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0. Introduction and Plan of the Paper

One of the remarkable basic results in the theory of the associativity equations (or
Frobenius manifolds) is that their formal solutions are the same as cyclic algebras
over the homology operadd, (Mo, 1)) of the moduli spaces of-pointed stable
curves of genus 0. This connection was discovered by physicists, who observed
that the data of both types come from models of topological string theories. Pre-
cise mathematical treatment was given in [KM1; KM2; KM3].

In this paper we establish a similar relationship between the pencils of formal
flat connections (or solutions to the commutativity equations; see 3.1 and 3.2) and
homology of a new series, of pointed stable curves of genus 0. Whergks, 1
parameterizes trees Bfs with pairwise distinct nonsingular marked points,
parameterizes strings &'s and all marked points except for two are allowed to
coincide (see the precise definitions in 1.1 and 2.1). Moreover, the union of all the
L, forms a semigroup rather than an operad, and the role of operadic algebras is
taken over by the representations of the appropriately twisted homology algebra
of this union (see precise definitions in 3.3).

This relationship was discovered on a physical level in [L1; L2]. Here we give
a mathematical treatment of some of the main issues raised there.

This paper is structured as follows. In Section 1 we introduce the notion of
(A, B)-pointed curves, whose combinatorial structure generalizes that of strings
of projective lines as just described. We then describe a construction of “adjoin-
ing a generic black point”, which allows us to produce families of such curves and
their moduli stacks inductively. This is a simple variation of one of the arguments
due to Knudsen [Kn1].

In Section 2 we define and study the spaEgsfor which we give two comple-
mentary constructions. The first one identiflgswith one of the moduli spaces of
pointed curves; the second one exhiliifsas a well-known toric manifold asso-
ciated with the polytope called “permutohedron” in [K2]. These constructions
put L, into two quite different contexts and suggest generalizations in different
directions.

As moduli spaces[., become components of the extended modular operad,
which we define and briefly discuss in Section 4. We expect that there exists an
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appropriate extension of the Gromov-Witten invariants producing algebras over
extended operads involving gravitational descendants.

As toric varieties(L,) form one of the several series related to the generalized
flag spaces of classical groups (see [GS]). It would be interesting to generalize to
other series our constructions.

In this paper we use the toric description in order to prove, forthean ana-
log of Keel's theorem (Theorem 21) and its gtension (Theorem 2.9) that are
crucial for studying representations of the twisted homology algebra. This twisted
homology algebrdd,. T and its relationship with pencils of formal flat connections
are discussed in Section 3, which contains the main result of this paper: Theorem
3.3.1

ACKNOWLEDGMENT. Y. Manin is grateful to M. Kapranov, who suggested (after
seeing the formula(L,) = n!) that L, must be the toric variety associated with
the permutohedron.

1. (A, B)-Pointed Curves

1.1. DerINITION. Let A, B be two finite disjoint sets§ a scheme, and > 0.
An (A, B)-pointed curve of genug over S consists of the data

@:C—>8xi:8S—>C,icA; x;:S—C, jeB), (D)
where
(i) = is aflat proper morphism whose geometric fib€fsare reduced and con-
nected curves, with at most ordinary double points as singularitieg and
HYCy, Oc,).
(i) x; (i € AU B) are sections of not containing singular points of geometric
fibers.
(i) x,Nnx; =0dificA, je AUB, andi # j.
Such a curvél.l) iscalledstableif the normalization of any irreducible compo-
nentC’ of a geometric fiber carries at least three pairwise different special points
(if C’is of genus 0) and at least one special poinf'ifis of genus 1. “Special
points” are inverse images of singular points and of the structure sections

1.2. REMARKs. () If we put in this definitionB = ¢, we will get the usual no-
tion of anA-pointed (pre)stable curve whose structure sections are not allowed to
intersect pairwise. Now we divide the sections into two groups: “white” sections
x; (i € A) are not allowed to intersect any other section, whereas “black” sections
xj (j € B) cannot intersect white ones but are otherwise free and can even pairwise
coincide. (However, neither type of section is allowed to intersect singularities of
fibers.)

If we take in this definition a one-element sRt= {x}, we will get a natu-
ral bijection betweeniA, {x})-pointed curves an@A U {x}, #)-pointed curves. If
cardB > 2, the two notions become essentially different.

(b) The dual modular graph of a geometric fiber is defined in the same way as
in the usual case (for the conventions we use sed[IM2]). Tails can now be of
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two types, and we may refer to them and their marks as “black” and “white” ones
as well. Combinatorial type of a geometric fiber is, by definition, the isomorphism
class of the respective modular graph with B)-marking of its tails.

(c) LetT — S be an arbitrary base change. It produces from @hyB)-
pointed (stable) curve (1.2) ovéranother(A, B)-pointed (stable) curve ovér:
(Cr; xi1).

1.3. A ConstrUCTION. In this section, we start with agA, B)-pointed curve
(1.2) andproduce from it anothefA, B’)-pointed curve:
(7':C"— S§'; xj, ie AUB'). 1.2)

The base of the new curve will B := C. There will be one extra black mark,
say,*, so thatB’ = B U {x}. The new curve and sections will be produced in two
steps. At the first step we make the base change S as in 1.2(c), obtaining
an(A, B)-pointed curveX := C x g C with sectionsy; ¢. We then add the extra
sectionA: C — C xg C, which is the relative diagonal, and mark it by We
have not yet produced g, B’)-pointed curve oves’ = C, because the extra
black section can (and generally will) intersect both singular points of the fibers
and white sections as well.

At the second step of the construction, we remedy this by birationally modifying
C x5 C — C asin[Knl, Def. 2.3]. More precisely, we defigg := Proj Symi
as the relative projective spectrum of the symmetric algebra of the Sheak =
C x5 C defined as the cokernel of the map

§: Ox —> jAV@ OX(ZXLC>, 8(t) = (t,1). (13)
icA
Here 7, is theOx-ideal of A and 74" is its dual sheaf considered as a subsheaf
of meromorphic functions, as in [Knl, Lemma 2.2 and Appendix].

We claim now that we have am, B’)-pointed curve, because Knudsen's treat-
ment of his modification can be directly extended to our case. In fact, the modifi-
cation we described is nontrivial only in a neighborhood of those points where
intersects either singular points of the fibersiesections. The3-sections do not
intersect these neighborhoods, if they are small enough, and do not influence the
local analysis due to Knudsen [Knl, pp. 176-178].

1.3.1. REMarRk. We can try to modify this construction so that we may add an
extra white point instead of a black one. However, for dard 2, we will not
then be able to avoid the local analysis of the situation by referring to [Kn1]. In
fact, points whereA intersects at least twB-sections simultaneously will have
to be treated anew.

2. Spaced

2.1. Spaces L,. In this section we will inductively define, for any > 1, the
({0, o0}, {1, ..., n})-pointed stable curve of genus 0:
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(7 Cy = Ly xé"),x(”)' xi"), o ximy, (2.1)

Namely, put .
Cy:=PY  L;=apoint,

and choose for(()l), xé?, x{l) arbitrary pairwise distinct points.

_If (2.1) is already constructed for, then we define the next famiC,1 —
L,1,...) as the result of the application of the construction 1.8,t¢L,,. In par-

ticular, we have a canonical isomorphigip = L, 1.

2.2. THeorEM. ()L, is a smooth separated irreducible proper manifold of di-
mensiom — 1. It represents the functor that associates with every schiéthe set
of the isomorphism classes ¢f0, oo}, {1, ..., n})-pointed stable curves of genus
0 overT whose geometric fibers have combinatorial types describéla))in

The symmetric grouf§, renumbering the structure sections acts naturally and
compatibly orL,, and the universal curve. In particular, we can define the spaces
L, Cp for any finite setB, functorial with respect to the bijections of the sets.

(b) Combinatorial types of geometric fibers@f — L, are in a natural bijec-
tion with ordered partitions

{,....n}=01U---Uay, o #0. (2.2)

Partition (2.2) corresponds to the linear graph with verticas, ..., v;) of genus
0, edges joiningv;, v;11), 1 < i <[ —1, A-tail 0 at the vertexv;, A-tail oo at
the vertexv;, and B-tails marked by the elements of at the vertex;.

We will calll = (o) thelengthof the partitiono as in(2.2).

(c) Denote byL, the set of all points of.,, corresponding to the curves of the
combinatorial typer, and byL ,, its Zariski closure. Then the, are locally closed
subsets, and we have

Lo=]]L.. (2.3)
wherer < o means that is obtained fronv by replacing eacls; by an ordered
partition of o; into non-empty subsets.

(d) For everyo, there exists a natural isomorphism

Ligy X +++ X Lig; = Lg (2.4)

such that the pointed curve induced by this isomorphism dygrx --- x Ly,
can be obtained by clutching the curw@s,| /L s, in an obvious linear ordetoo-
section of theth curve is identified with the-section of th&i + 1)th curve see
[Kn1, Thm. 3.4])and subsequent re-marking of tBesections. In particularL,
is a smooth irreducible submanifold of codimensian) — 1.

Similar statements hold for the closed strdta.

Proof. Properness and smoothness follow by induction and Knudsen'’s local analy-
sis, which we already invoked.

The statement about the combinatorial types is proved by induction as well. In
fact, if everything is already proved f@r,, then we must look at a geometric fiber
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C,.; of C, and see what happens to it after the blow-up described in 1irifer-
sects a smooth point @, ; not coinciding withxg , x5, then nothing happens
except that we get a new black point on this fiber and a new tail at the respective
vertex of the dual graph. IA intersects an intersection point of two neighboring
components o, ;, then (after blowing up) these two components become dis-
joint and we get a new component intersecting both of them, with a new black
point on it. The linear structure of the graph is preserved. Finally, iifitersects

Cn.s atxo (resp.xoo ) then, after blowing up, we will get a new end component
with xg ; (resp.x. ) and the new black point on it. Thus the new combinatorial
types will be linear and indexed by partitions @f + 1). To check that all parti-
tions are obtained in this way, it suffices to remark thags the relative diagonal,
can intersect the fiber of a given type at any point.

In order to check the statement about the functor representég bye apply
the following inductive reasoning. Far= 1 the statement is almost obvious. In
fact, letr: C — T be a({0, oo}, {1})-pointed stable curve of genus O ovEr
From the stability it follows that all geometric fibers are projective lines. Since
the three structure sections pairwise do not intersect, the family can be identified
with P! x 7 endowed with three constant sections. This means that it is induced
by the trivial morphisnil’ — L;.

Assume that the statement is true #orin order to prove it fom + 1, consider
a ({0, 00}, {1, ..., n + 1})-pointed stable curve of genus®; C — T. First of
all, one can produce from it@0, oo}, {1, ..., n})-pointed stable curve of genus 0,

m: C' — T, obtained by forgetting, ;1 and subsequent stabilization. The re-
spective mapC’ — C is given by the relative projective spectrum of the algebra
Y reo 7, (IC®%), wherek := weyr(x0+x1+ -+ + X, + xo0). By induction,C’

is induced by a morphism: T — L,. Addition of an extra black section 16’

and subsequent stabilization boils down exactly to the construction 1.3 applied to
C'/T which allows us to liftp to a unique morphism: T — L, 1.

Separatedness is checked by the standard deformation arguments. The state-
ment about renumbering follows from the description of the functor. A similar
adaptation of Knudsen’s arguments allows us to prove the remaining statements,
and we leave them to the reader. O

Notice that we will give another direct description of the spatgsand all the
structure morphisms connecting them in terms of toric geometry. This will pro-
vide easy alternate proofs of their properties. Except for Section 4, we can restrict
ourselves to this alternate description.

2.2.1. Remarx. Dual graphs of the degenerate fiberayfover L, come with

a natural orientation fromg to x,. We could have allowed ourselves not to dis-
tinguish between the two white points, interchanging them by isomorphisms, but
this would produce several unpleasant consequences. First, our manifolds would
become actual stacks, starting already with Second, we would have lost the
toric interpretation of these spaces. Third, and most important, we would meet
an ambiguity in the definition of the multiplication between the homology spaces;
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see (3.5). With our choice, we can simply introduce the involution permutng
andx, as a part of the structure and look how it interacts with other parts.

2.3. THEOREM. L, has no odd cohomology. Let
n—1
pn(q) = ZdlmHZl(Zn)ql (25)
i=0
be the Poincaré polynomial df,,. Then we have

(@) , G-
y

1+ n! - q— (q Dy

€ Qlqlll ¥1I- (2.6)

n=1

Letting hereg — 1, we getl/(1 — y) so thatx(L) = n!.

Proof. Since theL, are defined ove®, we can apply Weil’s classic technique of
counting points oveF, (thus treatingy not as a formal variable but as a power
of prime). After the counting is done, we will see that caidF,) is a polyno-
mial in g with positive integer coefficients, so that we can immediately identify it
with p,: B

pn(q) = cardL,(F,). (2.7)

The latter number can be calculated by directly applying (2.3) to the one-element
partitiono, yielding

pn(q) Z 3 -1 (@-pu

51! syl

=1 (s1,...,81) 1 !

31+~~~+31:n
si>1

. . (e —1Y
= Z [coefﬁuent ofx"!in (e . ) ] (g -1

=1
Inserting this in the left-hand side of (2.6) and summing avérst, we obtain

Z p,;(lq)yn = Z Z[coefﬁcient ofx™ in (e* =11 (g —1"y"

’ =1 n=I

=Dy _ 1!
2;@ i D,

which gives (2.6). O

2.3.1. SeeciaL Cases. Hereis alist of the Poincaré polynomials for small values
of n:

=1 pr=q+1l p3=q¢’+4q+1 ps=q>+14g%°+11g +1,
ps = g% + 26¢° + 66¢° + 26g +1,
pe = q° + 574° + 302¢* + 3024 + 577 + 1.
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The rank ofH?(L,,) is 2" —n — 1. Individual coefficients o, (g) are well known
in combinatorics; they are called Euler numbers:

a,; =dimH?*(L,).

2.4. L, anND Toric AcTiONs. Lete be the trivial partition of8 of length 1. The
“big cell” L, of L (see 2.2(c)) has a canonical structure of the torsor (principal
homogeneous space) over the tofys:= G2 /G,, (where the subgrou,, is
embedded diagonally). In fad®! \ {xg, xo} is aG,,-torsor, and the respective
action of G2 on L., movingx; (i € B) via theith factor, produces an isomorphic
marked curve exactly via the action of the diagonal.

Similarly, every stratunL, is a torsor ovefl, =[], T,, (see (2.4)), and there
is a canonical surjective morphisfi3 — T, such thatl g is a union ofTz-orbits.
In order to show thaL  is a toric variety, we must now show that these actions
are compatible. Again, this can be done using the explicit constructian ahd
induction. For a change, we will provide a direct toric construction. We start with
a more systematic treatment of the combinatorics involved.

2.4.1. ParTITIONS OF FINITE SETS.  For any finite seB, we call a partitions of
B a totally ordered set of non-empty subsetsBofvhose union isB and whose
pairwise intersections are empti. partition consisting ofV subsets is called an
N-partition. If its components are denoted ..., oy (or otherwise listed), this
means that they are listed in their structure order. Another partition can be denoted
7, oD, etc. Notice that no particular ordering Bfis a part of the structure. This
is why we replacedy, ..., n} here by an unstructured sBt

Leto be a partition ofB (i, j € B). We say that separates and j if they be-
long to different components of We then writeioj in order to indicate that the
component containinggcomes earlier than the one containingn the structure
order.

Lett be an(N + 1)-partition of B. If N > 1, it determines a well-ordered fam-
ily of N 2-partitionso :

al(a) =7 U---Urt, 62(”) =1,1U---Uty, a=1...,N. (2.8)

In the opposite direction, call a family of 2-partitioas”)) goodif, for anyi # j,
we haver ) # ¢/ and eithew,” c . oro,” c .. Any good family is nat-
urally well-ordered by the relation” c o, and we will consider this ordering
as a part of the structure. If a good family of 2-partitions consist§ afiembers,
then we will usually choose superscripts 1, N to number these partitions in
such a way that\” c o, fori < j.

Such a good family produces o(¥ + 1)-partitionz:

. 1 @ 1 . N N-1 N
=0 =0\ o, ...,y =M\ o y=adV. (2.9)

This correspondence between goodelement families of 2-partitions and
(N +1)-partitions is one-to-one, because clearfy) = 7;U- - -Uz; forl < i < N.
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Consider the case whef? = o is a 2-partition, anad® = t is anN-partition,
N > 2. Their union is good if and only if there exists an< N and a 2-partition
o = (T4, T42) Of 7, such that

o=(nU---Ut,1Utan, Te2UTte1U---Uty). (2.10)
In this case we denote

oxT=1() = (T1, -+, Ta—1, Tals Ta2s Tatls ---» TN)- (2.11)

2.4.2. Lemma. Lett be apartition ofB of length> 1, and leto be a2-partition.
Then one of the following three mutually exclusive cases occurs.

(i) o coincides with one of the partitiors® in (2.8);in this case we will say
thato breakst betweert, andz,, ;.

(i) o coincides with one of the partitior{2.10);in this case we will say that
breaksr at 7,.

(iii) None of the aboven this case, we will say that does not break. This
happens exactly when there is a neighboring gajy, t,.1) of elements ot with
the following property

Tp \O‘]_;'é @, ‘L’b+1ﬂ(7175 A. (212)
We will call (7, t541) @ bad pair for o).

Proof. Consider the sequence of sets
o1NT1, 01N Ty, ..., 01N Ty.

Produce from it a sequence of numberg @ by the following rule: replace;Nz,

by 2 if it coincides withz,, by 0 if it is empty, and by 1 otherwise. Cases (i) and
(ii) together will furnish all sequences of the foii@. .. 20...0), (2...210...0),
(10...0). Each remaining admissible sequence will contain at least one pair of
neighbors from the list 01, 02, 11, 12. For the respective pair of sets, (2.12) will
hold. O

2.5. THEFaN Fg. Inthis section we will describe a faf in the spacéVy ® R,
whereNp := Hom(G,,, Tp) andTp := G2 /G,, as in the beginning of 2.4. For
notation, we use [F] as the basic reference on fans and toric varieties.

Clearly, N3 can be canonically identified with?/Z, the latter subgroup being
embedded diagonally. Similarliyz ® R = R5/R. We will write the vectors of
this space (resp. lattice) as functioBs— R (resp.B — Z) considered modulo
constant functions. For a subgetC B, let x4 be the function equal 1 ofiand 0
elsewhere.

2.5.1. DeriniTION.  The fan Fp consists of the followind-dimensional cones

C(7), labeled by(! + 1)-partitionst of B.

(a) If T is the trivial 1-partition, therC(t) = {0}.

(b) If o is a 2-partition, therC(o) is generated by,, (or, equivalently,—x,,)
modulo constants.
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Generally, letr be an(l + 1)-partition and let® (i =1, ...,[) be the respective
good family of 2-partitions (2.9). Thefi(r) as a cone is generated by @llo ).

It is not quite obvious thak}y is well-defined. We sketch the relevant arguments.

First, all conegC(r) are strongly convex. In fact, according to [F, p. 14], it suf-
fices to check tha€(t) N (—=C(tr)) = 0. But C(t) consists of classes of linear
combinations with nonnegative coefficients of functions

Xeir Xeo + Xegs ooos Xop T+ Xy

if = has lengthl 4+ 1. Nonvanishing functions of this type cannot be constant.
Second, the same argument shows tat) is actually/-dimensional.
Third, since the con€(t) is simplicial, one sees that thie— 1)-faces ofC(t)
are exacthC(t ), wherer” is obtained fronr by joining z; with 7,1, which is
equivalent to omitting”(o)) from the list of generators. More generaltyfz’)
is a face ofC(r) ifand only if t < 7/ asin (2.3), that s, it is a refinement of’.
Fourth, letC(z®) (i = 1, 2) be two cones. We have to check that their inter-
section is a cone of the same type. An obvious candidaféds, wherer is the
crudest common refinement ofY andz®. This is the correct answer.
In order to see this, let us a give a different descriptiofgpivhich will simulta-
neously show that the support 8§ is the whole space. Let: B — R represent
an elemenf € Nz ® R; it defines a unique partition of B consisting of the level
sets ofy ordered in such a way that the valuesyoflecrease. Clearly, depends
only on x, and x modulo constants can be expressed as a linear combination of
Xu+ -+ xr, A <i <1)with positive coefficients. In other wordg,belongs to
the interior part ofC(z). On the boundary, some of the strict inequalities between
the consecutive values gf become equalities. This proves the last assertion.
We see now thafy satisfies the definition of [F, p. 20] and hence is a fan.

2.6. Toric VARIETIES L5.  We now defineC z (later to be identified witl 3) as
the toric variety associated with the fap.

To check that it is smooth, it suffices to show that eé¢h) is generated by a
part of a basis ofvg (see [F, p. 29]). In fact, let us choose a total orderingof
such that, ifi € 74, j € 7;, andk < [, theni < j. Let By C B consist of the first
k elements ofB in this ordering. Then the classes of the characteristic functions
of By, By, ..., B,_1 (n = cardB) form a basis ofVg, and{x,«} is a part of it.

To check thatlp is proper, we must show that the supportff is the total
space. We have already proved this.

Like any toric variety,C s carries a family of subvarieties that are the closures
of the orbits ofTs and which are in a natural bijection with the cort&s) in F.

We denote these subvarieti€s, and they are smooth. The respective orbit that
is an open subset df, is denoted.,.

2.6.1. FORGETFUL MORPHISMS AND A FAMILY OF POINTED CURVES OVER E_B.
Assume thaB ¢ B’. Then we have the projection morphisti’ — Z%, which
induces the morphisni?-#: Nz — Nj. It satisfies the property stated in the last
lines of [F, p. 22]: for each con€(z’) € Fp/, there exists a con€(r) € Fp such
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that f2°8(C(¢’)) C C(1). In fact, 7 is obtained fronx’ by deleting elements of
B’ \ B and then deleting the empty subsets of the resulting partitigh of

Therefore, we have a morphisfif-?: Lz — Lz [F, p. 23], which we will
call theforgetful one(it forgets elements 0B’ \ B).

2.6.2. ProposiTiON. If B”\ B consists of one element, then the forgetful mor-
phismLg — Lp has a natural structure of a stab{¢0, co}, B)-pointed curve of
genus0.

Proof. Let us first study the fibers of the forgetful morphism. kdie a partition
of B of lengthl + 1 and letZ, be the respective orbit if ;. Its inverse image in
L is contained in the uniob) L. wheret’ runs over partitions oB’ obtained
by adding the forgotten point to one of the pattsor inserting it between; and

T;41, OF putting it at the very beginning or at the very end as a separate part.

The inverse image of any pointe £ is acted upon by the multiplicative group
G,. = Ker(Tg: — Tg). This action breaks the fiber into a finite number of orbits
that coincide with the intersections of this fiber with varidlis described previ-
ously. Whent' is obtained by adding the forgotten point to one of the parts, this
intersection is a torsor over the kernel; otherwise, it is a point. As a result, we get
that the fiber is a chain ¢'s whose components are labeled by the components of
7 and whose singular points are labeled by the neighboring pairs of components.

The forgetful morphism is flat, because locally in toric coordinates it is de-
scribed as adjoining a variable and a localization.

In order to describe the two white sections of the forgetful morphism, consider
two partitions(B’\ B, B) and(B, B’\ B) of B’ and the respective closed strata. It
is easily seen that the forgetful morphism restricted to these strata identifies them
with £5. We will call themxg andx o, respectively.

Finally, to define thejth black section; € B, consider the morphism of lat-
ticess;: Ny — Np that extends a functiop on B to the functions;(x) on B’
taking the valug(j) at the forgotten point. This morphism satisfies the condition
of [F, p. 22]: each con€(z) from Fp lands in an appropriate cor&t’) from
Fg/. This must be quite clear from the description at the end of 2:8.1s ob-
tained fromz by adding the forgotten point to the same part to whidbelongs.
Hence we have the induced morphisms Lz — Ly, which obviously are sec-
tions. Moreover, they do not intersegt andx., and they are distributed among
the components of the reducible fibers exactly as expected.

2.6.3. THEOREM. The morphismCz — Ljg inducing the family described in
Proposition 2.6.2 is an isomorphism.

This can be proved by induction on caBdvith the help of the more detailed analy-
sis of the forgetful morphism, as before. We omit the details because they are not
instructive.

An important corollary of this theorem is the existence of a surjective birational
morphismMo ,.» — L, corresponding to any choice of two different labglg
in (L ...,n+ 2). Interms of the of the respective functors, this morphism blows
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down all the components of a stalile + 2)-labeled curve, except for those that
belong to the single path from the component containing ting@oint to the one
containing thejth point.

In fact, Kapranov [K2, p. 102] has shown the existence of such a morphism for
L, in place ofL,. He used a different description df, in terms of the defin-
ing polyhedron, which he identified with the so-called permutohedron, the convex
hull of the S,,-orbit of (1, 2, ..., n). He also proved that, can be identified with
the closure of the generic orbit of the torus in the space of complete flags in an
n-dimensional vector space.

2.7. COMBINATORIAL MODEL OF H*(L ). Wewilldenote by L, ] (resp. £»]*)
the homology (resp. the dual cohomology) clas€gf

The remaining parts of this section (and the Appendix) are dedicated to the study
of linear and nonlinear relations between these classes, in the spirit of [KM1; KM2;
KM3] but with the help of the standard toric techniques.

Consider a family of pairwise commuting independent variahlasumbered
by 2-partitions ofB, and introduce the ring

Hp :=Rp/Ip (2.13)

whereR  is freely generated by, (over an arbitrary coefficient ring), and the
ideal I is generated by the following elements indexed by paijs= B:

r = "= Y 1L, (2.14)

oioj T jTi
r@(o, 1) :=1,1, if ioj and jri for somei, ;. (2.15)

2.71. THEOREM. (&) There is a well-defined ring isomorphis®g/Iz —
A*(Lg, k) such that, modlz — [L,]*. The Chow ringd*(Lz, k) and the coho-
mology ringH*(L g, k) are canonically isomorphic.

(b) The boundary divisorstrata corresponding t@-partitions) intersect trans-
versally.

Proof. We must check_that the ideal of relations betwe&n-2 dual classes of
the boundary divisors{,]* contains and is generated by the following relations:

R Y L] = Y [L]*=0. (2.16)

oioj Tl jTi

If ioj andjti, then _ _
RP(o,1): [Lo]*-[L-]*=0. (2.17)

We refer to the proposition on page 106 of [F], which gives a system of genera-
tors for this ideal for any smooth proper toric variety (Fulton additionally assumes
projectivity, which we did not check; see [Da, Thm. 10.8] for the general proper
case).

In our notation, these generators look as follows.

To get the complete system of linear relations, we must choose some ele-
mentsm in the dual lattice ofNp spanning this lattice and then form the sums
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> m(X(,l)[L_(,]*, whereo runs over all 2-partitions. In our case, the dual lattice
is spanned by the linear functionats; : x — x(i) — x(j) for all pairsi, j € B.
Writing the respective relation, we get (2.16).

The complete system of nonlinear relations is given by the monoiials. .
I,w such that(C(c @), ..., C(¢™®)) do not span a cone ifz. This means that
some paifC(c @), C(c)) already does not span a cone, because otherwise the
respective 2-partitions would form a good family (cf. 2.4.1). In view of Lemma
2.4.2(iii), we can find, j € B such thaioc®;j and jo ®i. Hence (2.16) and (2.17)
together constitute a generating system of relations.

The remaining statements are true for all smooth complete toric varieties de-
fined by simplicial fans. O

2.8. COMBINATORIAL STRUCTURE OF THE COHOMOLOGY RING. In the remain-
ing part of this section we fix a finite sBtand studyH;; as an abstract ring.

For an(N + 1)-partition 7, define the respectivgood monomiak: () by the
formula

m(r) = la(l) - la(N) S RB.

If T is the trivial 1-partition, we puin(t) := 1 In view of Theorem 2.1, m(z)
represents the cohomology classfof

Notice that if we have two good families of 2-partitions whose union is also
good, then the product of the respective good monomials is a good monomial.
This defines a partial operatiaion pairs of partitions

m(PYm(@) =m@E? « @),

2.8.1. ProrosiTioN. Good monomials andg spanRg. Therefore, images of
good monomials spaf;;.

Proof. We make an induction on the degree. In degrees 0 and 1 the statement is
clear because all thig are good. If it is proved in degre¥ then it suffices to
check that, for any 2-partition and any nontrivial partition, I,m(t) is a linear
combination of good monomials modulg. We will consider the three cases of
Lemma 2.4.2 in turn.

(i) o breakst betweerr, and z,.;. This means that, dividesm(t).
Choose € 7, andj € 7,41. In view of (2.14), we have

( DS lp>m(‘l:) e lp. (2.18)
plipj pipi
Butif jpi, thenl,m(t) € Iz because of (2.15). Among the terms withi there is
onel,. For all otherp, I, cannot dividen(t) since other divisors putand in
the same part of the respective partition. Therefbre(r) either belongs tdg or
is good. So finally (2.18) allows us to expréss:(t) as a sum of good monomials
and an element af:
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lym(t)=— Y m(px1)modis,
p#a, ipj
where the terms for which * 7 is not defined must be interpreted as zero. More
precisely, there are two types of nonvanishing terms. One corresponds to all 2-
partitionsx of t, such that € t,;, which we will write as«. Another corresponds
to 2-partitionsg of 7,1 with j belonging to the second pag;:

lym(z) = —Z m(t(a)) — Z m(z(B)) modIy. (2.19)
ol B:Bj
Notice that there are several ways to write the right-hand side, depending on the
choice ofi, j. Hence good monomials are not linearly independent mofjlo

(ii) o breaksr at t,. By the foregoing analysis, this means that
lom(t) =m(o * 1) = m(t(x)) (2.20)
for an appropriate partitioa of z,.

(iii) o does not break. In this case, lett,, 7,41) be a bad pair fos. Then,
from (2.12) it follows that there exist j € B such thatioj and jo@i. Hence
l,m(7) is divisible byr® (o, 0 @) and

lsm(t) = 0modIp. OJ

2.8.2. LINEAR COMBINATIONS OF GOOD MONOMIALS BELONGING TO Ig. Let
T = (13, ..., Ty) be a partition ofB. Choosex < N such thatr,| > 2 and choose
two elements, j € t,, i # j. For any ordered 2-partition = (t,1, 7,2) Of 74,
denote byr (@) the induced N + 1)-partition of B as before:

(Tlv MR fa—l» fula T6127 ta-‘rlv MR .’:N)'
Finally, put
ri(a) =) m@) = ) mr@). (2.21)
aoiaj ol joi

Choosing forr the trivial 1-partition yields (2.14), so these elements span the inter-
section oflp with the space of good monomials of degree 1.
Generally, allrif].l)(r, a) belongtol. Infact, keeping the same notation, consider

rim(r) = ( R lp)m(r) €lp. (2.22)
plipj piipi
Arguing as before, we see that the summand correspondipgrtd2.18) either
belongs talg or is a good monomial, and the latter happens exactly for those par-
titions p that are of the type (@) with eitheriaj or jai. Hence (2.21) lies ifp.
This proves our claim. O

2.9. THEOREM. Elementg2.21)span the intersection df; with the space gen-
erated by good monomials.
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Proof. Define the linear spacH.,; to be generated by the symbglgz) for all
partitions ofB that satisfy analogs of the linear relations (2.21): fo(alk,, i, j)
as before, we have

D uE@) = Y ) =0. (2.23)
aliaj o jai
2.9.1. TecunicaL LEMMa. There exists arfobviously uniquestructure of an
Hj-module onH,z with the following multiplication table.

(i) If o breakst betweenr, and t,44, then for any choice of € 7, and j €
7,41 We have

lop(t) = =Y p(r@) = Y uw(x(B)) (2.24)
ol B:Bj
(cf. (2.19)).
(i) If o breaksr at 7, then
lop(t) = (o * 1) (2.25)
(cf. (2.20)).
(ii) If o does not break, then
lyu(r) = 0. (2.26)

Our proof of this lemma consists of the direct verification that the prescriptions
(2.24)—(2.26) are compatible with all relations that we have postulated. Unfortu-
nately, such strategy requires the painstaking case-by-case treatment of a long list
of combinatorially distinct situations, which we relegate to the Appendix.

2.9.2. DEDUCTION OF THEOREM 2.9 FROM THE TECHNICAL LEMMA. Since ele-
ments (2.21) belong tdg, there exists a surjective linear map H,p — H,,
u(t) — m(t). Now denote byl the elemenju(¢), wheree is the 1-partition.
Thent: m(o) — m(o)lis alinear mapH; — H.p. From (2.25) one easily de-
duces that: ()1 = u(t), sos andr are mutually inverse. Therefore, (2.22) span
the linear relations between the images of good monomials;in

According to Theorem 2.4.H., in light of its structure as a#/;-module, is
a combinatorial model of the homology modwe (£, k). The generatorg ()
correspond tof ..

3. Pencils of Flat Connections and
the Commutativity Equations

3.1. NotaTiON. Let M be a (super)manifold over a fiekdof characteristic 0 in
one of the standard categories (smooth, complex analytic, schemes,,faormal
We use the conventions spelled out in [M, |.1]. In particular, differentials in the
de Rham complex2},, d) and connections are odd. This determines our sign
rules; parity of an object is denotedk.
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Let F be a locally free sheaf (of sections of a vector bundle)prand letVg
be a connection off, that is, an odd-linear operatotF — Q}, ® F satisfying
the Leibniz identity

Volpf) =de ® f + (=D%eVof, ¢eOy, feF. (3.1

This operator extends to a unique operator onctfjemoduleQ;, ® F, denoted
again byVp and satisfying the same identity (3.1) for apye ©2,,. Any other
connection differentiaV restricted taF has the formvgy + A, whereA: F —
Q1 ® Fis an oddOy-linear operator:A(pf) = (=1)?p.A(f). Any connec-
tion naturally extends to the whole tensor algebra generatéd yparticular, to
End F.

The connectiorV, is calledflat if and only if V3 = 0. A pencil of flat connec-
tionsis a line in the space of connectioWs := Vo + A.A such thatv? = 0 (x is
an even parameter). In the smooth, analytic, or formal cate§aris flat if and
only if F locally admits a basis of flat sectiorfs Vo f = 0.

3.2. ProposITION. Vg + AA is a pencil of flat connections if and only if the fol-
lowing two conditions are satisfied.

(i) Everywhere locally o1, we have

A = VB (3.2)
for someB € End F.
(if) Such an operatoB satisfies the quadratic differential equation
VoB A Vo5 =0. (33)

Proof. Calculating the coefficient of in Vf = 0, we obtainVy.A = 0. But the
complexQ2}, ® F is the resolution of the sheaf of flat sections KgrC F. This
furnishes (i); (ii) means the vanishing of the coefficiena.tf O

3.2.1. REMARKS. (a) Write3 as a matrix in a basis o-flat sections ofF whose
entries are local functions . Then (3.3) becomes

dB A dB = 0. (3.4)

These equations, written in local coordinates on M, were called ¢-part of the
t-t* equations” by S. Cecotti and C. Vafa. Losev [L1] suggested calling them the
commutativity equations.

(b) If Vopo =0, then

(Vo + AVoB) (e Fpg) = 0.

3.2.2. PENCILS OF FLAT CONNECTIONS RELATED TO FROBENIUS MANIFOLDS.

Any solution to the associativity equations produces a pencil of flat connections.
To explain this we will use the geometric language due to B. Dubrovin (and the

notation of [M, 1.1.5]). Consider a Frobenius manif@i#, g, o) where

o: T @0y Tu = Tu
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is a (super)commutative associative multiplication on the tangent sheaf satisfying
the potentiality condition angd is an invariant flat metric (no positivity condition

is assumed, only symmetry and nondegeneracy). Denog, ltlge Levi—Civita
connection ofg. Finally, denote by4 the operator obtained from the Frobenius
multiplication in7y, [M, 1.1.4). In other words, consider the pencil of connections
on F = Ty whose covariant derivatives are

(Vo+ 2 A)x(Y) =Vox(Y)+AXoY.

This pencil is flat (see [M, Thm. 1.5, p. 20). In fagtwritten in a basis oVy-flat
coordinates and the respective flat vector fields is simply the matrix of the sec-
ond derivatives of a local potentidl (with one subscript raised). This is the first
structure connection a¥/.

This pencil admits an infinite-dimensional deformation: one should take the
canonical extension of the potential to the large phase space and consider the
coordinates with gravitational descendants as parameters of the deformation.

Another family of flat connections, this time on tlwetangentsheaf of a
Frobenius manifold/ admitting an Euler vector fiel& (see [M, pp. 23-24]),
is defined as follows. Denote the scalar product on vector figlds, Y) =
g((E — )10 X, Y). The inverse form induces a pencil of flat metrics on the
cotangent sheaf, whose Levi—Civita connections do not, however, form a pencil
of flat connections in our sense (see [D1, Apx. D] and [D3] for a general discus-
sion of such setup). This is the second structure connectiaf. of

3.2.3. FLAT COORDINATES AND GRAVITATIONAL DESCENDANTS. One can show

that 1-forms onM flat with respect to the dualized first structure connection are
closed and therefore locally exact. Their integrals are calégdrmed flat coordi-
nates.In [D2, Ex. 2.3 and Thm. 2.2] Dubrovin gives explicit formal series. ifx

in his notation) for suitably normalized deformed flat coordinates. Coefficients of
these series involve some correlators with gravitational descendants, namely those
for which the nontrivial operators, are applied at only one point. In [KM2] and

[M, VI.7.2, p. 278] it was shown that two-point correlators of this kind determine

a linear operator in the large phase space that transforms the modified correlators
with descendants into nonmodified ones (in any genus). This is important because
a priori only modified correlators are defined for an arbitrary cohomological field
theory in the sense of [KM1], which is not necessarily the quantum cohomology
of a manifold.

3.2.4. PENCILS OF FLAT CONNECTIONS IN A GLOBAL SETTING. Pencils of flat
connections appear also in the context of Simpson’s non-abelian Hodge theory.
Briefly, consider a smooth projective manifaifioverC. One can define two mod-

uli spaces, Modand Mod. The first one classifies flat connections (on variable
vector bundlesF with vanishing rational Chern classes) with semisimple Zariski
closure of the monodromy group. The second one classifies semistable Higgs pairs
(F, A), whereA is an operator as in 3.1, satisfying only the conditibn A = 0.

(In fact, one should consider only smooth points of the respective moduli spaces.)
Hitchin, Simpson, Fujiki, and colleagues established that Mari Mod, are
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canonically isomorphic a€ *°-manifolds, but their complex structurésJ are
different and together witlk = 7J produce a hypercomplex manifold.

P. Deligne has shown that the respective twistor space is precisely the moduli
space of the pencils of flat connectionsn(where the Higgs complex structure
corresponds to the poiiat= oo in our notation). For details, see [S].

3.3. FORMAL SOLUTIONS TO THE COMMUTATIVITY EQUATIONS AND THE HOMOL-

0GY OF L,,. In[KM1] and [KM3] it was shown that formal solutions to the asso-
ciativity equations are cyclic algebras over the cyclic genus-0 homology modular
operad(H, (Mo, ,+1)) (see also [M/11.4]). The main goal of this section is to
show the similar role of the homology of the spadgsin the theory of commu-
tativity equations. This was discovered and discussed on a physical level in [L1;
L2]. Here we supply precise mathematical statements with proofs.

Unlike the case of the associativity equations, here we must deal with modules
over an algebra (depending explicitly on the base space) rather than with alge-
bras over an operad. The main ingredient of the construction is the direct sum of
the homology spaces of dll, endowed with the multiplication coming from the
boundary morphisms. We work with the combinatorial models of these spaces de-
finedin 2.9.1.

We start with some preparations. Lét= .-, V, be a graded associative
k-algebra (without identity) in the category of vectesuperspaces over a figtd
We will call it an S-algebraif, for eachn, an action of the symmetric groi on
V, is given such that the multiplication maf), ® V,, — V,,., is compatible with
the action ofS,, x S, embedded in an obvious way in®),, ..

If V is anS-algebra then the sum of subspadgspanned byl — s)v (s € S,,

v e V,) isadouble-sided ideal ii. Hence the sum of the coinvariant spatgs =
V,./J, is a graded ring, which we denoWg. If V andW are twoS-algebras, then
the diagonal part of their tensor prodégt- ; V, ® W, is anS-algebra as well.

Let T be a vector superspace (hereafter assumed to be finite-dimensional). Its
tensor algebra (without the rank-0 part) is@salgebra.

As a less trivial example, considéf, := @f,o:l H.,, where we writeH,,, for
H.qu ... The multiplication law is given by what become the boundary mor-
phisms in the geometric setting:4fY resp.t?) is a partition of{1, ..., m} (resp.
of {1,...,n}), then

p(ENuE®) = p@z?u?), (3.5)

where the concatenated partition{df..., m, m + 1, ..., m + n} is defined in an
obvious way, shifting all the componentsd® by m.

Our main protagonist is the algebra of coinvariants of the diagonal tensor prod-
uct of these examples:

H.T = <@ Ho ® T®”> . (3.6)
S

n=1

We now fix T and another vector superspageind assume that the ground field
k has characteristic 0.
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3.3.1. THEOREM. There is a natural bijection between the set of representations
of H,T in F and the set of pencils of flat connections on the trivial bundle whose
space ofVy-flat sections is identified with on the formal completion of" at the
origin.

This bijection will be precisely defined and discussed: see Proposition 3.6.1. Be-
fore passing to this definition and the proof of the theorem, we will give a down-
to-earth coordinate-dependent description of the representatidinsiof

3.4. Matrix CorRRELATORS. Fix T and choose its parity homogeneous basis
(A, | a€l), wherel is a finite set of indices.
For anyn > 1, the spacdd,, ® T ®" is spanned by the elements
n@E™M @Ay ®---® Ag,, 3.7

wheret™ runs over all partitions ofi, ..., n} while (ay, ..., a,) runs over all
maps{l,...,n} — I:i — a;. In view of Theorem 2.9, all linear relations be-
tween these elements are spanned by the following ones: chose, a,) and
(™, ™ i £ jer™); then

Z p@EM(@) @ Ay ® - ® Ay,
aliaj
=Y u@@)®AL® - ® A, =0, (3.8)

o joi

where the summation is taken over all 2-partitiansf ") separating and.
The action of a permutatian— s(i) on (3.7) is defined by

s(E™M @Ay ® - ® Ay,)
= (s, @)uE™) ® Mgy ® -+ ® Agy,). (3.9)

Heree(s, (a;)) = *£1lis the sign of the permutation inducedbgn the subfamily
of the oddA,,, ands(z™) is defined as follows:

si)es(t™), = iet™. (3.10)

Finally, the multiplication rule between the generators in the diagonal tensor
product is given by

HE) @ AL ® @ Ay, - (T @ Ay @ -+ ® A,
= M(‘C(’”) U r(")) QAL QA QA R+ QR Ay, . (3.11)

Any linear representatioR : H,T — EndF can be described as a linear repre-
sentation of the diagonal tensor product satisfying additional symmetry restric-
tions. To spell it out explicitly, we define thmatrix correlatorsof K as the fol-
lowing family of endomorphisms of':

TAL . AL) = K™ @Ay @ -+ @ Ay,). (3.12)

3.4.1. CLamm. Matrix correlators of any representation satisfy the following
relations.
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(i) S,-symmetry
sTHEN(Agy ... Ag,) = 6(s, (@) T (Auyy - Aay)- (3.13)
(ii) Factorization
@™ UT)(Agy .. Ay Apy ... Ap,)
=t"(Ay .. A T (A LAY, (314)
(i) Linear relations
Dt @ (Auy Ay = D T@) (A A,,) =0 (3.15)
o iaj o jai
Conversely, any family of elementsefid F defined for alkz, (ay, ..., a,), and

™ and satisfying3.13)—(3.15)consists of matrix correlators of a well-defined
representatiork : H,T — EndF.

Infact, we obtain (3.13) by applying to (3.9) written fors~1(z ™) in place ofr ™,
becaus&, coming fromH., T, vanishes on the image of-1s. Moreover, (3.14)
implies compatibility with the multiplication of the generators. Finally, (3.15) is
a necessary and sufficient condition for the extendability of the system of matrix
correlators to a linear mag.

Notice that we can replace Eitby an arbitrary associative superalgebra dver

3.5. Tor MATRIX CORRELATORS. Define thetop matrix correlatorsof K as the
subfamily of correlators corresponding to the identical partitioiisof {1, ..., n}:

(Dayoo Ay i=8"(Agy ... Ay,).

3.5.1. ProposiTION.  Top matrix correlators satisfy the relations

<Aal e Aa,l> = S(S’ (Cl,‘)) (Aa;(l) cen Aus(,,>) (316)
and
pRICE (ak»( [1 A> : < [1 A>
oioj keo1 keoo
- Y e <ak)>< I Aak> < I Aak> _0. (317)
o joi keop keoo

whereo runs over2-partitions of {1, ..., n}. We choose additionally an arbitrary
ordering of both parts, o, determining the ordering ks in the angular brack-
ets, and we compensate this choice bytidactor ¢ (o, (ay)).

Conversely, any family of elemenis,, ... A,,) € EndF defined for allz and
(ai, ..., a,) and satisfyind3.16)and (3.17)is the family of top matrix correlators
of a well-defined representatidti: H,T — EndF.

Proof. Clearly, (3.16) is a particular case of (3.13). To derive (3.17), we apply
(3.15) to the identical partition™ = ¢ and then replace each term by the
double product of top correlators using (3.14).
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Conversely, assume that we are givet,, ... A,,) satisfying (3.16) and
(3.17). There is a unique way to extend this system to a family of elements
t(A,, ... A,,) defined for allN-partitionst™ and satisfying the factorization
property (3.14) and at least a part of the symmetry relations (3.13):

r=N
T(A .. Ay) =T, (@) ]_[< I1 Aak>. (3.18)

r=1 ker,(")

Here, as in (3.17), we choose arbitrary orderings of ed¢hand compensate
by appropriate sign so that the result does not depend on the choices made. All
the relations (3.13) become automatically satisfied with this definition. In fact,
the left-hand side of (3.13) puts into(z ™), thosei for whichs(i) € ™ (see
(3.10)), so that the expression of both sides of (3.13) through the top correlators
consists of the same groups taken in the same order. The equality of the signs is
left to the reader.

It remains to check that (3.18) satisfy the linear relations (3.15). Recall now
that to write a concrete relation (3.15) down we choo$e r, i, j € ¢, and
(a1, ..., a,) and then sum over 2-partitionsof (. Hence, replacing each term
on the left-hand side of (3.15) by the prescriptions (3.18) yields

[1{ 11 2.

P=1" e

(zeme () 2o )

T < I A>

g=r+1 ker;")
This expression vanishes because its middle term is an instance of (3.17)J

3.6. PRECISE STATEMENT AND PrOOF OF THEOREM 3.3.1. Assume that we are
given arepresentatioki: H,T — EndF. We will produce from it a formal solu-
tion to the commutativity equations using only its top correlators.(kéj be the
basis of formal coordinates dndual to(A,). Put

> x4 o xM
B=>" Y —— (A Ag,) €K[x]] ® EndF. (3.19)
n=1 (ay, ..., a,)
3.6.1. ProposiTION. (a)We have
dBAndB =0. (3.20)

(b) Conversely, letA(ay, ..., a,) € EndF be a family of linear operators de-
fined for alln > 1and all maps(l, ..., n} — I:i +— a;. Assume that the parity
of A(ay, ..., a,) coincides with the sum of the parities &f, and that, for any
sES,,



New Moduli Spaces of Pointed Curves and Pencils of Flat Connectiongl63

Alag@y, ---» asmy) = €(s, (@) Alay, ..., ap).
Finally, assume that the formal series

B= Z Z A(al,...,a,,)ek[[x]] ® EndF (3.21)

n=1 (ay,..., an)

satisfies the equation@.20). Then there exists a well-defined representation
K: H.T — EndF such thatA(ay, ..., a,) are the top correlatorgA,,; ... A,,)
of this representation.

Notice that any even element &f[ x]] ® EndF without constant term can be
uniquely written in the form (3.21).

Proof. Clearly, the equationgB A dB = 0 written for the series (3.21) are
equivalent to a family of bilinear relations between the symmetric matrix-valued
tensorsA(as ... a,). In view of Proposition 3.5.1, it remains only to check that
this family of relations is equivalent to the family (3.17). This is a straightforward
exercise. O

4. StacksLy a g and the Extended Modular Operad

4.1. INTRODUCTION. The basic topological operdd/., .1, n > 2) of quantum
cohomology lacks the = 1 term, which usually is formally defined as a point.
We argued elsewhere (cf. [MZ, Sec. 7] and [M, VI.7.6]) that it would be very de-
sirable to find a nontrivial DM-stack that could play the roleﬂb&z. There are
several tests that such an object should pass.

(a) It must be a semigroup (because for any op&rathe operadic multiplica-
tion makes a semigroup @%(1)).

(b) Itmust be a part of an extended genus-0 operad—5ay,,1, n > 1) geomet-
rically related to(Mo,,.4+1, n > 2) in such a way that the theory of Gromov—
Witten invariants with gravitational descendants could be formulated in this
new context. In particular, it must geometrically explain two-point correla-
tors with gravitational descendants.

(c) Inturn, the extended genus-0 operad must be a part of an extended modular
operad containing moduli spaces of arbitrary genus in such a way that alge-
bras over classical modular operads produce extended algebras.

In this section we will try to show that the space
Zo;z = ]_IZ" (41)
n>1

passes at least a part of these tests. (Another candidate that might be interesting is
lim proj L,, with respect to the forgetful morphisms.)

4.2. SEMIGROUP STRUCTURE. The semigroup structure is defined as the union
of boundary (clutching) morphisms
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b= (bumy): Loz x Loz — Loz, (4.2)
where B B _
bnl,nz: Lnl X an - Ln1+nz

gluesx, of the first curve torg of the second curve and renumbers the black points
of the second curve, keeping their order (cf. [MZ, Sec. 7]). This is the structure
that induced our multiplication oH, in 3.3.

4.3. EXTENDED OPERADS. In (4.2), only white pointgx, x»} are used to de-

fine the operadic composition whereas the black ones serve only to stabilize the
strings ofP's that would otherwise be unstable. This is a key observation for our
attempt to define an extended operad.

A natural idea would be to proceed as follows. Denote\hy, 5 the stack of
stable(A, B)-pointed curves of genug (see Definitionl.1). Check that it is a
DM-stack. Put1\7lg;m+1 =U,=0 Mg;m+1,, and define the operadic compositions
via boundary maps, using only white points as before. (Here and in the sequel we
sometimes write instead of(1, ..., n}.)

However, it seems that this object is too big for our purposes and that it must be
replaced by a smaller stack that we will define inductively by using the construc-
tion of 1.3, which we will here call simply the adjoining of a generic black point.
The components of this stack will be defined inductively.

If ¢ > 2 andm > 0 then we start withh,.,, = M,.,, » and add: generic black
points, one in turn. Denote the resulting stackihy;, ,.

Forg = 1we should add one more sequence of stacks, correspondingto.

Since we want to restrict ourselves to Deligne—Mumford stacks, we stéfit @t
identified withM.; (see 1.2(a)) and add black points to obtain the sequenge

(n > 1). These spaces are needed to serve as targets for the clutching morphisms
gluing xo to x, ON the same curve of genus zero.

Finally, for ¢ = 0 we obtain our series of spacés = Loz, (n > 1) and,

moreover L., , forallm > 3 andn > 0.

4.3.1. CoMBINATORIAL TYPES OF FIBERs. Let us recall that the combinatorial
types of classical (semi)stable curves with (only white) points labeled by a finite
setA are isomorphism classes of graphs, whose vertices are labeled by “genera”
g > 0 and whose tails are bijectively labeled by elementd of5tability means

that vertices of genus 0 bound at least three flags and that vertices of genus 1
bound at least one flag. Graphs can have edges with only one vertex—that is, sim-
ple loops. See [MLl1.2] for more details.

Starting with such a graph (or rather with its geometric realization) we can
obtain an infinite series of graphs, which will turn out to be exactly combina-
torial types of (semi)stabléA, B)-pointed curves that are fibers of the families
described previously. Namely, subdivide edges and tails bf a finite set of
new vertices of genus 0 (on each edge or tail, this set may be empty). If a tail
was subdivided, move the respective label (framto the newly emerged tail.
Distribute the black tails labeled by elementshfrbitrarily among the old and
the new vertices. Call the resulting grapbktengy stable combinatorial typiit
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becomes stable after repainting black tails into white ones. Clearly, new vertices
depict strings oP's stabilized by black points and eventually two special points
on the end components.

4.3.2. THEOREM. (@) I:g;m,n is the Deligne—Mumford stack classifyiig, n)-
pointed curves of genygof stringy stable combinatorial types. It is proper and
smooth.

(b) Therefore, one can define boundary morphisms gluing two white points of
two different curves,

Lgl:m1+ln1 X ng:mz+ln2 - Lg1+g2:ml+mz+lnl+n2’

and gluing two white points of the same curve,

Lg;m+ln - Z’g-&-lm—l'n
such that the locally finite DM-stacks

Lg,erl = ]_[ Lg;m+ln

n>0

will form components of a modular operad.

Statement (a) can be proved in the same way as the respective statement 2.2(a).

It remains to see whether one can develop an extension of the Gromov—Witten
invariants, preferably with descendants, to this context. Remark 3.2.3 seems
promising in this respect.

Appendix. Proof of the Technical Lemma

We break the proof into several steps whose content is indicated in the title of the
corresponding subsection. As advice for the reader who might care to check the
details: the most daunting task is to convince oneself that none of the alternatives
has been inadvertently omitted.

A.l. The Right-Hand Side ¢2.24)Does Not Depend on the Choice ©fj

We must check that a different choice leads to the same answer modulo relations
(2.23). We can pass from one choice to another by consecutively replacing only
one element of the pair. Consider, say, the passage(rointo (i’, j). Form the
difference of the right-hand sides of (2.24) written {dr j) and for(i, j).

In this difference, the terms corresponding to the partitipmell cancel. The
remaining terms will correspond to the partitiomf ¢, that separaté andi’.
Their difference will vanish i,z because of (2.23).

A.2. Multiplications by, Are Compatible with
Linear Relationg2.23)betweenu ()

Choose and fix one linear relation (2.23), that is, a quadruple,, i, j € t,),
i # j. Choose also a 2-partition We want to check that, after multiplying the
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left-hand side of (2.23) by, according to the prescriptions (2.23)—(2.26), we will
have zero modulo all relations of the type (2.23). There are several basic cases to
consider.

(i) o breakst at 7, b # a. Then putt’ = o * t. After multiplication we will
again have (2.23) written far’ and one of its components.

(i) o breakst at 7,. Let (t,, 742) be the induced partition; it is now fixed.
We must analyzé, u(t(«)) for variable 2-partitionse of t, with iaj or jai.
Thosex that do not breakz,;, 7,2) will contribute zero because of (2.26).
Thosex that do breaKz,1, t.2) will produce a 3-partition of,, say(z 11, Ta12,
T42) Or else(t 1, 1421, Ta22). Finally, there will be one that is induced by —that
is, ana that coincides with(z 1, 7,2). We must show that the sum total of the re-
spective terms vanishes. However, the pattern of cancellation will depend on the
positions ofi andj. In order to present the argument more concisely, we will first
introduce the numeration of all possible positiavith respect to a variable as
follows. Partitions that brealc 1, t,2) with iaj:

(I) i€ Talls ] € Tq12;
(”) i€ Talls J € Ty2;
(M) i€ta, j €Tz
(|V) i€ Ta21, ] € T422.

Partitions that breakr 1, 7,2) and satisfyjai will be denoted similarly but with a
prime, so thatlll ") meangI1l) with the positions of and; reversed.

Now we will explain the patterns of cancellation depending on the positions of
i, j with respect tas. Recall that this latter data is fixed and determined by the
choices we made at the beginning of this subsection.

If i, j € t,1 then the only nonvanishing terms are of the types (1) ahd Their
sum over alkx will vanish because of (2.23). Similarly,if j € 7,2 then (V) and
(IvV") will cancel, and everything else will vanish.

Finally, assume thate 7,5 andj € 1,2; that is,o separateg j. Then we may
have nonvanishing terms of typ@s) and (111) aswell as terms coming from (the
partition of r, induced by)o, which must be treated using the formula (2.24),
applied however tdzy, ..., 7,-1, Ta1, Ta2, Tas1, ---) IN place ofr. Half of these
latter terms (withi € 7,11) will cancel(ll), whereas the other half (withe 7,2,)
will cancel(I11).

The case of € 7,1 andi € 7, is treated similarly.

(iii) o breakst betweerr, and t,,;. In this caser breaks anyt(«) in (2.23)
between two neighbors as well. A contemplation will convince the reader that
only the case$ = a — 1 andb = a may present non-obvious cancellations. Let
us treat the first one; the second one is simpler.

Fora = (14, t4.2) We will calculate each termy, u(z(«)) using a formula of
the type (2.24), first choosing sorhe t,_; and! € t,; (in place ofi, j of (2.24):
these letters are already bound). The choicé dbes not matter, but we will
choosd =i if iaj andl = j if jai. Foriaj we then have



New Moduli Spaces of Pointed Curves and Pencils of Flat Connectiongl67

lop(t(@)) = lop(... T4 1Ta1Ta2--)

=- Z Moo Ta—11Ta—12TaTa2 - --)
Brketq_11

- Z m(. .. Ta1Ta1Ta12Ta2 - - - ), (A1)

YiieTa2

whereg runs over 2-partitions of ,_; andy runs over 2-partitions of ;. Write
down a similar expression fgtxi (with the choicd = j). The second sum in this
expression will term-by-term cancel the second sum in (A.1), because our choices
forcei € t,10 andj € 7., in both cases.

If we sum first overr, then we will see that the first two sums cancel modulo
relations (2.23) because our choices implyt,; andj € 7,2 in the first sum of
(A.1) and the reverse relation in the first sum written for.

(iv) o does not break. In this case we choose a bad péiy, 7,1) for o and
T (see Lemma 2.4.2(iii)). One easily sees that; # b anda # b + 1, then it
remains a bad pair far andz («) for any« in (2.23). Therefore], annihilates
all terms of (2.23) in view of (2.26). We will show that in the exceptional cases
we still can find a bad pair for andz(«), but it will depend oy = (.1, t42),
which does not change the remaining argument.

Assume thab = a; that is, assume, \ o1 # @ andz,1 N o1 # @ (see (2.12)).
Then(z,2, t.41) is a bad pair for andz(«) unlesst,, C o1, in which caser;
cannot contairt,; so that(z,;, t.2) form a bad pair. Similarly, ib = a — 1then
T,-1, To1 Will be a bad pair unless,; N oy = @, in which casdt,, 7,2) will be a
bad pair.

By this time we have checked that multiplicationsipyare well-defined linear
operators on the spadé,z. We will now prove that they pairwise commute and
therefore define an action &3 uponH,.

A.3. Multiplications by, Pairwise Commute
We start by fixingr, o™, ando®. We want to check that

lew(eou () =l,0l,0uT)).

We may and will assume that® = @, The following alternatives can occur
for 0@ ando @ separately:

(i) o® breaksr att,;

(i) o breaksr betweenr, andr,;
(i) o™ does not break:;

(i") 0@ breaksr att,;
(ii") 0@ breaksr betweenr, andr;
(i’) 0@ does not break.

We will have to consider the combined alternati(i@&’), (i)(ii"), ..., (iii)(iii )
in turn. The symmetry o5 ® ando @ allows us to discard a few of them.
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Subcaséi)(i’). We will firstassume that # b, saya < b. Denote by (resp.
B) the partition induced by ™ (resp.c®) ont, (resp.t,). Then

lLyao(sou(D) =l,ol,ou()) = u(t@)(B) = u(T(B)(a)).

Now assume that = b. If « breaksg then we will again have the desired equal-
ity, becausex * 8 = B x «. If « does not brealg then both sides will vanish.

Having treated this subcase, we add one more remark that will be used in Sec-
tion A.5. Namely,a does not brealg exactly wheno® does not break .
Therefore, ifl, w2 is one of the quadratic generators igf then consecutive
multiplication by the respective elements annihilai€s).

Subcasdi)(ii’). If a # b anda # b + 1, then the modifications induced in
7 by the two multiplications are made in mutually disjoint places and therefore
commute as before. Consider now the case b (the caser = b + 1is similar).
Denote by(z,1, t42) the partition induced by onz,. Then we have

lyop(t) = pu(... Ta—1Ta1Ta2Tas1...) = u(r’).

Clearly,oc® breaksr’ betweenr,, andr,,; so that, after choosinge 7,, and
J € Tay1, We have

Lo (yop(@) ==Y p@' @) — Y ux'(p), (A2)
ol B:Bj
wherea runs over 2-partitions of,» andg runs over 2-partitions of,, ;.
On the other hand, with the same choicé,gf we have

leap(t) = =Y p@(y)) = Y nx(p)), (A-3)
yiiy B:Bj
wherey runs over 2-partitions of, and g runs over 2-partitions of, 1. After
multiplication of (A.3) by/,w, the second sum in (A.3) will become the second
sum of (A.2). In the first sum, only partitiorésbreaking(z,, t,2) will survive,
and they will produce exactly the first sum in (A.2).

Subcaséi)(iii ). Hereo ™ breaksr atz,, and there exists a bad pair;, 75.1)
for 0@ andz. Sincel,ou(r) = 0, it remains to check thadg e (I, u(r)) = 0.
Butl,wu(r) = u(r’) as in the previous subcase, so it remains to find a bad pair
forc®@ andz’.
If a £ bandg # b + 1, then(z,, t,41) Will be such a bad pair. lé = b, de-
note by(z1, 7,2) the partition ofr, induced byr V. If 7,, is not contained i @
then(z,2, t,+1) Will form a bad pair; otherwise, this role will pass t0,1, 7.2).
Finally, consider the case when= b+1. Inthe previous notation, i,°'Nz; #
@ then(t,_1, T41) is the bad pair we are looking for, otherwise, we should take
(Ta1, Ta2)-

Subcasdii)(ii ). Hereo® (resp.oc®) breakst betweera anda + 1 (resp.
betweerb andb + 1), anda # b.

If a # b —1anda # b + 1, then the modifications induced inby ¢ and
0@ do not interact and the respective multiplications commute.
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By symmetry, it remains to consider the case b — 1. Choose € 7, andj
T,41. SUMmMiIng first over partitions = (4, 742) andg = (T441.1, Tat1.2), WE
have

la(l)u(‘[) = —Z [,L( falfaZ-u) — Z ,LL( Ta+l1":a+l2~~~)-
alia B:Bj

Now o @ will break the terms of the first (resp. second) sum betwgepandr, . »
(resp. between, .12 andt,;2). In order to multiply each term of these sums by
l,, we choose the samyee t,,; and someé € 7,,». In (A.4) we also sum over
2-partitionsf = (t441.1, Tat1.2) @aNdy = (t44+21, Ta+2.2) in the first two sums. In
the second two sums, the respective notatighl is: (t,+1.2.1, Ta+1.2,2)"

lLyo(,au(r)) = Z w(... TaaTa2Tas11Ta412---)
olia

BB
+ Z m(o o TaTa2Ta1Ta421Ta12,2 - -)
aia
vyl
+ Z M(.o Ta411Ta4+121Ta+12,2Ta+2 - - -)
B:Bj
B’
+ Z ,bL(. oo Ta4+11Ta41,2Ta+2,1Ta+2,2 - - ) (A4)
B:Bj
yiyl

On the other hand, with the same notation we have

lyou(t) ==Y u(... Tap11Tapr2---) — D M(... Tap21Tat22---)
BB yiyl

and

lLio(,apn(m) =Y pl... TaTa2Tat11Tas12---)
olia
B:JB
+ Z w(. .. Ta4111Ta+112Ta+12 - - -)
BB
ﬁ//:ﬂ//j
+ Z m(o .. TaaTa2Tar1Ta+21Ta 42,2 - )
aia
yyl
+ Z w(.. Ta411Ta41,2Ta42,1Ta42,2 -+ ), (A.5)
B:Bj
yiyl
whereg” = (t44+111, Ta+112). Three of the four sums in (A.4) and (A.5) obvi-
ously coincide. The third sum in (A.4) coincides with the second sum in (A.5)
because both are taken over 3-partitions gf; with j in the middle part.
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Subcaseii) (iii /). Hereo® breaksr betweern anda + 1, butos® does not
breakr. We must check thdt (I, o (7)) = 0 by finding a bad pair fos @ and
for each term on the right-hand side of

l(,(l)lL(‘E) = —Z /L( o TalTa2 . ) — Z ,u(. o Ta+11Ta412 - - )
olio B:Bj
Denote by(t,, 7541) a bad pair forr @ andz. As in the subcasg)(iii /), it will
remain the bad pair unlegss {a — 1, a, a + 1} and will change somewhat in the
exceptional cases.

More precisely, ifb = a — 1 then, for the terms of the second sum,_1, 7,)
will be bad. For the first sum, 'cfl<2) Nt, # @thenthe bad pair will bér,_1, 7,1);
otherwise, it will be(z,1, 742).

If b = a then, for the terms of the first surtx,,», 7,.1) will be bad. For the sec-
ond sum, ifo;? N 7,,11 # @ then the bad pair will béz,, z,,11); otherwise, it
will be (Ta+],lv ‘L'a+12).

Finally, if » = a + 1 then, for the terms of the first sun,, 1, 7,.2) will be
bad. For the second sum, the bad pair willlbg,1 2, 7,+2).

In the last remaining subcase ofi){iii /), both multiplications produce zero.
To complete the proof of the technical lemma, it remains only to check that the
elements (2.14) and (2.15) generatiggannihilateH., 3.
A4, EIementsl.(jl) Annihilate H, 3

Fix i, j and a partitiorr. If T does not separaieandj then we have, j € t,, for
somea, in which case

r,-(jl)u(r) = < Z lo — Z lo>u(f)

oioj o joi
=Y nE@) = Y p@)), (A.6)
oiaj o jai

wherea runs over partitions of,. This expression vanishes because of (2.23).
Assume now that separatesandj; say,i € t, andj € 7, with a < b. In this
case/,u(tr) = 0 for all o with joi. The remaining terms of (A.6) vanish unless

o breaksr at somer,, a < ¢ < b, or else between. andt 1 fora <c <b-—-1

In the latter cases, each term corresponding toconan be replaced by a sum of

terms corresponding to the 2-partitiamsof . with the help of (2.24) and (2.25).
Let us choosé, € 7. foralla < ¢ < b, so thatk, = i andk;, = j. The result-

ing expression may be spelled out as

c=b
Zzgu(z)zX:’( Yo+ ) )M(T(ac))
oioj c=a oo tkea, aeiacke
c=b—-1

- <Z+ > )u(r(acﬂ)),

c=a acikeae  deq1i@cirketd
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where the prime at the first RHS sum indicates that the termsayittand jo,,
should be skipped.
All the terms of this expression cancel.

A.5. Elements@(c®, 6@) Annihilate H, 5

These elements correspond to the p&irf®), o @) that do not break each other. If
at least one of them (say?) does not break either, theri,(t) = 0 so that
r@®, 6@)u(r) = 0. If both o ® ando @ breakr, a contemplation will con-
vince the reader that they must breakt one and the same component This

is the subcas@)(i’) of Section A.3, and we made the relevant comment there.
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