly Frobenius split along any effective divisér’ with D’ < D. (Here,D’ <
D means that the multiplicity of each irreducible componenbo6is at most the
multiplicity of the corresponding componentin) Indeed, wherD’ < D ands’
is a defining equation ab’, then a defining equation fap will have the forms’z
for somer. We have maps of sheavés, — Ox(D’) — Ox (D), given by mul-
tiplication bys’ and byz, that induce map#Ox — FfOx(D') — FfOx(D).
Putting this together with the Frobenius map, we have
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OX — F:(/)x — F:O)((D/) — F:O)((D),
1= 1 %" “(s't),

which shows that any any splitting 6ty — F?Ox (D) will induce a splitting of
Ox — FfOx(D'). Soif X is e-FrobeniusD-split, it is alsoe-FrobeniusD’-split
for any effectiveD’ < D.

3.8. We have remarked that¥f is e-FrobeniusD-split then it ise’-Frobenius
D-splitfor alle’ > e. However, it can happen thatis e-Frobenius split alond
yet not(e — 1)-Frobenius split alond. On the other hand, the following lemma
ensures that one can get — 1)-Frobenius splitting frome-Frobenius splitting
along a divisor that ig-divisible.

3.9. LEmma. Let X be a variety andD an effective Cartier divisor. TheX is
e-FrobeniusD-split if and only if X is Frobenius(e + 1)-split along pD. In par-
ticular, X is stably Frobenius split along if and only if X is stably Frobenius
split along pD.

Proof. Say thatX is e-FrobeniusD-split. Fix a sectiory defining D. We know
that the mapOx — F:Ox (D) sending 1 tos splits. By Remark 3.5, the map
Ox — F,Ox sending 1to 1 also splits. But the splitting@% — F, Oy implies
the splitting of Ox ® Ox(D) — F,Ox ® O(D) = F,O(pD), with this iso-
morphism coming from the projection formula. (The m@p(D) — F.O(pD)
sendss to “s”.) Pushing down viaF ¢, we have the splitting oF¢Ox (D) —
F¢F,O(pD) = FfOx(pD). Putting this together with the original splitting
Ox — FfOx (D), we see that the mapPy — F¢*1Ox(pD) sending 1 tg*1s?
splits overOy.

Conversely, say thaX is (e + 1)-FrobeniuspD-split. Then the ma@y —
Ff10x(pD) sending 1 tot1s? splits. But this map factors through the map
Ox — FfOx(D) sending 1 tdfs. To see this factorization, first note that the
Frobenius mag)y — F.Oyx induces a max (D) — F,Ox ® Ox(D) =
F.(pD), with the isomorphism following from the projection formula. Pushing
down viaF° yields a mapFfOx (D) — F¢tOx(pD), which sendss to “*s?.
Thus we have the factorization

Ox — FfOx(D) — FTOx(pD),

1> &% > ¢t

Soany splittingoDx — F¢*1Ox(pD) induces a splitting foOy — F¢Ox (D),
andX is e-FrobeniusD-split. O

3.10. THEOREM. LetX be a projective variety over a perfect field. Then the fol-
lowing statements are equivalent.

(1) X is globally F-regular, that is, the section ring ofX with respect to some
ample divisor is strongly F-regular.



560 KAREN E. SMITH

(2) X is stably Frobenius split along some ample effective divi3such that the
open seX — D is (locally) strongly F-regular.

(3) X is stably Frobenius split along every effective Cartier divisor.

(4) The sectionring ofX with respect to every ample divisor is strongly F-regular.

Proof. We show that (1) is equivalent to (2) and then tfiat= (3) = (4) = ().
To see that (1) and (2) are equivalent, fix any ample effediivand lets be a
defining section foiD. Consider the&)y-module map

Ox d F):)OX(D)

sending 1 tds.

We tensor this map aPx-modules with the sheaf of algebr&s, ., Ox (nD)
and take global sections to construct the corresponding map of gsadediules.
Of course, this process applied@y produces a section rin§. What is the cor-
responding gradefl-module this process produces #®fOx (D)? Note that, by
the projection formulafF,; Ox (D) ® Ox(nD) = F{(Ox (D + pnD)) and so the
gradedS-module associated with? Ox (D) is the module

D HOX. FOx(D + pnD)) = “[Slimogpe (D).

nez
where (a) the notationS[l1modye indicates the subset of elementsStonsist-
ing of (sums of) homogeneous elements whose degrees are congruent to 1 mod-
ulo p¢ and (b) the shift §]1modp- (1) indicates that a homogeneous elemenf
degree 1 inS should be considered to have degree 0Sify fogpc (1). The nota-
tion °[S]1modye (D) indicates the natura$-module structure on this set given by
Frobenius—that isy € S acts on‘c in ¢[S]imogy (1) to produce(r?‘c). Note
that [STimodpe (1) is afinitely generated gradeidmodule whose degree piece is
Stipen = HY%X, Ox(D + p¢nD)). Thus, the degree-preserving map of graded
S-modules corresponding to the map of sheaWgs— F¢Ox (D) sending 1 tGs
is the map

S — E[S]lmodp“(l)

sending 1 tds.

Splitting theOx-module mapDy — FfOx (D) is equivalent to splitting the
mapsS — “[S]imodpe (1) as a map of gradesi-modules. But because the module
[S]1modpe (D) is a graded direct summand ¢ as anS-module, this is equiv-
alent to splitting the mag — <S(1) sending 1 td’s in the category of graded
S-modules. But becaus® is a finitely generated-module ands is homoge-
neous, this is equivalent to splitting the m&p— “S sending 1 tdfs as a map
of S-modules (without worrying about whether there is a homogeneous splitting).
Thus, for an ample effective divisdp defined bys, we have shown that stable
FrobeniusD-splitting is equivalent to splitting th§-module maps — “S send-
ing 1 to“s for somee.

Now consider the assumption that — D is strongly F-regular. If agais
denotes the section ring &f with respect toD, then this open affine set is de-
fined as Sped]o, where [S;]o denotes the Oth graded piece of the localization
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ring S;. Becauses; is a Laurent ring over its degree-0 subring (see [S4, proof of
3.4]), [Ss]o is strongly F-regular if and only if; is strongly F-regular (see e.g.
[LS, 4.1]). Hence condition (2) is equivalent to the condition that there is a split-
ting of S-modulesS — “S sending 1 tds for somee and some with S, strongly
F-regular. According to the basic “strongly F-regular” properties described in Sec-
tion 2.2, we see that this is equivalent to strong F-regularity.dfhis completes

the proof of the equivalence of conditions (1) and (2).

Now assume (1). Le§ be a section ring foX with respect to the ample line
bundle£, and assume thatis strongly F-regular. LetD be an effective divisor
defined by the sectian and letOx (D) denote the corresponding invertible sheaf.
Consider thex-module map

Ox — Ox(D),

1 s.

By tensoring with the “polarization algebrép, ., £" and taking global sections,
we have a degree-preserving map of grafledodules

S— M=@H'X,Ox(D)® L"),

1— 5.

Note that (a) theS-module M is a torsion-free rank-F-module with a natural
grading and (b) the map — M sending 1 to defines a degree-preserving map
of S-modules. ThusM is isomorphic to a finitely generated graded submodule
of the fraction field ofS, and there is a “clearing denominators” map of graded

S-modulesM <> S(d), given by multiplication by, for some homogeneous ele-
mentr (of degree, sayf) in S.
Letc = rs € S. BecauseS is strongly F-regular, there exists arand ans-

module mags 2, § that sendsc to 1. Consider the compositions §fmodule
maps

‘r

S =ML Sy S s,

11~ %+ %Cc— 1

Because the degree ofn M is 0, the compositiony = ¢ o °r gives a degree-
preserving map frorfM to S. Thatis, there are degree-preserving maps of graded
S-modules
s e Lo,
1> 1— %+ 1

The corresponding map of sheaves (after passing to the appropriate direct sum-
mand, as in the proof of the equivalence of (1) and (2)) is

Ox ard F:Ox ad F:OX(D) ad Ox,

showing thatX is stably Frobenius split along. This shows that (1) implies (3).
To see that (3) implies (4), consider a section $higr X with respect to some
ample invertible sheaf. BecauseX is Frobenius split along the zero divisor, it
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is reduced and hence there is an open affine subset that is regular. Thus we can
find an ample effective divisaP defined by a sectiosn of some power ofZ such
thatX — D is regular and hence stronghtregular. Equivalently, on the algebraic
side this means thate S is such that the ring; is regular and hence strongly
F-regular. We know thaX is stably Frobeniu®-split by assumption and so, as in
the proof of the equivalence of (1) and (2), we see equivalently that theSmap
¢S sending 1 tds splits. So again, this implies th&tis strongly F-regular, and (4)
is proved.
Finally, (4) trivially implies (1). O

3.11. ExampLE. It is worth remarking that Frobenius splitting along a divisor
depends, in general, on the divisor itself and not on the divisor class. For exam-
ple, letS be the graded ring7[x, v, z, w]/(x3 + y® + ), which is the section

ring of a projectivized con& over an ordinary elliptic curve with respect to the
naturalO(1). One can check that we have splitting of the nfap> “S sending
1to“w for largee although the mag — S sending 1 td'x never splits for any

e. Thus, X is stably Frobenius split alon := {w = 0} but not along the lin-
early equivalent divisoD’ := {x = 0}. Accordingly, Theorem 3.10 ensures that

X — D’ ought not be locally strongly F-regular. This is indeed the case, as one
can check directly, althoughi — D’ (and in factX itself) is F-split.

4. Globally F-Regular Varieties:
Properties and Vanishing Theorems

Globally F-regular varieties have remarkably strong properties. In this section, we
summarize some of these.

4.1. PROPERTIES OF GLOBALLY F-REGULAR VARIETIES. Let X be a connected
projective variety over an F-finite field of prime characteristic. Xfis globally
F-regular, thenX enjoys the following properties.

(1) X is normal.

(2) X is Cohen—Macaulay.

(3) Every ample invertible sheaf dfis arithmetically Cohen—Macaulayhat is,
every section ring foX is Cohen—Macaulay.

(4) X is Frobenius split; that is, every section ring is F-pure.

(5) Every section ring forX is pseudorationala desingularization-free analog
of rational singularities that makes sense for arbitrary schemesfISEp.

Proof. Let X = ProjS, whereS is an arbitrary section ring. IX is globally
F-regular thers is strongly F-regular, by Theorem 3.10. Herkés normal and
Cohen—Macaulay (by Section 2.2), so properties (1), (2), and (3) follow. Strongly
F-regular rings are also F-pure, so property (4) follows from Proposition 3.1. We
establish (5) as follows. Strongly F-regular rings have the property that all ideals—
in particular, all parameter ideals—are tightly closed. But any excellent domain
in which all parameter ideals are tightly closed is pseudorational [S3, 3.1]
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We now prove a vanishing theorem for globally F-regular varieties. The idea of
using Frobenius splitting and its variants to prove vanishing theorems is not new:
it goes back at least to Hochster and Roberts in their famous proof [HR1] that
invariant rings are Cohen—Macaulay; the language here is closer to [MRn]. The
following argument is standard for experts.

4.2. THEOREM. LetX be a projective variety that is globally F-regular, and let

L be an invertibleDx-module.

(1) If H(X, L") =0forn > 0, thenH (X, £) =0.
(2) If there exists an effective Cartier divisdr such thatH(X, £"(D)) = 0 for
n> 0, thenH! (X, L) =0.

Proof. Let £ be an arbitrary invertibl®y-module. By the projection formula ap-
plied to the Frobenius map aXi, we haveF,.Ox ®o, L = F.F*L [H, p. 124].
Also, note thatF*£ = LP. Thus, the split inclusion

L— FOx®LZF.LF
induces an injective map of cohomology
H'(X,L) — H'(X, F.L") = H'(X, LP),

with the latter isomorphism arising because the Frobenius map is affine [H, p. 252].
We may iterate this process to obtain a series of inclusions

H(X, L) = HI(X, L) = H'(X, L") — H'(X, L") < --- .

Thus, any line bundI€ having the property thé//(X, £7°) = 0 for some natural
numbere € N must haveH (X, £) = 0 as well.

The proof of the second statement is similar. BecaXise stably Frobenius
D-split for every effectiveD, the map

OX —> F:OX(D)

sending 1 to a defining equation for splits for all largee. Now, tensoring with
any invertible sheaf, the map

L — FfOx(D)® L = F/(Ox(D) ® F**L) = Ff(Ox(D) ® L")

splits, where the first isomorphism is obtained from the projection formula. This
induces a split inclusion of cohomology groups

H'(X, L) = H'(X, Ff(LP(D))) = H' (X, £L(D)),

with the isomorphism holding because the Frobenius mapike any finite map,
is affine. Now it is immediate that, if/'(X, £"(D)) vanishes for any > 0,
thenH(X, £) vanishes as well. O

4.3. CoroLLARY. If X is a projective variety that is globally F-regular, then
H(X, L) = 0 for any invertibleZ that is numerically effectivénef). In particu-
lar, H (X, Ox) =0foralli > 0.
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Proof. First, say thatC is ample. By Serre vanishing{/(X, L") = 0 forn > 0.
ThusHi(X, £) = 0 follows from (1). Now sayC is nef. Fix an ample effective
divisor H. ThenL"(H) is ample for allz > 0, and we just checked that coho-
mology vanishes for an ample invertible sheaf 56X, £*(H)) = 0 foralln >
0 and alli > 1. Now it follows from Theorem 4.2(2) that/(X, £) = 0 for alll
i>1 O

We also have the following form of the Kawamata-Viehweg vanishing theorem for
globally F-regular varieties.

4.4. CoroLLARY. LetX be a globally F-regular projective variety, and I6tbe
a big and nef invertible sheaf a¥i. ThenH (X, £ =0 forall i < dimX.

Proof. BecauseC is big and nef, we can find an effective Cartier divigoisuch
that £ (—D) is ample for alln > 0 [KM, 2.6]. But thenH (X, (L™"(D))") =

0 foralli < dimX and alln > 0 because&X is Cohen—Macaulay, so by Theo-
rem 4.2 we conclude thaf (X, £~"(D)) = 0 for alli < dim X. By the second
part of Theorem 4.2, we conclude that(X, £71) = 0. O

5. The Characteristic-0 Theory

The notions of Frobenius splitting and strong F-regularity can be adapted to vari-
eties of characteristic 0, where we will call them Frobenius split type and strongly
F-regular type. We briefly recall the idea of reduction modpilo

Let X be a scheme of finite type over a figldof characteristic 0. Choose a
finitely generated.-algebraA contained irk over whichX is defined. LetX 4 be
the “thickened” scheme of finite type ovdr, so thatX, xspeu Speck is natu-
rally identified with X. Each closed fiber of theamily of modelsX, — SpecA
is a scheme of finite type over a finite field (of different characterigtjcdn this
way, notions defined in characterisgianake sense also oveiby requiring them
to hold on a dense set of closed fibers of the fam¥ijy — SpecA.

5.1. DeriNITION. A scheme of finite type over a field of characteristic Brisbe-
nius split type(resp.,strongly F-regular typgif it admits a family of models in
which a dense set of closed fibers are Frobenius split (resp., strongly F-regular).
Consequently, a variety projective over a field of characteristicdlabally F-
regular typeif it admits a family of models in which a dense set of closed fibers is
globally F-regular. None of these properties depends on the choice of the family
of models.

Furthermore, given any finite collectigo\;} of coherentOx-modules, we
can chooset so that these sheaves are defined ovefhe resulting coherent
Oy ,-modulesM 4; pull back onX = X, x Spedk to M;. By pulling back to a
closed fiber, we get a collection of coherent sheaveson the prime characteris-
tic schemeX 4 x SpecA /) for eachu in max SpecA). In this way, we can study
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coherent modules (e.g. line bundles) on a variety of characteristic 0 by “reduction
to prime characteristic”.

5.2. CauTioN. One can define the operation of tight closure on ideals in an al-
gebra of finite type over a field of characteristic 0 using reduction to characteristic
p (see [HH4]). Because the property of strong F-regularity is equivalent to the
property that all ideals are tightly closed fSrgraded rings over a perfect field of
prime characteristic [LS], we know that global F-regularity in prime characteris-
tic is equivalent to the property that all ideals are tightly closed in some section
ring for X. Itis tempting to believe that the property of globally F-regular type is
equivalent to the property that all ideals are tightly closed in a section ring of char-
acteristic 0 as well. This may be true, but it is currently an open problem whether
the property of F-regular type is equivalent to all ideals being tightly closed, even
for a finitely generated graded ring over a field. See Conjecture 7.5.

The following are immediate corollaries of the theorems in the preceding section.

5.3. CoroLLARY. LetX be a connected projective variety over a field of char-
acteristicO. If X is of globally F-regular type, then the conclusion of Theorem 4.1
holds, with “Frobenius split” and “F-pure” in (4) replaced by “Frobenius split
type” and “F-pure type”, respectively. Furthermorel and all its section rings
have rational singularities; and i is Q-Gorenstein then it will have log terminal
singularities. Finally, anyQ-Gorenstein section ring ok will have log terminal
singularities.

Proof. This is essentially already proved. Items (1)—(3) and (5) in Theorem 4.1
follow from a general fact about properties in families: if a dense set of closed
fibers has property “P” then so does the generic fiber, where “P” can be (for in-
stance) normality or Cohen—Macaulayness. The claim about rational singularities
follows from [S3, 3.1]. Thaf-Gorenstein rings of strongly F-regular type have
log terminal singularities was first proved by Watanabe [W2]; alternatively, it fol-
lows easily from the result on rational singularities using a canonical cover trick
(see [Ha] or [S2, 4.16]). O

5.4. CoroLLARY. LetX be a projective variety of characteristitthat is glob-

ally F-regular type, and lefZ be an invertibleOx-module.

(1) f Hi(X, L") =0forn > 0, thenH (X, £) = 0.

(2) If there exists an effective divisér such thatd(X, £"(D)) = 0 forn > 0,
thenH (X, £) = 0.

Proof. This follows easily from Theorem 4.2 by semi-continuity. O
As a corollary, we have a very strong version of vanishing as follows.

5.5. CoroLLARY. Let X be a projective algebraic variety of characteristic
which has globally F-regular type, and let be a nef line bundle oX. Then
Hi(X,L£)=0foralli > 1 In particular, H (X, Ox) =0 forall i > 1.



566 KAREN E. SMITH

Also, we have Kawamata—Viehweg vanishiatj(X, L) = 0 fori < dim X
if £ is big and nef.

Note that this is the same vanishing discussed in the introduction for Fano vari-
eties. The reason for this is that Fano varieties are of globally F-regular type, as
explained in next section.

6. Examples of Globally F-Regular Varieties

In this section, we identify basic classes of varieties that are globally F-regular, in-
cluding Fano varieties and toric varieties. As we shall see in the final section, these
lead to further examples of globally F-regular (type) varieties obtained from these
as quotients. First, a few propositions are recorded; these are easy and possibly
standard, but | do not know a reference.

The first proposition indicates one way in which rational singularities can be
regarded as a natural extension of Cohen—Macaulayness.

6.1. PROPOSITION.

(1) Let X be a Cohen—Macaulay projective variety. Th€rhas a section ring
that is Cohen—Macaulay if and only #(X, Ox) =0 for 0 < i < dim X.

(2) Let X be a projective varietyof characteristic0) that has rational singular-
ities. ThenX has a section ring that has rational singularities if and only if
Hi(X,0x)=0foralli > 0.

Proof. Choose any ample invertible. BecauseX is Cohen—Macaulay, we know
from Serre vanishing thaf (X, £") = 0 forall 0 < i < dimX and all|z| > 0.
Replacingl by a large power, we may assume thgt X, £") = 0 foralln # 0
and all 0< i < dim X. The corresponding section rirfgis Cohen—Macaulay if
and only if the local cohomology modulés (S) are zero foi < dimS. Since
[HFY($)], = HI(X,L") for 0 < i < dimX and alln, this is equivalent to
Hi(X,0Ox) =0forall 0 <i < dimX. (Note thatH1(S) and H2(S) vanish in
any case becausgsatisfies Serre’s; condition.)

In general, a normal Cohen—Macaulay graded sngith rational singulari-
ties away from{m} has rational singularities itself if and only H¢(S) vanishes
in nonnegative degree. (To see this, note that blowing up the vertex of the cone
SpecsS yields a varietyX with rational singularities whose higher direct images
R'm,Ox on Specs are isomorphic toff+1(S)]-o; see [FI; W1].) Thus the sec-
ond claim follows similarly to the first. O

Let X be a connected normal projective variety over a fiel@fhe canonical sheaf
of X is the unique reflexive sheaf that agrees with the s}ﬂéemx/k of top differ-
ential forms on the smooth locus &t

By definition, aFano varietyis a normal projective variety whose anti-canonical
sheafa);l = Homp, (wx, Ox) is an ample invertible sheaf. In particular, Cohen—
Macaulay Fano varieties are Gorenstein. Unlike many authors, | do not require
that Fano varieties be smooth.
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Fano varieties are very special. Accordingly, so are the affine cones over them,
as indicated by the following basic proposition characterizing Fano varieties in
terms of the cones over them.

6.2. PROPOSITION.

(i) A normal varietyX is Fano if and only if it admits a section rin§ such that
ws = S(r) with r < 0, wherewy is the canonical module of the normal
graded ringS and whereS(r) indicates a degree shift by

(i) The anti-canonical ring of a Fano varie(pf characteristic0) with rational
singularities is Gorenstein and has rational singularities. Conversely if
admits a Gorenstein section ring with rational singularities, theis Fano
and has rational singularities.

Proof. Suppose thab;(l is ample invertible orX, and letS be the section ring
with respect tawy™. In general, if£ is an ample invertible sheaf on a normal
variety X and if S is the corresponding section ring, then the graded canonical
module forsS (in the sense of [BH]) can be identified with the gradedhodule
@D, HAX, L" ® wy); see [S1]. In particular, whefi = w,' we havew; =
S(—1). Conversely, supposgis the section ring foL. Becausevs = S(r), we
see thatvy = L sincer < 0, we see tha&);(1 is ample.

Forthe second statement, fabe the section ring far);(l. By Kodaira vanishing,
which is valid for all rings with rational singularite, (X, w%) = 0forn > 0 and
alli <d, bec:ausa);(1 is ample. LikewiseH'(X, wy") = H(X, w;”‘1®wx) =
0fori > 0andn > 0. Thus, for 1< i < dimX, H (X, w}) = [H XS], =
0 for all n and, sinceS is normal, H2(S) = H(S) = 0 in any case. This im-
plies thatS is Cohen—Macaulay, and henéeis Gorenstein by (1). But since
HIMS($) vanishes in nonnegative degrees, the criterion for rational singularities
mentioned in the proof of Proposition 6.1 shows thidtas rational singularities.
Indeed, we have already seen tl§ais Cohen—Macaulay and thai,ﬂ‘ms(S) =
@D,cz H™X (X, wy") vanishes nonnegative degrees. O

This proof shows thak has a section ring whose canonical module is locally
free if and only if eitherwy or its dual is an ample invertible sheaf.

6.3. ProrosiTION. A Fano variety(of characteristic0) with rational singulari-
ties is globally F-regular type.

Proof. The anti-canonical cone of has Gorenstein rational singularities. But
Gorenstein rational singularities are log terminal singularities. But finitely gen-
erated algebras of characteristic O with log terminal singularities are strongly F-
regular type, by [Ha; MS]. O

An alternate proof that log terminal singularities are strongly F-regular can be
found in [S2], still based on Hara’s work [Ha]. In [S2] the strong regularity is
shown to follow from the “canonical cover trick” (in a form due to Watanabe) and



568 KAREN E. SMITH

the “strong Kodaira vanishing theorem”. The strong Kodaira vanishing theorem
(conjectured in [HS] and proved in [Ha]) statesXlf — SpecA is a generically
smooth projective map to an affine scheme SpéawhereA is a finitely generated
Z-algebra containing.) and if £, is a relatively ample invertible sheaf dfy,

then for a generic closed fibef, the mapH'(X,, £, — H(X,, F.F*L;"
induced by Frobenius is injective for all indicesHara deduces this from the
Kodaira—Akizuki—-Nakano vanishing theorem (see also [MS]). The weaker state-
ment that smooth Fano varieties are Frobenius split follows directly from strong
Kodaira vanishing, as pointed out in [Ha, 3.7] and [S2, 4.11].

6.4. PropPOSITION.  Projective toric varieties are globally F-regulatypd.

Proof. Projective toric varieties always admit a (normal) section ring of the form
k[ma, ..., m,], where then; are monomials in a polynomial riridz, ..., t,] (see
e.g. [St, p131]). Such monomial rings are F-regular, and hence every toric vari-
ety is globally F-regular. O

7. Geometric Invariant Theory Quotients
of Globally F-Regular Varieties

7.1. THEOREM. LetX be any projective Frobenius-splitesp., globally F-regu-
lar) algebraic variety of prime characteristic on which a linearly reductive group
T acts algebraically. Then the GIT quotieky/ T with respect to any lineariza-
tion of the action ofT is also a Frobenius-splifresp., globally F-regulay variety.

Recall that “linearly reductive” means that every representation is completely re-
ducible; in characteristic 0, linearly reductive is equivalent to reductive. Of course,
linearly reductive groups are somewhat limited in prime characteristic: they in-
clude tori and finite groups whose order is not divisiblepbgs well as extensions

of these. By semi-continuity, we have the following theorem in characteristic O.

7.2. CoroLLARY. LetX be any projective variety over a field of characterigic
that is Frobenius-split typ&esp., globally F-regular type Suppose that a group
T that s either a torus or finite groufor an extension of theyacts algebraically
on X. Then the GIT quotienX// T with respect to any linearization of the action
of T is also a Frobenius-split typgesp., globally F-regular typevariety.

It is natural to expect that GIT quotients of globally F-regular varieties by arbi-
trary reductive groups are again globally F-regular. This appears to be true, but it
depends on a tricky technical point in the theory of tight closure that is still open.
See Theorem 7.6 and subsequent remarks.

Before proving Theoremi.1, let ugpoint out that the question of Knutson men-
tioned in Section 1 is now answered. The complex homogeneous s@dfes
(whereG is semi-simple and is parabolic) are all smooth Fano varieties; hence
they are of globally F-regular type (by Proposition 6.3) and have vanishing higher
cohomology for all ample (or even nef) line bundles. Alternatively, we can also
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deduce this directly in arbitrary characteristic using a result of Ramanathan: in any
characteristic, thé&/P are stably Frobenius split along an ample divisor [R2, 3.1]
and hence globally F-regular by Theorem 3.10. Explicitly, we have the following
corollary.

7.3. CoroLLARY. LetP C G be any parabolic subgroup of a semi-simple alge-
braic group of arbitrary characteristic. Lel' be a torus or a finite group acting
on G/P. For any numerically effective line bundl2on any GIT quotienX =
(G/P)//T, the cohomology moduld$’(X, £) vanish fori > 0.

Of course, similar corollaries can be drawn for geometric invariant theory quo-
tients of any globally F-regular variety.

Proof of Theorenv.1. Let X be a connected projective variety over an F-finite
ground field of prime characteristje.

Let 7 act onX. Choose any lift of this action to an ample line bundleon
X. Let S be the corresponding section ring, with the gieaction. As we have
seen in Proposition 3.1 (resp., Theorem 3.X0)s Frobenius split (resp., globally
F-regular) if and only ifS is F-pure (resp., F-regular).

Let R be the ring of invariants for this action. By definition, the projective
scheme defined bR is the geometric invariant quotient &f with respect to our
choice of the linearization df. Becausd' is linearly reductive, the Reynolds op-
erator provides a splitting aR C S as ankR-module map. We claim thaR is
F-pure (resp., F-regular) whenevers.

In general, ifR C S splits as a map oR modules and ifS is F-pure (resp., F-
regular), thenR is F-pure (resp., F-regular). This can be seen by considering the
commutative diagram

RYP_split
RV — =

| I

R R-split S,

together with the fact that the vertical arrow on the left splits as a m&moddules.
Composing the inclusion a@¥/7 in S¥7 with this splitting and then with the split-
ting of the bottom horizontal arrow gives &linear splitting ofR < RY? [HR2].
A similar argument takes care of the (strongly) F-regular case [HH1].

If the ring of invariantsk = ST is F-pure (resp., F-regular), then the same is true
for any Veronese subring™ = @, y R:» generated by elements &fthat have
degrees a multiple of, since this Veronese subring splits off frakn BecauseR
is a finitely generated algebra, some such Veronese suBfings generated by
its elementsk,, = R\" of degree 1.

If a graded ringR is normal and generated by its elements of degree 1, Rhen
is the section ring for the naturé (1) it defines on ProR. (In general, a graded
ring need not be a section ring for the projective scheme it defines, as the result-
ing O(1) need not even be an invertible sheaf. This difficulty does not arise if the
ring is generated in degree 1.)

sip
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Now, the GIT quotientX//T is ProjR = ProjR"’. BecauseR"” may be as-
sumed normal and generated in degree 1, it is a section ring f&f. Because
R™ is F-pure (resp., F-regular), we conclude th&t T is Frobenius split (resp.,
globally F-regular). O

7.4. CauTtioN. The corollary does not apply to reductive grogpsuch as Sin)

that are not linearly reductive in prime characteristic, because the splitti¥f¢) of

S that exists in characteristic 0 is not preserved after reduction to prime character-
istic. (See, however, Theorem 7.6 and subsequent remarks.)

If S is anN-graded ring of characteristic 0 and if the linearly reductive group
G acts onS, then the ring of invariant® = S is a direct summand of as an
R-module. One can show directly in this case tRathen has the property that
all ideals are tightly closed (in characteristic 0); see the appendix by Hochster in
[Hu]. The subtlety is that this is not known to imply that, after reducing mogulo
all ideals are tightly closed for infinitely many closed fibers in a family of models.
That is, we do not know whether F-regularity in characteristic 0 is equivalent to
F-regular type, although this is conjectured to be true.

7.5. ConsecTURE. If R is a finitely generatedN-graded algebra over a field of
characteristicO in which all ideals are tightly closed, thef has F-regular type.

The converse of Conjecture 7.5 is known to be true. Furthermore, it is not hard to
check that Conjecture 7.5 holds true for Gorenstein riRgbecause in this case

it is enough to check that a single ideal in each closed fiber is tightly closed—
namely, any ideal coming from a homogeneous system of paramete®s &ge
[HH4] for the theory of tight closure in characteristic 0, including these basic
facts.

7.6. THEOREM. Assume that Conjecture 7.5 is true. D&be any projective va-
riety over a field of characteristi© that is Frobenius-split typéresp., globally
F-regular typg. Suppose that a reductive grodpacts algebraically orX. Then

the GIT quotientX//G with respect to any linearization of the action@fis also

a Frobenius split typéresp., globally F-regular typevariety. In particular, every
GIT quotient of a Fano variety by a linearly reductive group acting algebraically
would be globally F-regular type.

There are a few cases where we can conclude that rings of invariants of reductive
groups have strongly F-regular type. If the group acts on a strongly F-regular ring
G that also happens to be a unique factorization domain, then the ring of invari-
ants has strongly F-regular type (see e.g. [SV]). The point is that any reductive
groupG is an extension of a semi-simple groépby a groupT that is linearly
reductive for generic prime characteristic reduction. TBén= (S7)%/# . But

one can show tha& is Gorenstein and hence has strongly F-regular type, so the
invariant ring undeiG/H has strongly F-regular type by Theoré. Thus, for
certain kinds of linearized actions of reductive groups on certain special varieties,
the quotients are globally F-regular. Two examples follow.
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7.7. CorOLLARY. Suppose that a reductive grodpacts algebraically on pro-
jective spac@” over a field of characteristi® and that its action is linearized by
O(@@). Then the GIT quotieri?”//G is of globally F-regular type.

Similarly, if a reductive grougs acts algebraically on a Grassmanniah of
characteristicO, with its action linearized by the Plicker embedding. Then the
GIT quotientY//G is of globally F-regular type.

Proof. In both cases, the rings on whichacts are strongly F-regular unique fac-
torization domains, so it follows from the proof of [SV, 5.23]. O

The story of F-splitting and global F-regularity for quotients by reductive groups
in characteristigp that are not linearly reductive is much more subtle and compli-
cated. See [MR1; MR2] for a treatment of some specific quotients.
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