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1. Introduction

A smooth projective variety is said to beFano if its anti-canonical bundle is
ample. The Kodaira vanishing theorem easily implies vanishing of all higher co-
homology modules of numerically effective line bundles on any Fano variety, at
least in characteristic 0. Indeed, for any positivei, it implies thatH i(X,L) =
H i(X, (L ⊗ ω−1) ⊗ ω) vanishes whenL ⊗ ω−1 is ample, and hence vanishing
holds in particular wheneverL is numerically effective andω−1 is ample.

In this paper, a class of algebraic varieties is introduced, the class ofglobally
F-regular varieties.Globally F-regular varieties have strong vanishing properties,
including the vanishing of the higher cohomology groups for any numerically ef-
fective line bundle (as discussed above for Fano varieties). Indeed, the class of
globally F-regular varieties of characteristic 0 is shown to include Fano varieties,
so the vanishing just described is recovered. A nice feature of the class of glob-
ally F-regular varieties is that it is preserved under the operation of forming certain
(and conjecturally: any) GIT quotients by linearly reductive groups.

Globally F-regular varieties are closely related to Frobenius split varieties
[MRn]. Both Frobenius splitting and global F-regularity are notions defined using
the Frobenius morphism in characteristicp; by reduction to characteristicp, both
Frobenius splitting and global F-regularity make sense in characteristic 0 as well.
As explained within, global F-regularity turns out to be a stable version of the no-
tion of Frobenius split along a divisorthat has arisen in the Indian school of alge-
braic groups [MRn; RR; R1; R2]. However, the definition of global F-regularity is
based on the theory of tight closure introduced by Hochster and Huneke in [HH1]:
roughly speaking, a projective algebraic variety is globally F-regular if it has a co-
ordinate ring in which all ideals are tightly closed.

The original motivation for this work was a question of Allen Knutson in his
study [Kn] of torus actions in symplectic geometry: LetG be a semi-simple com-
plex algebraic group with fixed Borel subgroupB and maximal torusT ⊂ B.

Consider the geometric invariant theory (GIT) quotientX of the homogeneous
spaceG/B with respect to some choice of linearization of the natural left action

Received March 20, 2000. Revision received April 4, 2000.
Supported by the National Science Foundation and the Alfred P. Sloan Foundation.

553



554 Karen E. Smith

of T . If L is an ample line bundle on the quotientX, then doesH i(X,L) van-
ish for i > 0? Vanishing does not follow immediately from the Kodaira vanishing
theorem becauseX need not be Fano (even thoughG/B is). In his thesis, Knut-
son posed this question for a particular choice of linearization. Knutson’s specific
question turned out to have an answer in [Sj], but it led to the general problem of
vanishing theorems for positive line bundles on GIT quotients of Fano varieties.
In this paper, Knutson’s question is answered affirmatively as a special case of
vanishing theorems for torus quotients of any Fano variety. A special case of one
of our main theorems is the following.

1.1. Theorem. Let X be a quotient variety obtained by the action of a finite
group or a torus on a complex Fano variety with rational Gorenstein singularities.
Let L be an invertible sheaf ofOX-modules that is numerically effective(nef).
ThenH i(X,L) = 0 for all i > 0.

1.2. Remark. Here, the group action is assumed to be algebraic, and by “quo-
tient” we mean a geometric invariant theory quotient in the sense of Mumford
[MFK] with respect to any choice of ample linearization of the action. In particu-
lar, although such quotients are not unique (see [DH; Th]), the vanishing theorem
holds for any of them.

1.3. Remark. Versions of Theorem 1.1 for an arbitrary reductive groupG are
proved in Theorems 7.6 and 7.7, but at present a tricky technical point in the the-
ory of tight closure prevents me from stating Theorem 7.1 for arbitrary reductive
quotients of Fano varieties. This difficulty is explained at the end of Section 7.

The usefulness of Frobenius splitting and related techniques in establishing van-
ishing theorems is well known; see [HR1; HR2; MRn; RR; R1; R2]. On the
other hand, the idea of F-regularity first arose in the theory oftight closurein
commutative algebra and had nothing to do with projective geometry. One theme
of this paper is the relationship between local (commutative algebra) and global
(projective geometry) issues. The properties of F-purity and F-regularity in com-
mutative algebra [HH1; HH3; HR1; HR2; Hu; S3] and the notion of Frobenius
splitting and related techniques [MRn; RR; R1; R2] are equivalent from a certain
point of view, as explained within. I hope this paper shows the fruitfulness of com-
bining these points of view and encourages more experts in one of these points of
view to embrace the other.

In order to make the presentation accessible to a larger audience, this paper is
partially expository and with various arguments using the Frobenius (which are
standard for experts) repeated here in detail. I hope the experts will forgive me this
lack of novelty. A basic reference for the commutative algebra language (Cohen–
Macaulayness, Gorensteinness, injective hull, etc.) used here is [Ma].

I am grateful to Allen Knutson and Michael Thaddeus for making me aware of
these interesting questions about vanishing and for conversations that piqued my
interest in them.
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2. F-Purity and F-Regularity

This section contains definitions and a quick review of some commutative algebra,
which can be revisited as necessary for reference.

Let R be an arbitrary Noetherian commutative ring. A map ofR-modules

M1
f−→ M2 is pure if the induced mapM1⊗M f⊗id−−−→ M2 ⊗M is injective for

everyR-moduleM. If M2/M1 is finitely presented, then the purity off is equiv-
alent to the splitting off ; see [Ma, 7.14].

For finitely generated modules over a local ring, there is a convenient criterion
for purity that (according to Hochster) goes back to Auslander, at least in a prim-
itive form. Suppose thatR is local and thatE is an injective hull of the residue

field of R. The mapM1
f−→ M2 is pure if and only ifM1⊗ E f⊗id−−−→ M2 ⊗ E is

injective [HH3, 2.1e].
Now assume thatR has prime characteristicp. By definition,R is F-pureif the

Frobenius map

R
F−→ 1R,

r 7→ rp

is pure [HR1]. The notationeR denotesR itself, but viewed as anR-module via
Frobenius:r ∈R acts onex ∈ eR by r · ex = e(rp

e

x)∈ eR. In particular, the iterated

FrobeniusR
F e−→ eR is anR-module map for eache ≥ 0.

Some basic facts about F-purity are proved in [HR1]. Among them: F-pure
rings are reduced; every regular ring is F-pure; if an iterateF e is pure, thenF is
pure; a ring is F-pure if and only if all its local rings are F-pure. This latter prop-
erty enables us to say that any scheme over SpecZ/pZ is F-pure if all its local
rings are.

We assume throughout that all rings are F-finite.A ring of characteristicp is
said to be F-finite it is finitely generated over its subring ofpth powers. This mild
hypothesis is satisfied, for instance, by any finitely generated algebra over a per-
fect fieldk, and it is preserved under localization. With this assumption, eacheR

is a NoetherianR-module; in particular, F-purity is equivalent to the splitting of
the Frobenius map. The assumption thatR is finite overRp implies thatR is ex-
cellent [Ku].

The point of this paper is to apply the notion of strong F-regularity to projective
varieties. We first recall the local notion from [HH1].

2.1. Definition. An F-finite ringR of prime characteristicp is strongly F-
regular if, for everyc ∈R not in any minimal prime ofR, there exists an integer
e ≥ 0 such that theR-module map

R
ecF e−−→ eR,

1 7→ ec
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splits. This map is the composition of the Frobenius mapR −→ eR followed by
multiplication by the elementec, where the notationec denotesc regarded as an
element ineR. This notation is used for extra clarity, to distinguish between ele-
ments ineR and the action of elements inR on the unit element ineR. For instance,
note thatr · e1= erp

e

.

2.2. Some basic facts about strong F-regularity are recorded in [HH1]. Among
them: strongly F-regular rings are F-pure, reduced, normal, and Cohen–Macaulay;
regular rings are strongly F-regular; ifc ∈ R is an element (not in any minimal
prime ofR) such thatRc is strongly F-regular and ifecF e splits for somee > 0,
thenR is strongly F-regular; the ringR is strongly F-regular if and only if all of
its local rings are strongly F-regular. This final property motivates the definition
of a schemeX overZ/pZ as strongly F-regular if all its local rings are.

How much stronger than F-purity is the concept of strong F-regularity? An an-
swer is provided in [S1]: an F-pure ringR is strongly F-regular if and only ifR is
a simple module over the ring ofZ-linear differential operators onR.

Strong F-regularity first arose in connection with tight closure. Tight closure is
a closure operation performed on ideals in a Noetherian rings containing a field;
its precise definition is not important here (see [HH1; HH3]). Strong F-regularity
is conjectured to be equivalent to weak F-regularity, which is the property that all
ideals are tightly closed. Strong and weak F-regularity are known to be equivalent
for Q-Gorenstein schemes [Mac] and forN-graded rings [LS]. In this paper, the
qualifier “strongly” is frequently dropped in discussing strongly F-regular rings.
Because we will not need the concept of weak F-regularity and since we will pri-
marily be discussing the graded case, this should not cause any confusion.

3. Relationship between Local and Global Properties

In this section, we discuss how the local properties of F-purity and F-regularity
give rise to global properties for projective varieties. This gives rise to the concept
of aglobally F-regularprojective variety.

Throughout this section,X will be a connected projective variety over a perfect
(or, more generally, F-finite) fieldk of prime characteristicp.

The absolute Frobenius mapX
F−→ X is the identity on the underlying topolog-

ical space ofX, but its corresponding sheaf mapOX −→ F∗OX is thepth power

map locally on sections. (Locally, this is the mapR
F−→ 1R described previously.)

The varietyX is said to beFrobenius splitif the mapOX −→ F∗OX splits as a map
ofOX-modules [MRn]. Note that, becauseX is of finite type over a F-finite field,
X itself is F-finite and hence the Frobenius map is finite.

If X is regular then the Frobenius mapOX −→ F∗OX splits on every stalk, but
the existence of a global splitting of Frobenius is quite rare and forces strong re-
strictions onX. Thus the local condition of F-purity defined in the previous section
is not the same as Frobenius splitting. Rather, we can think of Frobenius splitting
of a varietyX as a sort ofglobal F-purity.
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Nonetheless, global properties ofX can be studied, using the techniques of lo-
cal algebra, by passing to anaffine cone overX determined by some polarization.
A polarizationfor X is a choice of an ample invertibleOX-moduleL. The cone
determined byL is the spectrum of thesection ring

S =
⊕
n∈N

H 0(X,Ln).

The section ringS is a finitely generated algebra over the F-finite fieldH 0(X,OX),
and ProjS ∼= X. If X is normal, then so isS. Letm denote the unique homoge-
neous maximal idealm = S>0 of S (the irrelevant ideal).

The following proposition relates the local property of F-purity to the global
property of F-splitting (see also [S2, 4.10; W2, 3.3]).

3.1. Proposition. LetX be a connected projective variety over an F-finite(e.g.
perfect) field of prime characteristic. Then the following are equivalent:

(1) X is Frobenius split;
(2) the section ring ofX with respect to every polarization is F-pure;
(3) the section ring ofX with respect to some polarization is F-pure.

The proof follows readily by tensoring the Frobenius mapOX −→ F∗OX with the
sheaf of algebras

⊕Li and considering global sections. It is not included here,
since it can be found in [S2, Prop. 4.10] and is, in any case, a simplified version of
the proof of Theorem 3.10 offered here.

By analogy, this motivates the following definition.

3.2. Definition. A projective variety over an F-finite field isglobally F-regular
if it admits some section ring that is F-regular.

By the conventions agreed upon in Section 2, the unqualified term “F-regular”
here means strongly F-regular. However, because strong and weak F-regularity
are equivalent forN-graded F-finite rings [LS], there is no possibility of confusion.

Of course, any globally F-regular variety is locally F-regular, but the converse
is far from true. Indeed, any smooth variety is locally F-regular whereas a globally
F-regular variety, for example, has the property thatH i(X,OX) for anyi > 0, as
we will soon prove.

3.3. Note that globally F-regular varieties are Frobenius split. Indeed, passing
to section rings, this is immediate from the fact that strongly F-regular rings are
F-pure.

As with F-splitting, ifX admits a section ring that is F-regular theneverysection
ring forX is F-regular, as we will prove in Theorem 3.10. We first recall the notion
of Frobenius splitting along a divisor,as defined by Ramanan and Ramanathan
[RR], and then introduce a stable version of it.

3.4. Stable Frobenius Splitting along a Divisor. Let D be an effective
Cartier divisor, lets be a section ofOX(D) vanishing precisely alongD, and let
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e be a positive integer. Consider the mapOX −→ OX(D) sending 17→ s. This
induces a map ofOX-modules

OX −→ F∗OX −→ F∗OX(D),
where the first arrow is the Frobenius map and the second arrow is (the push-
forward of ) the map 17→ s. Consistent with the notion introduced in Section 2,
we will denote by1s the elements considered as an element ofF∗OX(D). The
varietyX is said to beFrobeniusD-split if this composition map splits, that is,
if there is a mapF∗OX(D) −→ OX sending1s 7→ 1. This notion appears to have
been first exploited in [RR] but was not named as such until [R2].

It is convenient to consider not just the Frobenius map but also its iterates. Ac-
cordingly, we introduce the notion of stable FrobeniusD-splitting.

3.5. Definition. Let X be an algebraic variety over an F-finite field, and let
D be an effective Cartier divisor onX defined by a sections. The varietyX is
said to bee-FrobeniusD-split (or e-Frobenius split alongD) if there is a map
F e
∗OX(D) −→ OX sendinges 7→ 1. (Again, the notationes denotes the elements

considered as an element ofF e
∗OX(D).) We will say thatX is stablyFrobenius

D-split if it is e-FrobeniusD-split for somee.

It is easy to check that ifX is e-FrobeniusD-split then it ise ′-Frobenius split for
all e ′ ≥ e, thus motivating the adjective “stable”. Stable FrobeniusD-splitting
is weaker than FrobeniusD-splitting, yet virtually all the good properties of
FrobeniusD-splitting are applicable with only the assumption that eventually,
for large enoughe, we have splitting.

Basic Properties

3.6. Stable Frobenius splitting along any divisor implies Frobenius splitting.
Indeed, becauseOX −→ F e

∗OX(D) factors through the Frobenius mapOX −→
F e
∗OX, any splitting will also splitOX −→ F e

∗OX (sending 1 to 1). On the other
hand, any splitting of the natural mapOX −→ F e

∗OX must split the Frobenius
OX −→ F∗OX because we have a factorizationOX −→ F∗OX −→ F∗F

(e−1)
∗ OX ∼=

F eOX (where all maps are induced by sending1 to1). Thus the mapOX −→ F∗OX
also splits. In particular,stable Frobenius splitting along the zero divisor is equiv-
alent to Frobenius splitting.However, stable splitting along the zero divisor is, in
general, a strictly weaker condition than stable splitting along an effective divisor.

3.7. IfX is stably Frobenius split along some effective divisorD, thenX is sta-
bly Frobenius split along any effective divisorD ′ with D ′ ≤ D. (Here,D ′ ≤
D means that the multiplicity of each irreducible component ofD ′ is at most the
multiplicity of the corresponding component inD.) Indeed, whenD ′ ≤ D ands ′

is a defining equation ofD ′, then a defining equation forD will have the forms ′t
for somet. We have maps of sheavesOX −→ OX(D ′) −→ OX(D), given by mul-
tiplication bys ′ and byt, that induce mapsF e

∗OX −→ F e
∗OX(D ′) −→ F e

∗OX(D).
Putting this together with the Frobenius map, we have
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OX −→ F e
∗OX −→ F e

∗OX(D ′) −→ F e
∗OX(D),

1 7→ e1 7→ es ′ 7→ e(s ′t),

which shows that any any splitting ofOX −→ F e
∗OX(D) will induce a splitting of

OX −→ F e
∗OX(D ′). So ifX is e-FrobeniusD-split, it is alsoe-FrobeniusD ′-split

for any effectiveD ′ ≤ D.

3.8. We have remarked that ifX is e-FrobeniusD-split then it ise ′-Frobenius
D-split for all e ′ ≥ e. However, it can happen thatX is e-Frobenius split alongD
yet not(e − 1)-Frobenius split alongD. On the other hand, the following lemma
ensures that one can get(e − 1)-Frobenius splitting frome-Frobenius splitting
along a divisor that isp-divisible.

3.9. Lemma. LetX be a variety andD an effective Cartier divisor. ThenX is
e-FrobeniusD-split if and only ifX is Frobenius(e + 1)-split alongpD. In par-
ticular, X is stably Frobenius split alongD if and only if X is stably Frobenius
split alongpD.

Proof. Say thatX is e-FrobeniusD-split. Fix a sections definingD. We know
that the mapOX −→ F e

∗OX(D) sending 1 tos splits. By Remark 3.5, the map
OX −→ F∗OX sending 1 to 1 also splits. But the splitting ofOX −→ F∗OX implies
the splitting ofOX ⊗ OX(D) −→ F∗OX ⊗ O(D) ∼= F∗O(pD), with this iso-
morphism coming from the projection formula. (The mapOX(D) −→ F∗O(pD)
sendss to esp.) Pushing down viaF e, we have the splitting ofF e

∗OX(D) −→
F e
∗ F∗O(pD) = F e+1

∗ OX(pD). Putting this together with the original splitting
OX −→ F e

∗OX(D), we see that the mapOX −→ F e+1
∗ OX(pD) sending 1 toe+1sp

splits overOX.
Conversely, say thatX is (e + 1)-FrobeniuspD-split. Then the mapOX −→

F e+1
∗ OX(pD) sending 1 toe+1sp splits. But this map factors through the map
OX −→ F e

∗OX(D) sending 1 toes. To see this factorization, first note that the
Frobenius mapOX −→ F∗OX induces a mapOX(D) −→ F∗OX ⊗ OX(D) ∼=
F∗(pD), with the isomorphism following from the projection formula. Pushing
down viaF e yields a mapF e

∗OX(D) −→ F e+1
∗ OX(pD), which sendses to e+1sp.

Thus we have the factorization

OX −→ F e
∗OX(D) −→ F e+1

∗ OX(pD),
1 7→ es 7→ e+1sp.

So any splitting ofOX −→ F e+1
∗ OX(pD) induces a splitting forOX −→ F e

∗OX(D),
andX is e-FrobeniusD-split.

3.10. Theorem. LetX be a projective variety over a perfect field. Then the fol-
lowing statements are equivalent.

(1) X is globally F-regular; that is, the section ring ofX with respect to some
ample divisor is strongly F-regular.
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(2) X is stably Frobenius split along some ample effective divisorD such that the
open setX −D is (locally) strongly F-regular.

(3) X is stably Frobenius split along every effective Cartier divisor.
(4) The section ring ofXwith respect to every ample divisor is strongly F-regular.

Proof. We show that (1) is equivalent to (2) and then that(1)⇒ (3)⇒ (4)⇒ (1).
To see that (1) and (2) are equivalent, fix any ample effectiveD and lets be a

defining section forD. Consider theOX-module map

OX −→ F e
∗OX(D)

sending 1 toes.
We tensor this map ofOX-modules with the sheaf of algebras

⊕
n∈ZOX(nD)

and take global sections to construct the corresponding map of gradedS-modules.
Of course, this process applied toOX produces a section ringS. What is the cor-
responding gradedS-module this process produces forF e

∗OX(D)? Note that, by
the projection formula,F e

∗OX(D)⊗OX(nD) ∼= F e
∗ (OX(D + penD)) and so the

gradedS-module associated withF e
∗OX(D) is the module⊕

n∈Z
H 0(X, F e

∗OX(D + penD)) = e[S ]1modpe (1),

where (a) the notation [S ]1modpe indicates the subset of elements ofS consist-
ing of (sums of) homogeneous elements whose degrees are congruent to 1 mod-
ulo pe and (b) the shift [S ]1modpe (1) indicates that a homogeneous elementc of
degree 1 inS should be considered to have degree 0 in [S ]1modpe (1). The nota-
tion e[S ]1modpe (1) indicates the naturalS-module structure on this set given by
Frobenius—that is,r ∈ S acts onec in e[S ]1modpe (1) to producee

(
rp

e

c
)
. Note

that [S ]1modpe (1) is a finitely generated gradedS-module whose degree-n piece is
S1+pen = H 0(X,OX(D + penD)). Thus, the degree-preserving map of graded
S-modules corresponding to the map of sheavesOX −→ F e

∗OX(D) sending 1 toes
is the map

S −→ e[S ]1modpe (1)

sending 1 toes.
Splitting theOX-module mapOX −→ F e

∗OX(D) is equivalent to splitting the
mapS −→ e[S ]1modpe (1) as a map of gradedS-modules. But because the module
e[S ]1modpe (1) is a graded direct summand ofeS as anS-module, this is equiv-
alent to splitting the mapS −→ eS(1) sending 1 toes in the category of graded
S-modules. But becauseeS is a finitely generatedS-module ands is homoge-
neous, this is equivalent to splitting the mapS −→ eS sending 1 toes as a map
of S-modules (without worrying about whether there is a homogeneous splitting).
Thus, for an ample effective divisorD defined bys, we have shown that stable
FrobeniusD-splitting is equivalent to splitting theS-module mapS −→ eS send-
ing 1 toes for somee.

Now consider the assumption thatX − D is strongly F-regular. If againS
denotes the section ring ofX with respect toD, then this open affine set is de-
fined as Spec[Ss ] 0, where [Ss ] 0 denotes the 0th graded piece of the localization
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ring Ss. BecauseSs is a Laurent ring over its degree-0 subring (see [S4, proof of
3.4]), [Ss ] 0 is strongly F-regular if and only ifSs is strongly F-regular (see e.g.
[LS, 4.1]). Hence condition (2) is equivalent to the condition that there is a split-
ting of S-modulesS −→ eS sending 1 toes for somee and somes with Ss strongly
F-regular. According to the basic “strongly F-regular” properties described in Sec-
tion 2.2, we see that this is equivalent to strong F-regularity ofS. This completes
the proof of the equivalence of conditions (1) and (2).

Now assume (1). LetS be a section ring forX with respect to the ample line
bundleL, and assume thatS is stronglyF -regular. LetD be an effective divisor
defined by the sections, and letOX(D) denote the corresponding invertible sheaf.
Consider theOX-module map

OX −→ OX(D),
1 7→ s.

By tensoring with the “polarization algebra”
⊕

n∈Z Ln and taking global sections,
we have a degree-preserving map of gradedS-modules

S −→ M =⊕H 0(X,OX(D)⊗ Ln),
1 7→ s.

Note that (a) theS-moduleM is a torsion-free rank-1S-module with a natural
grading and (b) the mapS −→ M sending 1 tos defines a degree-preserving map
of S-modules. Thus,M is isomorphic to a finitely generated graded submodule
of the fraction field ofS, and there is a “clearing denominators” map of graded

S-modulesM
r
↪→ S(d ), given by multiplication byr, for some homogeneous ele-

mentr (of degree, say,d ) in S.
Let c = rs ∈ S. BecauseS is strongly F-regular, there exists ane and anS-

module mapeS
φ−→ S that sendsec to 1. Consider the compositions ofS-module

maps

S −→ eS −→ eM
er−→ e(S(d ))

φ−→ S,

1 7→ 1 7→ es 7→ ec 7→ 1.

Because the degree ofs in eM is 0, the compositionψ = φ B er gives a degree-
preserving map fromeM toS. That is, there are degree-preserving maps of graded
S-modules

S
F e−→ eS −→ eM

ψ−→ S,

1 7→ 1 7→ es 7→ 1.

The corresponding map of sheaves (after passing to the appropriate direct sum-
mand, as in the proof of the equivalence of (1) and (2)) is

OX −→ F e
∗OX −→ F e

∗OX(D) −→ OX,
showing thatX is stably Frobenius split alongD. This shows that (1) implies (3).

To see that (3) implies (4), consider a section ringS for X with respect to some
ample invertible sheafL. BecauseX is Frobenius split along the zero divisor, it
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is reduced and hence there is an open affine subset that is regular. Thus we can
find an ample effective divisorD defined by a sections of some power ofL such
thatX−D is regular and hence stronglyF -regular. Equivalently, on the algebraic
side this means thats ∈ S is such that the ringSs is regular and hence strongly
F-regular. We know thatX is stably FrobeniusD-split by assumption and so, as in
the proof of the equivalence of (1) and (2), we see equivalently that the mapS −→
eS sending 1 toes splits. So again, this implies thatS is strongly F-regular, and (4)
is proved.

Finally, (4) trivially implies (1).

3.11. Example. It is worth remarking that Frobenius splitting along a divisor
depends, in general, on the divisor itself and not on the divisor class. For exam-
ple, letS be the graded ringF7[x, y, z, w]/(x3 + y3 + z3), which is the section
ring of a projectivized coneX over an ordinary elliptic curve with respect to the
naturalO(1). One can check that we have splitting of the mapS −→ eS sending
1 to ew for largee although the mapS −→ eS sending 1 toex never splits for any
e. Thus,X is stably Frobenius split alongD := {w = 0} but not along the lin-
early equivalent divisorD ′ := {x = 0}. Accordingly, Theorem 3.10 ensures that
X − D ′ ought not be locally strongly F-regular. This is indeed the case, as one
can check directly, althoughX −D ′ (and in factX itself ) is F-split.

4. Globally F-Regular Varieties:
Properties and Vanishing Theorems

Globally F-regular varieties have remarkably strong properties. In this section, we
summarize some of these.

4.1. Properties of Globally F-Regular Varieties. Let X be a connected
projective variety over an F-finite field of prime characteristic. IfX is globally
F-regular, thenX enjoys the following properties.

(1) X is normal.
(2) X is Cohen–Macaulay.
(3) Every ample invertible sheaf onX is arithmetically Cohen–Macaulay; that is,

every section ring forX is Cohen–Macaulay.
(4) X is Frobenius split; that is, every section ring is F-pure.
(5) Every section ring forX is pseudorational(a desingularization-free analog

of rational singularities that makes sense for arbitrary schemes; see[LT]).

Proof. Let X = ProjS, whereS is an arbitrary section ring. IfX is globally
F-regular thenS is strongly F-regular, by Theorem 3.10. HenceS is normal and
Cohen–Macaulay (by Section 2.2), so properties (1), (2), and (3) follow. Strongly
F-regular rings are also F-pure, so property (4) follows from Proposition 3.1. We
establish (5) as follows. Strongly F-regular rings have the property that all ideals—
in particular, all parameter ideals—are tightly closed. But any excellent domain
in which all parameter ideals are tightly closed is pseudorational [S3, 3.1].
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We now prove a vanishing theorem for globally F-regular varieties. The idea of
using Frobenius splitting and its variants to prove vanishing theorems is not new:
it goes back at least to Hochster and Roberts in their famous proof [HR1] that
invariant rings are Cohen–Macaulay; the language here is closer to [MRn]. The
following argument is standard for experts.

4.2. Theorem. LetX be a projective variety that is globally F-regular, and let
L be an invertibleOX-module.

(1) If H i(X,Ln) = 0 for n� 0, thenH i(X,L) = 0.
(2) If there exists an effective Cartier divisorD such thatH i(X,Ln(D)) = 0 for

n� 0, thenH i(X,L) = 0.

Proof. LetL be an arbitrary invertibleOX-module. By the projection formula ap-
plied to the Frobenius map onX, we haveF∗OX ⊗OX L ∼= F∗F ∗L [H, p. 124].
Also, note thatF ∗L ∼= Lp. Thus, the split inclusion

L −→ F∗OX ⊗ L ∼= F∗Lp

induces an injective map of cohomology

H i(X,L) ↪→ H i(X, F∗Lp) ∼= H i(X,Lp),
with the latter isomorphism arising because the Frobenius map is affine [H, p. 252].
We may iterate this process to obtain a series of inclusions

H i(X,L) ↪→ H i(X,Lp) ↪→ H i
(
X,Lp2)

↪→ H i
(
X,Lp3)

↪→ · · · .
Thus, any line bundleL having the property theH i

(
X,Lpe) = 0 for some natural

numbere ∈N must haveH i(X,L) = 0 as well.
The proof of the second statement is similar. BecauseX is stably Frobenius

D-split for every effectiveD, the map

OX −→ F e
∗OX(D)

sending 1 to a defining equation forD splits for all largee. Now, tensoring with
any invertible sheafL, the map

L −→ F e
∗OX(D)⊗ L ∼= F e

∗ (OX(D)⊗ F e∗L) ∼= F e
∗
(OX(D)⊗ Lpe)

splits, where the first isomorphism is obtained from the projection formula. This
induces a split inclusion of cohomology groups

H i(X,L) ↪→ H i
(
X,F e

∗
(Lpe(D))) ∼= H i

(
X,Lpe(D)),

with the isomorphism holding because the Frobenius mapF e, like any finite map,
is affine. Now it is immediate that, ifH i

(
X,Lpe(D)) vanishes for anye � 0,

thenH i(X,L) vanishes as well.

4.3. Corollary. If X is a projective variety that is globally F-regular, then
H i(X,L) = 0 for any invertibleL that is numerically effective(nef). In particu-
lar, H i(X,OX) = 0 for all i > 0.
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Proof. First, say thatL is ample. By Serre vanishing,H i(X,Ln) = 0 for n� 0.
ThusH i(X,L) = 0 follows from (1). Now sayL is nef. Fix an ample effective
divisorH. ThenLn(H ) is ample for alln ≥ 0, and we just checked that coho-
mology vanishes for an ample invertible sheaf, soH i(X,Ln(H )) = 0 for all n ≥
0 and alli ≥ 1. Now it follows from Theorem 4.2(2) thatH i(X,L) = 0 for all
i ≥ 1.

We also have the following form of the Kawamata–Viehweg vanishing theorem for
globally F-regular varieties.

4.4. Corollary. LetX be a globally F-regular projective variety, and letL be
a big and nef invertible sheaf onX. ThenH i(X,L−1) = 0 for all i < dimX.

Proof. BecauseL is big and nef, we can find an effective Cartier divisorD such
thatLm(−D) is ample for allm � 0 [KM, 2.6]. But thenH i(X, (L−m(D))n) =
0 for all i < dimX and alln � 0 becauseX is Cohen–Macaulay, so by Theo-
rem 4.2 we conclude thatH i(X,L−m(D)) = 0 for all i < dimX. By the second
part of Theorem 4.2, we conclude thatH i(X,L−1) = 0.

5. The Characteristic-0 Theory

The notions of Frobenius splitting and strong F-regularity can be adapted to vari-
eties of characteristic 0, where we will call them Frobenius split type and strongly
F-regular type. We briefly recall the idea of reduction modulop.

Let X be a scheme of finite type over a fieldk of characteristic 0. Choose a
finitely generatedZ-algebraA contained ink over whichX is defined. LetXA be
the “thickened” scheme of finite type overA, so thatXA ×SpecA Speck is natu-
rally identified withX. Each closed fiber of thefamily of modelsXA −→ SpecA
is a scheme of finite type over a finite field (of different characteristicsp). In this
way, notions defined in characteristicp make sense also overk by requiring them
to hold on a dense set of closed fibers of the familyXA −→ SpecA.

5.1. Definition. A scheme of finite type over a field of characteristic 0 isFrobe-
nius split type(resp.,strongly F-regular type) if it admits a family of models in
which a dense set of closed fibers are Frobenius split (resp., strongly F-regular).
Consequently, a variety projective over a field of characteristic 0 isglobally F-
regular typeif it admits a family of models in which a dense set of closed fibers is
globally F-regular. None of these properties depends on the choice of the family
of models.

Furthermore, given any finite collection{Mi} of coherentOX-modules, we
can chooseA so that these sheaves are defined overA. The resulting coherent
OXA-modulesMAi pull back onX = XA × Speck toMi . By pulling back to a
closed fiber, we get a collection of coherent sheavesM̄i on the prime characteris-
tic schemeXA×Spec(A/µ) for eachµ in max Spec(A). In this way, we can study
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coherent modules (e.g. line bundles) on a variety of characteristic 0 by “reduction
to prime characteristic”.

5.2. Caution. One can define the operation of tight closure on ideals in an al-
gebra of finite type over a field of characteristic 0 using reduction to characteristic
p (see [HH4]). Because the property of strong F-regularity is equivalent to the
property that all ideals are tightly closed forN-graded rings over a perfect field of
prime characteristic [LS], we know that global F-regularity in prime characteris-
tic is equivalent to the property that all ideals are tightly closed in some section
ring forX. It is tempting to believe that the property of globally F-regular type is
equivalent to the property that all ideals are tightly closed in a section ring of char-
acteristic 0 as well. This may be true, but it is currently an open problem whether
the property of F-regular type is equivalent to all ideals being tightly closed, even
for a finitely generated graded ring over a field. See Conjecture 7.5.

The following are immediate corollaries of the theorems in the preceding section.

5.3. Corollary. LetX be a connected projective variety over a field of char-
acteristic0. If X is of globally F-regular type, then the conclusion of Theorem 4.1
holds, with “Frobenius split” and “F-pure” in (4) replaced by “Frobenius split
type” and “F-pure type”, respectively. Furthermore,X and all its section rings
have rational singularities; and ifX isQ-Gorenstein then it will have log terminal
singularities. Finally, anyQ-Gorenstein section ring ofX will have log terminal
singularities.

Proof. This is essentially already proved. Items (1)–(3) and (5) in Theorem 4.1
follow from a general fact about properties in families: if a dense set of closed
fibers has property “P” then so does the generic fiber, where “P” can be (for in-
stance) normality or Cohen–Macaulayness. The claim about rational singularities
follows from [S3, 3.1]. ThatQ-Gorenstein rings of strongly F-regular type have
log terminal singularities was first proved by Watanabe [W2]; alternatively, it fol-
lows easily from the result on rational singularities using a canonical cover trick
(see [Ha] or [S2, 4.16]).

5.4. Corollary. LetX be a projective variety of characteristic0 that is glob-
ally F-regular type, and letL be an invertibleOX-module.

(1) If H i(X,Ln) = 0 for n� 0, thenH i(X,L) = 0.
(2) If there exists an effective divisorD such thatH i(X,Ln(D)) = 0 for n� 0,

thenH i(X,L) = 0.

Proof. This follows easily from Theorem 4.2 by semi-continuity.

As a corollary, we have a very strong version of vanishing as follows.

5.5. Corollary. Let X be a projective algebraic variety of characteristic0
which has globally F-regular type, and letL be a nef line bundle onX. Then
H i(X,L) = 0 for all i ≥ 1. In particular,H i(X,OX) = 0 for all i ≥ 1.
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Also, we have Kawamata–Viehweg vanishing:H i(X,L−1) = 0 for i < dimX

if L is big and nef.

Note that this is the same vanishing discussed in the introduction for Fano vari-
eties. The reason for this is that Fano varieties are of globally F-regular type, as
explained in next section.

6. Examples of Globally F-Regular Varieties

In this section, we identify basic classes of varieties that are globally F-regular, in-
cluding Fano varieties and toric varieties. As we shall see in the final section, these
lead to further examples of globally F-regular (type) varieties obtained from these
as quotients. First, a few propositions are recorded; these are easy and possibly
standard, but I do not know a reference.

The first proposition indicates one way in which rational singularities can be
regarded as a natural extension of Cohen–Macaulayness.

6.1. Proposition.
(1) LetX be a Cohen–Macaulay projective variety. ThenX has a section ring

that is Cohen–Macaulay if and only ifH i(X,OX) = 0 for 0< i < dimX.

(2) LetX be a projective variety(of characteristic0) that has rational singular-
ities. ThenX has a section ring that has rational singularities if and only if
H i(X,OX) = 0 for all i > 0.

Proof. Choose any ample invertibleL. BecauseX is Cohen–Macaulay, we know
from Serre vanishing thatH i(X,Ln) = 0 for all 0< i < dimX and all|n| � 0.
ReplacingL by a large power, we may assume thatH i(X,Ln) = 0 for all n 6= 0
and all 0< i < dimX. The corresponding section ringS is Cohen–Macaulay if
and only if the local cohomology modulesH i

m(S) are zero fori < dimS. Since
[H i+1

m (S)]n ∼= H i(X,Ln) for 0 < i < dimX and alln, this is equivalent to
H i(X,OX) = 0 for all 0 < i < dimX. (Note thatH 1

m(S) andH 0
m(S) vanish in

any case becauseS satisfies Serre’sS2 condition.)
In general, a normal Cohen–Macaulay graded ringS with rational singulari-

ties away from{m} has rational singularities itself if and only ifHd
m(S) vanishes

in nonnegative degree. (To see this, note that blowing up the vertex of the cone
SpecS yields a varietyX with rational singularities whose higher direct images
Riπ∗OX on SpecS are isomorphic to [H i+1

m (S)]≥0; see [Fl; W1].) Thus the sec-
ond claim follows similarly to the first.

LetX be a connected normal projective variety over a fieldk. The canonical sheaf
ofX is the unique reflexive sheaf that agrees with the sheaf

∧d
�X/k of top differ-

ential forms on the smooth locus ofX.
By definition, aFano varietyis a normal projective variety whose anti-canonical

sheafω−1
X = HomOX(ωX,OX) is an ample invertible sheaf. In particular, Cohen–

Macaulay Fano varieties are Gorenstein. Unlike many authors, I do not require
that Fano varieties be smooth.
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Fano varieties are very special. Accordingly, so are the affine cones over them,
as indicated by the following basic proposition characterizing Fano varieties in
terms of the cones over them.

6.2. Proposition.

(i) A normal varietyX is Fano if and only if it admits a section ringS such that
ωS ∼= S(r) with r < 0, whereωS is the canonical module of the normal
graded ringS and whereS(r) indicates a degree shift byr.

(ii) The anti-canonical ring of a Fano variety(of characteristic0) with rational
singularities is Gorenstein and has rational singularities. Conversely, ifX

admits a Gorenstein section ring with rational singularities, thenX is Fano
and has rational singularities.

Proof. Suppose thatω−1
X is ample invertible onX, and letS be the section ring

with respect toω−1
X . In general, ifL is an ample invertible sheaf on a normal

varietyX and if S is the corresponding section ring, then the graded canonical
module forS (in the sense of [BH]) can be identified with the gradedS-module⊕

n∈ZH
0(X,Ln ⊗ ωX); see [S1]. In particular, whenL = ω−1

X we haveωS ∼=
S(−1). Conversely, supposeS is the section ring forL. BecauseωS ∼= S(r), we
see thatωX ∼= Lr; sincer < 0, we see thatω−1

X is ample.
For the second statement, letS be the section ring forω−1

X . By Kodaira vanishing,
which is valid for all rings with rational singularites,H i(X,ωnX) = 0 forn > 0 and
all i < d, becauseω−1

X is ample. Likewise,H i(X,ω−nX ) = H i(X,ω−n−1
X ⊗ωX) =

0 for i > 0 andn ≥ 0. Thus, for 1≤ i ≤ dimX, H i(X, ωnX) = [H i+1
m (S)]n =

0 for all n and, sinceS is normal,H 0
m(S) = H 1

m(S) = 0 in any case. This im-
plies thatS is Cohen–Macaulay, and henceS is Gorenstein by (1). But since
H dimS
m (S) vanishes in nonnegative degrees, the criterion for rational singularities

mentioned in the proof of Proposition 6.1 shows thatS has rational singularities.
Indeed, we have already seen thatS is Cohen–Macaulay and thatH dimS

m (S) =⊕
n∈ZH

dimX(X,ω−nX ) vanishes nonnegative degrees.

This proof shows thatX has a section ringS whose canonical module is locally
free if and only if eitherωX or its dual is an ample invertible sheaf.

6.3. Proposition. A Fano variety(of characteristic0) with rational singulari-
ties is globally F-regular type.

Proof. The anti-canonical cone ofX has Gorenstein rational singularities. But
Gorenstein rational singularities are log terminal singularities. But finitely gen-
erated algebras of characteristic 0 with log terminal singularities are strongly F-
regular type, by [Ha; MS].

An alternate proof that log terminal singularities are strongly F-regular can be
found in [S2], still based on Hara’s work [Ha]. In [S2] the strong regularity is
shown to follow from the “canonical cover trick” (in a form due to Watanabe) and
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the “strong Kodaira vanishing theorem”. The strong Kodaira vanishing theorem
(conjectured in [HS] and proved in [Ha]) states: IfXA −→ SpecA is a generically
smooth projective map to an affine scheme SpecZ (whereA is a finitely generated
Z-algebra containingZ) and ifLA is a relatively ample invertible sheaf onXA,
then for a generic closed fiberXµ the mapH i(Xµ,L−1

µ ) −→ H i(Xµ, F∗F ∗L−1
µ )

induced by Frobenius is injective for all indicesi. Hara deduces this from the
Kodaira–Akizuki–Nakano vanishing theorem (see also [MS]). The weaker state-
ment that smooth Fano varieties are Frobenius split follows directly from strong
Kodaira vanishing, as pointed out in [Ha, 3.7] and [S2, 4.11].

6.4. Proposition. Projective toric varieties are globally F-regular(type).

Proof. Projective toric varieties always admit a (normal) section ring of the form
k [m1, . . . , mr ],where themi are monomials in a polynomial ringk [t1, . . . , td ] (see
e.g. [St, p.131]). Such monomial rings are F-regular, and hence every toric vari-
ety is globally F-regular.

7. Geometric Invariant Theory Quotients
of Globally F-Regular Varieties

7.1. Theorem. LetX be any projective Frobenius-split(resp., globally F-regu-
lar ) algebraic variety of prime characteristic on which a linearly reductive group
T acts algebraically. Then the GIT quotientX//T with respect to any lineariza-
tion of the action ofT is also a Frobenius-split(resp., globally F-regular) variety.

Recall that “linearly reductive” means that every representation is completely re-
ducible; in characteristic 0, linearly reductive is equivalent to reductive. Of course,
linearly reductive groups are somewhat limited in prime characteristic: they in-
clude tori and finite groups whose order is not divisible byp as well as extensions
of these. By semi-continuity, we have the following theorem in characteristic 0.

7.2. Corollary. LetX be any projective variety over a field of characteristic0
that is Frobenius-split type(resp., globally F-regular type). Suppose that a group
T that is either a torus or finite group(or an extension of these) acts algebraically
onX. Then the GIT quotientX//T with respect to any linearization of the action
of T is also a Frobenius-split type(resp., globally F-regular type) variety.

It is natural to expect that GIT quotients of globally F-regular varieties by arbi-
trary reductive groups are again globally F-regular. This appears to be true, but it
depends on a tricky technical point in the theory of tight closure that is still open.
See Theorem 7.6 and subsequent remarks.

Before proving Theorem7.1, let uspoint out that the question of Knutson men-
tioned in Section 1 is now answered. The complex homogeneous spacesG/P

(whereG is semi-simple andP is parabolic) are all smooth Fano varieties; hence
they are of globally F-regular type (by Proposition 6.3) and have vanishing higher
cohomology for all ample (or even nef) line bundles. Alternatively, we can also
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deduce this directly in arbitrary characteristic using a result of Ramanathan: in any
characteristic, theG/P are stably Frobenius split along an ample divisor [R2, 3.1]
and hence globally F-regular by Theorem 3.10. Explicitly, we have the following
corollary.

7.3. Corollary. LetP ⊂ G be any parabolic subgroup of a semi-simple alge-
braic group of arbitrary characteristic. LetT be a torus or a finite group acting
onG/P. For any numerically effective line bundleL on any GIT quotientX =
(G/P )//T, the cohomology modulesH i(X,L) vanish fori > 0.

Of course, similar corollaries can be drawn for geometric invariant theory quo-
tients of any globally F-regular variety.

Proof of Theorem7.1. Let X be a connected projective variety over an F-finite
ground field of prime characteristicp.

Let T act onX. Choose any lift of this action to an ample line bundleL on
X. Let S be the corresponding section ring, with the givenT action. As we have
seen in Proposition 3.1 (resp., Theorem 3.10),X is Frobenius split (resp., globally
F-regular) if and only ifS is F-pure (resp., F-regular).

Let R be the ring of invariants for this action. By definition, the projective
scheme defined byR is the geometric invariant quotient ofX with respect to our
choice of the linearization ofT . BecauseT is linearly reductive, the Reynolds op-
erator provides a splitting ofR ⊂ S as anR-module map. We claim thatR is
F-pure (resp., F-regular) wheneverS is.

In general, ifR ⊂ S splits as a map ofR modules and ifS is F-pure (resp., F-
regular), thenR is F-pure (resp., F-regular). This can be seen by considering the
commutative diagram

R1/p R1/p-split−−−−−→ S1/px x
R

R-split−−−→ S ,
together with the fact that the vertical arrow on the left splits as a map ofS-modules.
Composing the inclusion ofR1/p in S1/p with this splitting and then with the split-
ting of the bottom horizontal arrow gives anR-linear splitting ofR ↪→R1/p [HR2].
A similar argument takes care of the (strongly) F-regular case [HH1].

If the ring of invariantsR = ST is F-pure (resp., F-regular), then the same is true
for any Veronese subringR(n) =⊕i∈N Rin generated by elements ofR that have
degrees a multiple ofn, since this Veronese subring splits off fromR. BecauseR
is a finitely generated algebra, some such Veronese subringR(n) is generated by
its elementsRn = R(n)1 of degree 1.

If a graded ringR is normal and generated by its elements of degree 1, thenR

is the section ring for the naturalO(1) it defines on ProjR. (In general, a graded
ring need not be a section ring for the projective scheme it defines, as the result-
ingO(1) need not even be an invertible sheaf. This difficulty does not arise if the
ring is generated in degree 1.)
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Now, the GIT quotientX//T is ProjR ∼= ProjR(n). BecauseR(n) may be as-
sumed normal and generated in degree 1, it is a section ring forX//T . Because
R(n) is F-pure (resp., F-regular), we conclude thatX//T is Frobenius split (resp.,
globally F-regular).

7.4. Caution. The corollary does not apply to reductive groupsG such as SL(n)
that are not linearly reductive in prime characteristic, because the splitting ofSG ⊂
S that exists in characteristic 0 is not preserved after reduction to prime character-
istic. (See, however, Theorem 7.6 and subsequent remarks.)

If S is anN-graded ring of characteristic 0 and if the linearly reductive group
G acts onS, then the ring of invariantsR = SG is a direct summand ofS as an
R-module. One can show directly in this case thatR then has the property that
all ideals are tightly closed (in characteristic 0); see the appendix by Hochster in
[Hu]. The subtlety is that this is not known to imply that, after reducing modulop,

all ideals are tightly closed for infinitely many closed fibers in a family of models.
That is, we do not know whether F-regularity in characteristic 0 is equivalent to
F-regular type, although this is conjectured to be true.

7.5. Conjecture. If R is a finitely generatedN-graded algebra over a field of
characteristic0 in which all ideals are tightly closed, thenR has F-regular type.

The converse of Conjecture 7.5 is known to be true. Furthermore, it is not hard to
check that Conjecture 7.5 holds true for Gorenstein ringsR, because in this case
it is enough to check that a single ideal in each closed fiber is tightly closed—
namely, any ideal coming from a homogeneous system of parameters forR. See
[HH4] for the theory of tight closure in characteristic 0, including these basic
facts.

7.6. Theorem. Assume that Conjecture 7.5 is true. LetX be any projective va-
riety over a field of characteristic0 that is Frobenius-split type(resp., globally
F-regular type). Suppose that a reductive groupG acts algebraically onX. Then
the GIT quotientX//G with respect to any linearization of the action ofG is also
a Frobenius split type(resp., globally F-regular type) variety. In particular, every
GIT quotient of a Fano variety by a linearly reductive group acting algebraically
would be globally F-regular type.

There are a few cases where we can conclude that rings of invariants of reductive
groups have strongly F-regular type. If the group acts on a strongly F-regular ring
G that also happens to be a unique factorization domain, then the ring of invari-
ants has strongly F-regular type (see e.g. [SV]). The point is that any reductive
groupG is an extension of a semi-simple groupH by a groupT that is linearly
reductive for generic prime characteristic reduction. ThenSG = (SH )G/H . But
one can show thatGH is Gorenstein and hence has strongly F-regular type, so the
invariant ring underG/H has strongly F-regular type by Theorem7.1. Thus, for
certain kinds of linearized actions of reductive groups on certain special varieties,
the quotients are globally F-regular. Two examples follow.
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7.7. Corollary. Suppose that a reductive groupG acts algebraically on pro-
jective spaceP n over a field of characteristic0 and that its action is linearized by
O(1). Then the GIT quotientP n//G is of globally F-regular type.

Similarly, if a reductive groupG acts algebraically on a GrassmannianY of
characteristic0, with its action linearized by the Plücker embedding. Then the
GIT quotientY//G is of globally F-regular type.

Proof. In both cases, the rings on whichG acts are strongly F-regular unique fac-
torization domains, so it follows from the proof of [SV, 5.23].

The story of F-splitting and global F-regularity for quotients by reductive groups
in characteristicp that are not linearly reductive is much more subtle and compli-
cated. See [MR1; MR2] for a treatment of some specific quotients.

References

[BH] W. Bruns and J. Herzog,Cohen–Macaulay Rings,Cambridge Univ. Press,
Cambridge, U.K., 1993.

[DH] I. Dolgachev, Y. Hu, and N. Ressayre,Variation of geometric invariant theory
quotients,Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5–56.

[Fl] H. Flenner,Rationale quasihomogene Singularitäten,Arch. Math. 36 (1981),
35–44.

[Ha] N. Hara,A characterization of rational singularities in terms of injectivity of
Frobenius maps,Amer. J. Math. 120 (1998), 981–996.

[H] R. Hartshorne,Algebraic geometry,Springer-Verlag, New York, 1987.
[HH1] M. Hochster and C. Huneke,Tight closure and strong F-regularity,Mem. Soc.

Math. France (N.S.) 38 (1989), 119–133.
[HH2] , Tight closure, invariant theory, and the Briancon–Skoda theorem,

J. Amer. Math. Soc. 3 (1990),31–116.
[HH3] , Tight closure of parameter ideals and splitting in module-finite exten-

sions,J. Algebraic Geom. 3 (1994), 599–670.
[HH4] , Tight closure in equal characteristic zero,preprint.
[HR1] M. Hochster and J. L. Roberts,Rings of invariants of reductive groups acting

on regular rings are Cohen–Macaulay,Adv. Math. 13 (1974), 115–175.
[HR2] , The purity of the Frobenius and local cohomology,Adv. Math. 21

(1976), 117–172.
[Hu] C. Huneke,Tight closure and its applications,CBMS Regional Conf. Ser. in

Math., 88, Amer. Math. Soc., Providence, RI, 1996.
[HS] C. Huneke and K. E. Smith,Tight closure and the Kodaira vanishing theorem,

J. Reine Angew. Math. 484 (1997), 127–152.
[Kn] A. Knutson,Weight varieties,Ph.D. dissertation, Massachusetts Institute of

Technology, Cambridge, MA, 1996.
[KM] J. Kollár and S. Mori,Birational geometry of algebraic varieties,Cambridge

Univ. Press, New York, 1998.
[Ku] E. Kunz, On Noetherian rings of characteristicp, Amer. J. Math. 98 (1976),

999–1013.
[LT] J. Lipman and B. Teissier,Pseudorational local rings and a theorem of

Briançon–Skoda about integral closures of ideals,Michigan Math. J. 28 (1981),
97–116.



572 Karen E. Smith

[LS] G. Lyubeznik and K. E. Smith,Strong and weak F-regularity are equivalent
for graded rings,Amer. J. Math. 121 (1999), 1279–1290.

[Mac] B. MacCrimmon,Strong F-regularity and boundedness questions in tight
closure,Ph.D. dissertation, University of Michigan, Ann Arbor, 1996.

[Ma] H. Matsumura,Commutative ring theory,Cambridge Univ. Press, Cambridge,
U.K., 1986.

[MR1] V. B. Mehta and T. R. Ramadas,Moduli of vector bundles, Frobenius splitting,
and invariant theory,Ann. of Math. (2) 144 (1996), 269–313.

[MR2] , Frobenius splitting and invariant theory,Transform. Groups 2 (1997),
183–195.

[MRn] V. B. Mehta and A. Ramanathan,Frobenius splitting and cohomology vanish-
ing for Schubert varieties,Ann. of Math. (2) 122 (1985), 27–40.

[MS] V. B. Mehta and V. Srinivas,A characterization of rational singularities,Asian
J. Math. 1 (1997), 249–271.

[MFK] D. Mumford, J. Fogarty, and F. Kirwan,Geometric invariant theory,Ergeb.
Math. Grenzgeb. (2) 34, Springer-Verlag, New York, 1994.

[RR] S. Ramanan and A. Ramanathan,Projective normality of flag varieties and
Schubert varieties,Invent. Math. 79 (1985), 217–224.

[R1] A. Ramanathan,Schubert varieties are arithmetically Cohen–Macaulay,
Invent. Math. 80 (1985), 283–294.

[R2] , Frobenius splitting and Schubert varieties,Proc. Hyderabad Conf.
Alg. Groups, pp. 497–508, Manoj Prakashan, Madras, 1991.

[Sj] R. Sjamaar,Holomorphic slices, symplectic reduction and multiplicities of
representations,Ann. of Math. (2) 141 (1995), 87–129.

[S1] K. E. Smith,The D-module structure of F-split rings,Math. Res. Lett. 2
(1995), 377–386.

[S2] , Vanishing theorems, singularities, and prime characteristic local
algebra,Proc. Sympos. Pure Math., 62, pp. 289–325, Amer. Math. Soc.,
Providence, RI, 1997.

[S3] , F-rational rings have rational singularities,Amer. J. Math. 119
(1997), 59–180.

[S4] , Fujita’s freeness conjecture in terms of local cohomology,J. Alge-
braic Geom. 6 (1997), 417–429.

[SV] K. E. Smith and M. Van den Bergh,Simplicity of rings of differential oper-
ators in prime characteristic,Proc. London Math. Soc. (3) 75 (1997), 32–62.

[St] B. Sturmfels,Gröbner bases and convex polytopes,Univ. Lecture Ser., 8,
Amer. Math. Soc., Providence, RI, 1996.

[Th] M. Thaddeus,Geometric invariant theory and flips,J. Amer. Math. Soc. 9
(1996), 691–723.

[W1] K. Watanabe,Rational singularities withk∗-action,Lecture Notes in Pure
and Appl. Math, 84, pp. 339–351, Dekker, New York, 1983.

[W2] , F-purity and F-regularity vs. log-canonical singularities,preprint.

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109

kesmith@math.lsa.umich.edu


