A Construction of Irreducible GL(m) Representations

Tadeusz Józefiak

Dedicated to Bill Fulton

1. Introduction

Let E be a finite-dimensional vector space over a field K. Fulton [3] has presented an elegant description of irreducible $\mathrm{GL}(E)$-modules when K is of characteristic 0 , a treatment that combines the classical approach in terms of products of determinants (see [4] for details and historical remarks) with a functorial approach. We briefly recall his construction.

Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis for E, let $A=\{1, \ldots, m\}$, and let λ be a partition. Consider a set $X=\left\{X_{i, a} \mid 1 \leq i \leq l(\lambda), a \in A\right\}$ of indeterminates over K. For a p-tuple $S=\left(a_{1}, \ldots, a_{p}\right), a_{i} \in A$, define $D_{S}=\operatorname{det}\left(X_{i, a_{j}}\right), 1 \leq i, j \leq p$. The D_{S} are elements of the polynomial ring $K[X]$ in the $X_{i, a}$. An action of $\operatorname{GL}(m)$ on $K[X]$ is determined by $g \cdot X_{i, a}=\sum_{b \in A} g_{b, a} X_{i, b}$ for $g=\left(g_{b, c}\right) \in \mathrm{GL}(m)$.

For each S as just described we write $e_{S}=e_{a_{1}} \wedge \cdots \wedge e_{a_{p}}$ for the corresponding element of the exterior power $\bigwedge^{p} E$. Let T be a filling of λ with entries from A. We associate with T an element $e_{T} \in \bigwedge^{\mu_{1}} E \otimes \cdots \otimes \bigwedge^{\mu_{h}} E$, where μ is the conjugate of λ, by defining $e_{T}=e_{T_{1}} \otimes \cdots \otimes e_{T_{h}}$ for T_{1}, \ldots, T_{h} columns of T.

We have a map of GL (m)-modules $\varphi_{\lambda}: \bigwedge^{\mu_{1}} E \otimes \cdots \otimes \bigwedge^{\mu_{h}} E \rightarrow K[X]$ with $\varphi_{\lambda}\left(e_{T}\right)=D_{T}:=D_{T_{1}} \cdots D_{T_{h}}$ for each filling T of λ.

The results we would like to quote from [3, Chap. 8] are as follows. If char $K=$ 0 , then:
(i) $E(\lambda):=\operatorname{Im} \varphi_{\lambda} \cong \bigwedge^{\mu_{1}} E \otimes \cdots \otimes \bigwedge^{\mu_{h}} E / \operatorname{Ker} \varphi_{\lambda}$ is an irreducible GL(m)module of highest weight λ if $l(\lambda) \leq m$;
(ii) the set $\left\{D_{T} \mid T\right.$ tableau $\}$ is a basis of $E(\lambda)$;
(iii) $\operatorname{Ker} \varphi_{\lambda}$ is generated by explicitly described elements that correspond to Sylvester's identities among the D_{T}.

In this paper we present a similar approach with exterior powers replaced by symmetric powers. It requires considering exterior algebra indeterminates instead of polynomial indeterminates and leads to a new construction of irreducible GL(m)-modules. A combination of both approaches can be used to construct in the same vein tensor representations of general linear Lie superalgebras (see [6]).

2. Determinants in Exterior Algebras

Let $Z=\left\{Z_{i, a} \mid 1 \leq i \leq \lambda_{1}, a \in A\right\}$ be a set of exterior indeterminates; that is, let $Z_{i, a}^{2}=0$ and $Z_{i, a} Z_{j, b}=-Z_{j, b} Z_{i, a}$ if $(i, a) \neq(j, b)$ and let the $Z_{i, a}$ be free generators of the exterior algebra $\bigwedge(Z)$ over K. For k-tuples $R=\left(x_{1}, \ldots, x_{k}\right), 1 \leq$ $x_{i} \leq \lambda_{1}$, and $S=\left(a_{1}, \ldots, a_{k}\right), a_{i} \in A$, we define a polynomial in the $Z_{i, a}$ by the formula

$$
D(R \| S)=\sum_{\sigma \in \Sigma_{k}}(\operatorname{sgn} \sigma) Z_{x_{\sigma(1)}, a_{1}} \cdots Z_{x_{\sigma(k)}, a_{k}}
$$

where Σ_{k} is the symmetric group on $\{1, \ldots, k\}$. Note that for $k=1$ we have

$$
D(R \| S)=D\left(x_{1} \| a_{1}\right)=Z_{x_{1}, a_{1}} .
$$

For $\sigma \in \Sigma_{k}$ we write $S_{\sigma}=\left(a_{\sigma(1)}, \ldots, a_{\sigma(k)}\right)$, and similarly for R. If a partition $k=p+q$ is fixed we write $S^{\prime}=\left(a_{1}, \ldots, a_{p}\right), S^{\prime \prime}=\left(a_{p+1}, \ldots, a_{k}\right)$ and similarly for R. This means, in particular, that $S_{\sigma}^{\prime}=\left(a_{\sigma(1)}, \ldots, a_{\sigma(p)}\right)$ and $S_{\sigma}^{\prime \prime}=$ $\left(a_{\sigma(p+1)}, \ldots, a_{\sigma(k)}\right)$ for $\sigma \in \Sigma_{k}$.

Here are some basic properties of the $D(R \| S)$.

Proposition 1.

(1) $D\left(R_{\sigma} \| S\right)=(\operatorname{sgn} \sigma) D(R \| S)$ for $\sigma \in \Sigma_{k}$.
(2) $D\left(R \| S_{\sigma}\right)=D(R \| S)$ for $\sigma \in \Sigma_{k}$.
(3) First component Laplace expansion:

$$
D(R \| S)=\sum_{\tau}(\operatorname{sgn} \tau) D\left(R_{\tau}^{\prime} \| S_{\sigma}^{\prime}\right) D\left(R_{\tau}^{\prime \prime} \| S_{\sigma}^{\prime \prime}\right)
$$

(4) Second component Laplace expansion:

$$
D(R \| S)=(\operatorname{sgn} \tau) \sum_{\sigma} D\left(R_{\tau}^{\prime} \| S_{\sigma}^{\prime}\right) D\left(R_{\tau}^{\prime \prime} \| S_{\sigma}^{\prime \prime}\right)
$$

In (3) and (4) the sums are over a complete set of left coset representatives of $\Sigma_{k} / \Sigma_{p} \times \Sigma_{q}$.

Proof. We will prove (2); a proof of (1) is similar. It is enough to show (2) for $\sigma=(i, i+1)$; then

$$
D\left(R \| S_{\sigma}\right)=\sum_{\alpha}(\operatorname{sgn} \alpha) Z_{x_{\alpha(1)}, a_{1}} \cdots Z_{x_{\alpha(i)}, a_{i+1}} Z_{x_{\alpha(i+1)}, a_{i}} \cdots Z_{x_{\alpha(k)}, a_{k}} .
$$

Replacing α by $\tau=\alpha(i, i+1)$ transforms this into

$$
\sum_{\tau}(\operatorname{sgn} \alpha) Z_{x_{\tau(1)}, a_{1}} \cdots Z_{x_{\tau(i+1)}, a_{i+1}} Z_{x_{\tau(i)}, a_{i}} \cdots Z_{x_{\tau(k)}, a_{k}}
$$

Since $\operatorname{sgn} \tau=-\operatorname{sgn} \alpha$, it follows that switching the i th and $(i+1)$ th terms in each monomial leads to $D(R \| S)$.

Note that (3) and (4) are valid for any set of left coset representatives if they are valid for one such a set (thanks to properties (1) and (2)). Property (4) can be proved by induction on p for the following set of representatives: for each subset \hat{S}
of S of cardinality p consider a permutation $\sigma_{\hat{S}}$ that sends $(1, \ldots, k)$ to $(\hat{S}, S \backslash \hat{S})$, where \hat{S} and $S \backslash \hat{S}$ are arranged in an increasing order. The set $\left\{\sigma_{\hat{S}}\right\}$ with \hat{S} running over all p-subsets of S is a set of left coset representatives of $\Sigma_{k} / \Sigma_{p} \times \Sigma_{q}$. A proof for property (3) is similar, with S replaced by R.

We do not provide a detailed proof for (3) and (4) here because it is similar to a proof of the classical Laplace expansion for determinants.

If $R=(1, \ldots, k)$ then we denote $D(R \| S)$ simply by $D(S)$ in the sequel.
Proposition 2. Let $p \geq q$ and $k=p+q$. Let $W \subset\{p+1, \ldots, k\}$ and denote $\{1, \ldots, p\}$ by U. Moreover, let $X(W)$ be a set of left coset representatives of $\Sigma(U \cup W) / \Sigma(U) \times \Sigma(W)$. Then, for any $S \in A^{k}$ and $R \subset\{1, \ldots, p\}$ with $\#(R)=q$, we have

$$
\begin{equation*}
\sum_{\sigma \in X(W)} D\left(S_{\sigma}^{\prime}\right) D\left(R \| S_{\sigma}^{\prime \prime}\right)=0 \tag{1}
\end{equation*}
$$

Corollary 1. With the notation of Proposition 1, we have the identity

$$
\sum_{\sigma \in X(W)} D\left(S_{\sigma}^{\prime}\right) D\left(S_{\sigma}^{\prime \prime}\right)=0
$$

Proof of Proposition 2. It is enough to prove identity (1) for $W=\{p+1, \ldots, p+i\}$ and for any $1 \leq i \leq q$, owing to property (2) of Proposition 1.

If $i=q$ then, by (1) and (4) of Proposition 1, we have

$$
0=D(U \cup R \| S)=\sum_{\sigma \in X(W)} D\left(S_{\sigma}^{\prime}\right) D\left(R \| S_{\sigma}^{\prime \prime}\right)=0
$$

Now let $i<q$. For any $\sigma \in X(W)$ we have $S_{\sigma}^{\prime \prime}=\tilde{S}_{\sigma}^{\prime \prime} \cup \hat{S}$, where $\hat{S}=$ $(p+i+1, \ldots, k)$. Using Proposition 1(3) for $D\left(R \| \tilde{S}_{\sigma}^{\prime \prime} \cup \hat{S}\right)$, we obtain

$$
\begin{aligned}
\sum_{\sigma \in X(W)} D\left(S_{\sigma}^{\prime}\right) D\left(R \| S_{\sigma}^{\prime \prime}\right) & =\sum_{\sigma \in X(W)} D\left(S_{\sigma}^{\prime}\right)\left(\sum_{\tau}(\operatorname{sgn} \tau) D\left(R_{\tau}^{\prime} \| \tilde{S}_{\sigma}^{\prime \prime}\right)\right) D\left(R_{\tau}^{\prime \prime} \| \hat{S}\right) \\
& =\sum_{\tau}(\operatorname{sgn} \tau)\left(\sum_{\sigma \in X(W)} D\left(S_{\sigma}^{\prime}\right) D\left(R_{\tau}^{\prime} \| \tilde{S}_{\sigma}^{\prime \prime}\right)\right) D\left(R_{\tau}^{\prime \prime} \| \hat{S}\right) \\
& =0
\end{aligned}
$$

because the sums in parentheses are zero by the case $i=q$.

3. Main Results

Let λ be a partition, let T be a filling of λ with entries in A, and let T_{1}, \ldots, T_{l} be rows of T. We write $D(T)=D\left(T_{1}\right) \cdots D\left(T_{l}\right)$, an element of the exterior algebra $\bigwedge(Z)$ on the $Z_{i, a}$.

We define $\tilde{E}(\lambda)$ to be a linear span of the $D(T)$ in $\bigwedge(Z)$, where T runs over all fillings of λ. Then $\tilde{E}(\lambda)$ becomes a $\operatorname{GL}(m)$-module by setting $g \cdot Z_{i, a}=$ $\sum_{b \in A} g_{b, a} Z_{i, b}$ for $g=\left(g_{b, c}\right) \in \mathrm{GL}(m)$ and extending multiplicatively to the entire $\tilde{E}(\lambda)$. We have the explicit formula

$$
g \cdot D\left(a_{1}, \ldots, a_{p}\right)=\sum g_{b_{1}, a_{1}} \cdots g_{b_{p}, a_{p}} D\left(b_{1}, \ldots, b_{p}\right),
$$

the sum over all p-tuples $\left(b_{1}, \ldots, b_{p}\right)$ from A^{p}.
For a p-tuple $S=\left(a_{1}, \ldots, a_{p}\right)$, we write $e(S)=e_{a_{1}} \cdots e_{a_{p}} \in S_{p} E$. For a filling T of λ, we set $e(T)=e\left(T_{1}\right) \otimes \cdots \otimes e\left(T_{l}\right) \in S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E$. We now have a map

$$
\Phi_{\lambda}: S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E \rightarrow \bigwedge(Z)
$$

such that $\Phi_{\lambda}(e(T))=D(T)$ for any filling T of λ. It is easy to check that Φ_{λ} is a map of GL (m)-modules.

A filling T of λ is called a tableau if entries along the rows of T from left to right are weakly increasing and entries down the columns of T are strictly increasing.

Let $S=\left(a_{1}, \ldots, a_{p+q}\right), p \geq q$, let $U \subset\{1, \ldots, p\}$ and $W \subset\{p+1, \ldots, p+q\}$, and let $X(U, W)$ be a complete set of left coset representatives of the cosets $\Sigma(U \cup W) / \Sigma(U) \times \Sigma(W)$. We define

$$
G(S ; U, W)=\sum_{\sigma \in X(U, W)} e\left(S_{\sigma}^{\prime}\right) \otimes e\left(S_{\sigma}^{\prime \prime}\right) \in S_{p} E \otimes S_{q} E
$$

Note that $G(S ; U, W)$ does not depend on a particular set of coset representatives. We set $G(S ; W)=G(S ;\{1, \ldots, p\}, W)$. Let T be a filling of λ with rows T_{1}, \ldots, T_{l}; pick r with $T_{r}=\left(a_{1}, \ldots, a_{p}\right)=S^{\prime}$ and $T_{r+1}=\left(a_{p+1}, \ldots, a_{p+q}\right)=S^{\prime \prime}$. We define $C_{\lambda}(E)$ to be a submodule of $S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E$ spanned by elements of the form

$$
\begin{equation*}
e\left(T_{1}\right) \otimes \cdots \otimes e\left(T_{r-1}\right) \otimes G(S ; W) \otimes e\left(T_{r+2}\right) \otimes \cdots \otimes e\left(T_{l}\right) \tag{2}
\end{equation*}
$$

for all possible T, r and nonempty W.
We can now formulate our main result.
Theorem. Let K be a field of characteristic 0 .
(1) $\tilde{E}(\lambda)=\operatorname{Im} \Phi_{\lambda} \cong S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E / \operatorname{Ker} \Phi_{\lambda}$ is an irreducible $\mathrm{GL}(m)$-module of highest weight λ if $l(\lambda) \leq m(\tilde{E}(\lambda)=0$ otherwise).
(2) The set $\{D(T) \mid T$ tableau $\}$ forms a basis of $\tilde{E}(\lambda)$ over K.
(3) $\operatorname{Ker} \Phi_{\lambda}=C_{\lambda}(E)$.

Note first that $C_{\lambda}(E) \subset \operatorname{Ker} \Phi_{\lambda}$ by Corollary 1. It is clear that, in order to prove
(2) and (3) of the Theorem, it is enough to show (I) and (II):
(I) the set $\left\{\Phi_{\lambda}(e(T))=D(T) \mid T\right.$ tableau $\}$ is linearly independent over K;
(II) the set $\left\{\bar{e}(T):=e(T) \bmod C_{\lambda}(E) \mid T\right.$ tableau $\}$ linearly spans the quotient $S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E / C_{\lambda}(E)$.

Proof of (I)

We order variables $\left\{Z_{i, a}\right\}(1 \leq i \leq l(\lambda), a \in A)$ by declaring $Z_{i, a}<Z_{j, b}$ if $i<$ j or $i=j$ and $a<b$. We order monomials in the $Z_{i, a}$ by the lexicographic ordering compatible with this ordering on the $Z_{i, a}$. Let S be a one-row filling with entries $\left(a_{1}, \ldots, a_{p}\right)=\left(c_{1}^{n_{1}}, \ldots, c_{s}^{n_{s}}\right)$, where $c_{i} \neq c_{j}$ for $i \neq j$. Then $D(S)=$
$n_{1}!\cdots n_{s}!Z_{1, a_{1}} \cdots Z_{p, a_{p}}+$ higher terms. This extends to any tableau T. In fact, we have

$$
D(T)=n \prod_{1 \leq i \leq \lambda_{1}} \prod_{a \in T_{i}^{\prime}} Z_{i, a}+\text { higher terms }
$$

where $T_{1}^{\prime}, T_{2}^{\prime}, \ldots$ are columns of T and $0 \neq n \in \mathbf{Z}$. The leading term of $D(T)$ is always nonzero, since in each column of T a given entry can appear at most once.

Let T and T^{\prime} be tableaux with entries in A. Consider the first column where T and T^{\prime} differ and then consider the first box (from top) in this column where they differ. If T has entry a in the box and T^{\prime} has entry a^{\prime} in the box and if $a<$ a^{\prime}, then we declare $T<T^{\prime}$. It is clear that this is a total ordering on tableaux of shape λ. Moreover, it is obvious that if $T<T^{\prime}$ then the leading term of $D(T)$ is smaller than all the terms of $D\left(T^{\prime}\right)$. This proves (I).

In order to prove (II) we need to single out some elements from $C_{\lambda}(E)$. It will be convenient to use the notation

$$
G\binom{a_{1} \cdots a_{s} a_{s+1} \cdots a_{p}}{\underline{a_{p+1} \cdots a_{p+1} \cdots}}
$$

for $G(S ; U, W)$, where $S=\left(a_{1}, \ldots, a_{p+q}\right), U=\{s+1, \ldots, p\}$, and $W=$ $\{p+1, \ldots, p+t\}$.

Proposition 3. If $s<t \leq q \leq p$ and if T is a filling of λ with $T_{r}=\left(a_{1}, \ldots, a_{p}\right)$ and $T_{r+1}=\left(a_{p+1}, \ldots, a_{p+q}\right)$ for some r, then the element

$$
K_{s, t}^{r}(T)=e\left(T_{1}\right) \otimes \cdots \otimes e\left(T_{r-1}\right) \otimes G\binom{a_{1} \cdots a_{s} a_{s+1} \cdots a_{p}}{\underline{a_{p+1} \cdots a_{p+1} \cdots}} \otimes e\left(T_{r+2}\right) \otimes \cdots \otimes e\left(T_{l}\right)
$$

belongs to $C_{\lambda}(E)$.
In order to prove this we now describe a specific set $X(U, W)$ of left coset representatives of $\Sigma(U \cup W) / \Sigma(U) \times \Sigma(W)$ for $U \subset\{1, \ldots, p\}$ and $W \subset$ $\{p+1, \ldots, p+q\}$. For $B \subset U$ and $C \subset W$ with $\#(B)=\#(C)$, we denote by $\tau(B, C)$ a permutation of order 2 in $\Sigma(U \cup W)$ that interchanges B and C, preserving the order of elements, and leaves all the remaining elements of $\{1, \ldots, p+q\}$ unchanged. We define $X(U, W)$ to be the set of all such $\tau(B, C)$. One can easily check that $X(U, W)$ is indeed a set of left coset representatives of $\Sigma(U \cup W) / \Sigma(U) \times \Sigma(W)$.

We record now a simple fact whose proof is straightforward.
Lemma 1. Let $U=\{s+1, \ldots, p\}$ and $W=\{p+1, \ldots, p+t\}$. Then we have $X(\{s\} \cup U, W)=X(U, W) \amalg Z(U, W)$, where $Z(U, W)=\{\tau(B, C) \mid s \in B$, $B \subset\{s\} \cup U, C \subset W\}$. The set $Z(U, W)$ is in a one-to-one correspondence with the set $X(\{p+1\} \cup U, W \backslash\{p+1\})$ by the correspondence $\tau(B, C) \leftrightarrow \tau\left(B^{\prime}, C^{\prime}\right)$ defined by the following relations:
(1) if $p+1 \in C$ then set $B^{\prime}=B \backslash\{s\}, C^{\prime}=C \backslash\{p+1\}$, and $\tau(B, C)=$ $\tau\left(B^{\prime}, C^{\prime}\right)(s, p+1)$;
(2) if $p+1 \notin C$ then set $B^{\prime}=\{p+1\} \cup\{B \backslash\{s\}\}, C^{\prime}=C$, and $\tau(B, C)=$ $(s, p+1) \tau\left(B^{\prime}, C^{\prime}\right)(s, p+1)$.

Lemma 2. We have the identity

$$
\begin{equation*}
G\binom{a_{1} \cdots a_{s-1} a_{s} \cdots a_{p}}{\underline{a_{p+1} \cdots a_{p+t} \cdots}}=G\binom{a_{1} \cdots a_{s} a_{s+1} \cdots a_{p}}{\underline{a_{p+1} \cdots a_{p+t} \cdots}}+G\binom{a_{1} \cdots a_{s-1}, a_{s+1} \cdots a_{p+1}}{\underline{a_{p+2} \cdots a_{p+t} a_{s} \cdots}} . \tag{3}
\end{equation*}
$$

Proof. By Lemma 1, the left side of identity (3) is equal to

$$
\begin{equation*}
\sum_{\sigma \in X(U, W) \amalg Z(U, W)} e\left(S_{\sigma}^{\prime}\right) \otimes e\left(S_{\sigma}^{\prime \prime}\right) . \tag{4}
\end{equation*}
$$

Obviously, the terms in (4) corresponding to $X(U, W)$ give the first summand in (3). By the explicit bijection between $X(\{p+1\} \cup U, W \backslash\{p+1\})$ and $Z(U, W)$ from Lemma 1, the terms in (4) corresponding to $Z(U, W)$ give the other summand in (3).

Proof of Proposition 3. Let $s<t$ and write

$$
G_{s, t}(S)=G\binom{a_{1} \cdots a_{s} a_{s+1} \cdots a_{p}}{\underline{a_{p+1} \cdots a_{p+t} \cdots}} .
$$

It is enough to show that each $G_{s, t}(S)$ can be expressed as a linear combination of the $G(P ; V)$ for some $P \in A^{p+q}$ and $\emptyset \neq V \subset\{p+1, \ldots, p+q\}$. This follows by induction on s using Lemma 2.

Proof of (II)

Consider the set \mathcal{F}_{λ} of all fillings of λ with entries in A. For $T \in \mathcal{F}_{\lambda}$, let $T_{i, a}$ be the number of times the elements smaller than or equal to a appear as entries in the first i rows of T. For another $T^{\prime} \in \mathcal{F}_{\lambda}$ we say that $T^{\prime} \prec T$ if $T_{i, a}^{\prime} \geq T_{i, a}$ for every $1 \leq i \leq l(\lambda), a \in A$. Let $\mathcal{F}_{\lambda}^{\prime}$ be a subset of \mathcal{F}_{λ} of all fillings T whose each row is weakly increasing. Then the relation \prec restricted to $\mathcal{F}_{\lambda}^{\prime}$ defines an ordering on $\mathcal{F}_{\lambda}^{\prime}$. (Note that, for any $T \in \mathcal{F}_{\lambda}$, there exists $T^{\prime} \in \mathcal{F}_{\lambda}^{\prime}$ such that $T_{i, a}=T_{i, a}^{\prime}$ for any i and a, and $e(T)=e\left(T^{\prime}\right)$.)

We now prove that if $T \in \mathcal{F}_{\lambda}^{\prime}$ is not a tableau then we have a relation of the form

$$
\begin{equation*}
\bar{e}(T)=\sum_{T^{\prime} \prec T} c_{T^{\prime}, T} \bar{e}\left(T^{\prime}\right) \tag{5}
\end{equation*}
$$

in $S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E / C_{\lambda}(E)$, where $T^{\prime} \in \mathcal{F}_{\lambda}^{\prime}$ and $c_{T^{\prime}, T} \in \mathbf{Z}$. Since $\mathcal{F}_{\lambda}^{\prime}$ is finite, this leads to a proof of (II) because the first element in $\mathcal{F}_{\lambda}^{\prime}$ with respect to \prec is a tableau.

If $T \in \mathcal{F}_{\lambda}^{\prime}$ and T is not a tableau then there are two consecutive rows, $T_{r}=$ $\left(a_{1}, \ldots, a_{p}\right)$ and $T_{r+1}=\left(a_{p+1}, \ldots, a_{p+q}\right)$, and $s \leq p$ with $a_{i}<a_{p+i}$ for $1 \leq i \leq$ $s-1$ and $a_{p+1} \leq \cdots \leq a_{p+s} \leq a_{s} \leq \cdots \leq a_{p}$. If $S=\left(a_{1}, \ldots, a_{p+q}\right)$ then, by Proposition 3, the element $K_{s-1, s}^{r}(T)$ belongs to $C_{\lambda}(E)$.

If $a_{s}>a_{p+s}$ then this allows us to express $\bar{e}(T)$ in the form of (5), since for each summand $\bar{e}\left(T^{\prime}\right)$ with $T^{\prime} \neq T$, the filling T^{\prime} in $K_{s-1, s}^{r}(T)$ contains an entry $a_{p+j}(1 \leq j \leq s)$ in the r th row and hence $T^{\prime} \prec T$ because $a_{p+j}<a_{i}$ for any $j \leq s$ and $i \geq s$.

If $a_{s}=a_{p+s}$ then several summands in $K_{s-1, s}^{r}(T)$ can be equal to $\bar{e}(T)$. Dividing by a nonzero integer coefficient leads again to a relation of type (5).

Proof of (1) of the Theorem. Note that $\tilde{E}(\lambda)$ has a highest weight vector $v_{\lambda}=$ $e\left(T_{0}\right)$, where T_{0} is a filling of λ with all the entries in the j th row equal to $j, 1 \leq$ $j \leq l(\lambda)$. Let E^{\prime} be a GL (m)-submodule of $\tilde{E}(\lambda)$ generated by v_{λ}. Then E^{\prime} is an irreducible $\mathrm{GL}(m)$-module with highest weight λ; that is, $E^{\prime} \cong E(\lambda)$ by (i) of the Introduction. By (ii) of the Introduction and (2) of the Theorem, the characters of E^{\prime} and $\tilde{E}(\lambda)$ are the same so that $E^{\prime}=\tilde{E}(\lambda)$. By (2) of the Theorem, we obtain $\tilde{E}(\lambda)=0$ if $l(\lambda)>m$.

4. Another Set of Generators for $\operatorname{Ker} \boldsymbol{\Phi}_{\lambda}$

We defined the set $X(U, W)$ for $U \subset\{1, \ldots, p\}$ and $W \subset\{p+1, \ldots, p+q\}$ just after the formulation of Proposition 3. We now set $X(W)=X(\{1, \ldots, p\}, W)$. Note that $\tau(\emptyset, \emptyset)=\operatorname{Id} \in X(W)$. Let $Y(W)$ be a subset of $X(W)$ of all $\tau(B, C)$ with $\#(B)=\#(W)$. Note that $Y(\emptyset)=\{\mathrm{Id}\}$ and that $X(W)=\bigcup Y(C)$, with C running over all subsets of W (including $C=\emptyset$).

For $S \in A^{p+q}$ we define

$$
H(S ; W)=e\left(S^{\prime}\right) \otimes e\left(S^{\prime \prime}\right)-(-1)^{\#(W)} \sum_{\sigma \in Y(W)} e\left(S_{\sigma}^{\prime}\right) \otimes e\left(S_{\sigma}^{\prime \prime}\right),
$$

an element of $S_{p} E \otimes S_{q} E$. For T a filling of λ with $T_{r}=\left(a_{1}, \ldots, a_{p}\right)$ and $T_{r+1}=$ $\left(a_{p+1}, \ldots, a_{p+q}\right)$, we define $B_{\lambda}(E)$ to be a submodule of $S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E$ spanned by elements of the form

$$
\begin{equation*}
e\left(T_{1}\right) \otimes \cdots \otimes e\left(T_{r-1}\right) \otimes H(S ; W) \otimes e\left(T_{r+2}\right) \otimes \cdots \otimes e\left(T_{l}\right) \tag{6}
\end{equation*}
$$

for all possible T, r, and W.

Proposition 4. If $\#(W)=n$ then
(1) $G(S ; W)=\sum_{j=1}^{n}(-1)^{j+1} \sum_{\#(C)=j} H(S ; C)$ and
(2) $H(S ; W)=\sum_{j=1}^{n}(-1)^{j+1} \sum_{\#(C)=j} G(S ; C)$,
with C running over all subsets of W.
Corollary 2. $\quad B_{\lambda}(E)=C_{\lambda}(E)=\operatorname{Ker} \Phi_{\lambda}$.

Corollary 3. If $\#(W)=n$ then

$$
\begin{equation*}
D\left(S^{\prime}\right) D\left(S^{\prime \prime}\right)=(-1)^{n} \sum_{\sigma \in Y(W)} D\left(S_{\sigma}^{\prime}\right) D\left(S_{\sigma}^{\prime \prime}\right) \tag{7}
\end{equation*}
$$

Proof of Proposition 4. Since $X(W)=\bigcup_{j} \bigcup_{\#(C)=j} Y(C)$ for $C \subset W$, we obtain

$$
\begin{aligned}
G(S ; W) & =\sum_{j=0}^{n} \sum_{\sigma \in Y(C), \#(C)=j} e\left(S_{\sigma}^{\prime}\right) \otimes e\left(S_{\sigma}^{\prime \prime}\right) \\
& =\sum_{j=0}^{n} \sum_{\#(C)=j}(-1)^{j+1}\left(H(S ; C)-e\left(S^{\prime}\right) \otimes e\left(S^{\prime \prime}\right)\right) \\
& =\sum_{j=0}^{n}(-1)^{j+1} \sum_{\#(C)=j} H(S ; C)+\left(\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\right) e\left(S^{\prime}\right) \otimes e\left(S^{\prime \prime}\right) \\
& =\sum_{j=1}^{n}(-1)^{j+1} \sum_{\#(C)=j} H(S ; C)
\end{aligned}
$$

because $H(S ; \emptyset)=0$.
The second identity is obtained by inverting the first.

5. Representations of Symmetric Groups

The construction of representations $\tilde{E}(\lambda)$ leads to a construction of dual Specht modules of symmetric groups.

Let λ be a partition of m. We define $\tilde{S}(\lambda)$ to be a linear span of the $D(T)$, where T varies over fillings of λ with all entries distinct; $\tilde{S}(\lambda)$ is a weight space of $\tilde{E}(\lambda)$ of weight

$$
\underbrace{(1, \ldots, 1)}_{m} .
$$

The symmetric group Σ_{m} on $A=\{1, \ldots, m\}$ can be identified with a subgroup of $\mathrm{GL}(m)$ by $\alpha \leftrightarrow \sum_{a \in A} E_{\alpha(a), a}$, where $E_{a, b}$ is the elementary matrix with 1 in the a th row and b th column and with all other entries 0 . The explicit formulas in Section 3 show that $\alpha Z_{i, a}=Z_{i, \alpha(a)}$ and $\alpha D(T)=D(\alpha(T))$ for $\alpha \in \Sigma_{m}, a \in A$, and T a filling of λ. Hence $\tilde{S}(\lambda)$ becomes a Σ_{m}-module.

In a similar way, we define a subspace $M(\lambda)$ of $S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E$ as a linear span of the $e(T)$ with T a filling with distinct entries in A. Again, $M(\lambda)$ is a Σ_{m}-module and, in fact, is isomorphic to a module induced from the trivial representation of $\Sigma_{\lambda_{1}} \times \cdots \times \Sigma_{\lambda_{l}}$ to Σ_{m}. The map

$$
\Phi_{\lambda}: S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E \rightarrow \bigwedge(Z)
$$

induces a $\operatorname{map} \phi_{\lambda}: M(\lambda) \rightarrow \tilde{S}(\lambda)$ of Σ_{m}-modules, $\phi_{\lambda}(e(T))=D(T)$ for T a filling with distinct entries.

Proposition 5. Let K be a field of characteristic 0 .
(1) $\tilde{S}(\lambda)=\operatorname{Im} \phi_{\lambda} \cong M(\lambda) / \operatorname{Ker} \phi_{\lambda}$ is an irreducible Σ_{m}-module.
(2) The set $\{D(T) \mid T$ standard tableau $\}$ forms a basis of $\tilde{S}(\lambda)$ over K. (We recall that, classically, a tableau is called standard if all its entries are distinct.)
(3) $\operatorname{Ker} \phi_{\lambda}$ is generated by elements of the form (2), where T varies over all fillings of λ with distinct entries and for all possible r and nonempty W; moreover, $\operatorname{Ker} \phi_{\lambda}$ is also generated by elements of the form (6) for all T with distinct entries and all possible r and W.

Proof. The same method as in the proofs of (I) and (II) and in Section 4 prove (2) and (3). The irreducibility of $\tilde{S}(\lambda)$ can be proved by standard arguments in the representation theory of symmetric groups (see e.g. [6] or [3]).

Note that the map $\phi_{\lambda}: M(\lambda) \rightarrow \tilde{S}(\lambda)$ can be identified with the map $\beta: M^{\lambda} \rightarrow$ \tilde{S}^{λ} (from [3, p. 96]) in view of Proposition 5(3) and [3, Chap. 7, Ex. 14]. Hence $\tilde{S}(\lambda) \cong \tilde{S}^{\lambda}$ is the Σ_{m}-module obtained by the construction dual to that of the Specht module (see [3, Sec. 7.4]).

A careful examination of proofs of (I) and (II) reveals that if $\tilde{S}(\lambda)$ is considered over \mathbf{Z} then (2) and (3) of Proposition 5 remain valid.

6. Comments and Acknowledgments

(1) Identities (7) are counterparts of Sylvester and Plücker relations for minors of a matrix. This type of identities was discussed in more general context by Towber in [9] and [10].
(2) If char $K=0$ then the module $S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E / B_{\lambda}(E)$ is Towber's module $\bigvee_{\lambda} E$; that it is irreducible of highest weight λ is the content of [3, Chap. 8, Ex. 10].
(3) If char $K=0$ then the module $S_{\lambda_{1}} E \otimes \cdots \otimes S_{\lambda_{l}} E / C_{\lambda}(E)$ is the co-Schur module in the terminology of Akin, Buchsbaum, and Weyman [1]. The relation \prec was used in [1].
(4) One can prove that $\operatorname{Ker} \Phi_{\lambda}$ is generated by elements corresponding to $G(S ; W)$ with $\#(W)=1$; the same applies to $\operatorname{Ker} \phi_{\lambda}$.
(5) If char $K \neq 0$ then the map Φ_{λ} can be modified by replacing symmetric powers by divided powers and changing the $D(T)$ by dividing them by suitable integers in order to obtain modules considered in [1].
(6) After obtaining the results presented in this paper, I learned that functions $D(S)$ were considered in [2] and [5] in the context of invariant theory. I would like to thank S. Fomin for referring me to one of those papers.
(7) I would like to thank a referee who pointed out that the irreducibility of $\tilde{E}(\lambda)$ and (2) of the Theorem were obtained independently by Sergeev in a recent preprint [8]. His construction leads to a basis for $\tilde{E}(\lambda)$ that differs from $\{D(T)\}$ by the constant $\mu_{1}!\cdots \mu_{s}!$, where μ is the conjugate of λ. Sergeev's methods are different from mine and provide more general result describing irreducible modules over the sum of general linear Lie superalgebras $\mathrm{gl}(U) \oplus \operatorname{gl}(V)$ acting on the symmetric superalgebra $S(U \otimes V)$, where U and V are superspaces. He uses in his proof the Schur-Weyl duality for Σ_{k} and $\mathrm{gl}(V)$ acting on $V^{\otimes k}$.

References

[1] K. Akin, D. A. Buchsbaum, and J. Weyman, Schur functors and Schur complexes, Adv. Math. 44 (1982), 207-278.
[2] P. Doubilet and G.-C. Rota, Skew-symmetric invariant theory, Adv. Math. 21 (1976), 196-201.
[3] W. Fulton, Young tableaux. With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, U.K., 1997.
[4] J. A. Green, Polynomial representations of GL_{n}, Lecture Notes in Math., 830, Springer-Verlag, New York, 1980.
[5] F. D. Grosshans, G.-C. Rota, and J. A. Stein, Invariant theory and superalgebras, CBMS Regional Conf. Ser. in Math., 69, Amer. Math. Soc., Providence, RI, 1987.
[6] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer-Verlag, Berlin, 1978.
[7] T. Józefiak, Tensor representations of general linear Lie superalgebras (in preparation).
[8] A. Sergeev, An analog of the classical invariant theory for Lie superalgebras. II, preprint.
[9] J. Towber, Two new functors from modules to algebras, J. Algebra 47 (1977), 80-104.
[10] ——, Young symmetry, the flag manifold and representations of $\mathrm{GL}(n)$, J. Algebra 61 (1979), 414-462.

Mathematical Reviews
416 Fourth Street
Ann Arbor, MI 48107
tsj@ams.org

