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1. Introduction

LetE be a finite-dimensional vector space over a fieldK. Fulton [3] has presented
an elegant description of irreducible GL(E)-modules whenK is of characteristic
0, a treatment that combines the classical approach in terms of products of deter-
minants (see [4] for details and historical remarks) with a functorial approach. We
briefly recall his construction.

Let {e1, . . . , em} be a basis forE, let A = {1, . . . , m}, and letλ be a partition.
Consider a setX = {Xi,a | 1 ≤ i ≤ l(λ), a ∈ A} of indeterminates overK. For
ap-tupleS = (a1, . . . , ap), ai ∈ A, defineDS = det(Xi,aj ), 1 ≤ i, j ≤ p. The
DS are elements of the polynomial ringK[X] in theXi,a. An action of GL(m) on
K[X] is determined byg ·Xi,a =

∑
b∈A gb,aXi,b for g = (gb,c)∈GL(m).

For eachS as just described we writeeS = ea1 ∧ · · · ∧ eap for the correspond-
ing element of the exterior power

∧p
E. Let T be a filling ofλ with entries from

A. We associate withT an elementeT ∈
∧µ1 E ⊗ · · · ⊗∧µh E, whereµ is the

conjugate ofλ, by definingeT = eT1⊗ · · · ⊗ eTh for T1, . . . , Th columns ofT .
We have a map of GL(m)-modulesϕλ :

∧µ1 E ⊗ · · · ⊗∧µh E → K[X] with
ϕλ(eT ) = DT := DT1 · · ·DTh for each fillingT of λ.

The results we would like to quote from [3, Chap. 8] are as follows. If charK =
0, then:

(i) E(λ) := Imϕλ ∼=
∧µ1 E ⊗ · · · ⊗∧µh E/Kerϕλ is an irreducible GL(m)-

module of highest weightλ if l(λ) ≤ m;
(ii) the set{DT | T tableau} is a basis ofE(λ);
(iii) Ker ϕλ is generated by explicitly described elements that correspond to Syl-

vester’s identities among theDT .

In this paper we present a similar approach with exterior powers replaced
by symmetric powers. It requires considering exterior algebra indeterminates
instead of polynomial indeterminates and leads to a new construction of irre-
ducible GL(m)-modules. A combination of both approaches can be used to con-
struct in the same vein tensor representations of general linear Lie superalgebras
(see [6]).
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2. Determinants in Exterior Algebras

LetZ = {Zi,a | 1≤ i ≤ λ1, a ∈A} be a set of exterior indeterminates; that is, let
Z2
i,a = 0 andZi,aZj,b = −Zj,bZi,a if (i, a) 6= (j, b) and let theZi,a be free gen-

erators of the exterior algebra
∧
(Z) overK. For k-tuplesR = (x1, . . . , xk), 1≤

xi ≤ λ1, andS = (a1, . . . , ak), ai ∈A, we define a polynomial in theZi,a by the
formula

D(R ‖ S) =
∑
σ∈6k

(sgnσ)Zxσ(1),a1 · · ·Zxσ(k),ak ,

where6k is the symmetric group on{1, . . . , k}. Note that fork = 1 we have

D(R ‖ S) = D(x1‖ a1) = Zx1,a1.

For σ ∈ 6k we writeSσ = (aσ(1), . . . , aσ(k)), and similarly forR. If a parti-
tion k = p + q is fixed we writeS ′ = (a1, . . . , ap), S

′′ = (ap+1, . . . , ak) and
similarly for R. This means, in particular, thatS ′σ = (aσ(1), . . . , aσ(p)) andS ′′σ =
(aσ(p+1), . . . , aσ(k)) for σ ∈6k.

Here are some basic properties of theD(R ‖ S).
Proposition 1.

(1) D(Rσ ‖ S) = (sgnσ)D(R ‖ S) for σ ∈6k.

(2) D(R ‖ Sσ ) = D(R ‖ S) for σ ∈6k.

(3) First component Laplace expansion:

D(R ‖ S) =
∑
τ

(sgnτ)D(R ′τ ‖ S ′σ )D(R ′′τ ‖ S ′′σ ).

(4) Second component Laplace expansion:

D(R ‖ S) = (sgnτ)
∑
σ

D(R ′τ ‖ S ′σ )D(R ′′τ ‖ S ′′σ ).

In (3) and (4) the sums are over a complete set of left coset representatives of
6k/6p ×6q.

Proof. We will prove (2); a proof of (1) is similar. It is enough to show (2) for
σ = (i, i +1); then

D(R ‖ Sσ ) =
∑
α

(sgnα)Zxα(1),a1 · · ·Zxα(i),ai+1Zxα(i+1),ai · · ·Zxα(k),ak .

Replacingα by τ = α(i, i +1) transforms this into∑
τ

(sgnα)Zxτ(1),a1 · · ·Zxτ(i+1),ai+1Zxτ(i),ai · · ·Zxτ(k),ak .

Since sgnτ = −sgnα, it follows that switching theith and(i+1)th terms in each
monomial leads toD(R ‖ S).

Note that (3) and (4) are valid for any set of left coset representatives if they
are valid for one such a set (thanks to properties (1) and (2)). Property (4) can be
proved by induction onp for the following set of representatives: for each subsetŜ
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of S of cardinalityp consider a permutationσŜ that sends(1, . . . , k) to (Ŝ, S \ Ŝ ),
whereŜ andS \ Ŝ are arranged in an increasing order. The set{σŜ} with Ŝ run-
ning over allp-subsets ofS is a set of left coset representatives of6k/6p ×6q.

A proof for property (3) is similar, withS replaced byR.

We do not provide a detailed proof for (3) and (4) here because it is similar to a
proof of the classical Laplace expansion for determinants.

If R = (1, . . . , k) then we denoteD(R ‖ S) simply byD(S) in the sequel.

Proposition 2. Let p ≥ q and k = p + q. LetW ⊂ {p + 1, . . . , k} and de-
note {1, . . . , p} by U. Moreover, letX(W ) be a set of left coset representatives
of 6(U ∪ W)/6(U) × 6(W ). Then, for anyS ∈ Ak andR ⊂ {1, . . . , p} with
#(R) = q, we have ∑

σ∈X(W )
D(S ′σ )D(R ‖ S ′′σ ) = 0. (1)

Corollary 1. With the notation of Proposition 1, we have the identity∑
σ∈X(W )

D(S ′σ )D(S
′′
σ ) = 0.

Proof of Proposition 2.It is enough to prove identity (1) forW ={p+1, . . . , p+i}
and for any 1≤ i ≤ q, owing to property (2) of Proposition 1.

If i = q then, by (1) and (4) of Proposition 1, we have

0= D(U ∪ R ‖ S) =
∑

σ∈X(W )
D(S ′σ )D(R ‖ S ′′σ ) = 0.

Now let i < q. For any σ ∈ X(W ) we haveS ′′σ = S̃ ′′σ ∪ Ŝ, where Ŝ =
(p + i +1, . . . , k). Using Proposition 1(3) forD(R ‖ S̃ ′′σ ∪ Ŝ ), we obtain∑
σ∈X(W )

D(S ′σ )D(R ‖ S ′′σ ) =
∑

σ∈X(W )
D(S ′σ )

(∑
τ

(sgnτ)D(R ′τ ‖ S̃ ′′σ )
)
D(R ′′τ ‖ Ŝ )

=
∑
τ

(sgnτ)

( ∑
σ∈X(W )

D(S ′σ )D(R
′
τ ‖ S̃ ′′σ )

)
D(R ′′τ ‖ Ŝ )

= 0

because the sums in parentheses are zero by the casei = q.

3. Main Results

Let λ be a partition, letT be a filling ofλ with entries inA, and letT1, . . . , Tl be
rows ofT . We writeD(T ) = D(T1) · · ·D(Tl), an element of the exterior algebra∧
(Z) on theZi,a.
We defineẼ(λ) to be a linear span of theD(T ) in

∧
(Z), whereT runs over

all fillings of λ. Then Ẽ(λ) becomes a GL(m)-module by settingg · Zi,a =∑
b∈A gb,aZi,b for g = (gb,c) ∈GL(m) and extending multiplicatively to the en-

tire Ẽ(λ). We have the explicit formula
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g ·D(a1, . . . , ap) =
∑

gb1,a1 · · · gbp,apD(b1, . . . , bp),

the sum over allp-tuples(b1, . . . , bp) fromAp.

For ap-tupleS = (a1, . . . , ap), we writee(S) = ea1 · · · eap ∈ SpE. For a filling
T of λ, we sete(T ) = e(T1)⊗ · · · ⊗ e(Tl)∈ Sλ1E ⊗ · · · ⊗ SλlE. We now have a
map

8λ : Sλ1E ⊗ · · · ⊗ SλlE→
∧
(Z)

such that8λ(e(T )) = D(T ) for any filling T of λ. It is easy to check that8λ is a
map of GL(m)-modules.

A filling T of λ is called atableauif entries along the rows ofT from left to right
are weakly increasing and entries down the columns ofT are strictly increasing.

LetS = (a1, . . . , ap+q), p ≥ q, letU ⊂ {1, . . . , p} andW ⊂ {p+1, . . . , p+q},
and letX(U,W ) be a complete set of left coset representatives of the cosets
6(U ∪W)/6(U)×6(W ). We define

G(S;U,W ) =
∑

σ∈X(U,W )
e(S ′σ )⊗ e(S ′′σ )∈ SpE ⊗ SqE.

Note thatG(S;U,W ) does not depend on a particular set of coset representa-
tives. We setG(S;W) = G(S; {1, . . . , p},W ). Let T be a filling ofλ with rows
T1, . . . , Tl; pick r with Tr = (a1, . . . , ap) = S ′ andTr+1= (ap+1, . . . , ap+q) = S ′′.
We defineCλ(E) to be a submodule ofSλ1E ⊗ · · · ⊗ SλlE spanned by elements
of the form

e(T1)⊗ · · · ⊗ e(Tr−1)⊗G(S;W)⊗ e(Tr+2)⊗ · · · ⊗ e(Tl) (2)

for all possibleT, r and nonemptyW.
We can now formulate our main result.

Theorem. LetK be a field of characteristic0.

(1) Ẽ(λ) = Im8λ
∼= Sλ1E⊗· · ·⊗SλlE/Ker8λ is an irreducibleGL(m)-module

of highest weightλ if l(λ) ≤ m (Ẽ(λ) = 0 otherwise).
(2) The set{D(T ) | T tableau} forms a basis ofẼ(λ) overK.
(3) Ker8λ = Cλ(E).
Note first thatCλ(E) ⊂ Ker8λ by Corollary 1. It is clear that, in order to prove
(2) and (3) of the Theorem, it is enough to show (I) and(II):

(I) the set{8λ(e(T )) = D(T ) | T tableau} is linearly independent overK;
(II) the set{ē(T ) := e(T ) modCλ(E) | T tableau} linearly spans the quotient

Sλ1E ⊗ · · · ⊗ SλlE/Cλ(E).

Proof of (I)

We order variables{Zi,a} (1≤ i ≤ l(λ), a ∈ A) by declaringZi,a < Zj,b if i <
j or i = j anda < b. We order monomials in theZi,a by the lexicographic or-
dering compatible with this ordering on theZi,a. Let S be a one-row filling with
entries(a1, . . . , ap) = (c

n1
1 , . . . , c

ns
s ), whereci 6= cj for i 6= j. ThenD(S) =
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n1! · · · ns! Z1,a1 · · ·Zp,ap + higher terms. This extends to any tableauT . In fact,
we have

D(T ) = n
∏

1≤i≤λ1

∏
a∈T ′i

Zi,a + higher terms,

whereT ′1, T
′

2, . . . are columns ofT and 0 6= n ∈ Z. The leading term ofD(T ) is
always nonzero, since in each column ofT a given entry can appear at most once.

Let T andT ′ be tableaux with entries inA. Consider the first column where
T andT ′ differ and then consider the first box (from top) in this column where
they differ. If T has entrya in the box andT ′ has entrya ′ in the box and ifa <
a ′, then we declareT < T ′. It is clear that this is a total ordering on tableaux of
shapeλ. Moreover, it is obvious that ifT < T ′ then the leading term ofD(T ) is
smaller than all the terms ofD(T ′). This proves (I).

In order to prove(II) we need to single out some elements fromCλ(E). It will
be convenient to use the notation

G
(a1···asas+1···ap
ap+1···ap+t ···

)
for G(S;U,W ), whereS = (a1, . . . , ap+q), U = {s + 1, . . . , p}, andW =
{p +1, . . . , p + t}.
Proposition 3. If s < t ≤ q ≤ p and ifT is a filling of λwithTr = (a1, . . . , ap)

andTr+1 = (ap+1, . . . , ap+q) for somer, then the element

Kr
s,t(T ) = e(T1)⊗ · · · ⊗ e(Tr−1)⊗G

(a1···asas+1···ap
ap+1···ap+t ···

)
⊗ e(Tr+2)⊗ · · · ⊗ e(Tl)

belongs toCλ(E).

In order to prove this we now describe a specific setX(U,W ) of left coset
representatives of6(U ∪ W)/6(U) × 6(W ) for U ⊂ {1, . . . , p} andW ⊂
{p + 1, . . . , p + q}. For B ⊂ U andC ⊂ W with #(B) = #(C), we denote
by τ(B,C) a permutation of order 2 in6(U ∪ W) that interchangesB and
C, preserving the order of elements, and leaves all the remaining elements of
{1, . . . , p + q} unchanged. We defineX(U,W ) to be the set of all suchτ(B,C).
One can easily check thatX(U,W ) is indeed a set of left coset representatives of
6(U ∪W)/6(U)×6(W ).

We record now a simple fact whose proof is straightforward.

Lemma 1. LetU = {s + 1, . . . , p} andW = {p + 1, . . . , p + t}. Then we have
X({s} ∪ U,W ) = X(U,W ) q Z(U,W ), whereZ(U,W ) = {τ(B,C) | s ∈ B,
B ⊂ {s} ∪ U, C ⊂ W }. The setZ(U,W ) is in a one-to-one correspondence with
the setX({p+1} ∪U, W \ {p+1}) by the correspondenceτ(B,C)↔ τ(B ′, C ′)
defined by the following relations:

(1) if p + 1 ∈ C then setB ′ = B \ {s}, C ′ = C \ {p + 1}, and τ(B,C) =
τ(B ′, C ′)(s, p + 1);

(2) if p + 1 /∈ C then setB ′ = {p + 1} ∪ {B \ {s}}, C ′ = C, and τ(B,C) =
(s, p + 1)τ (B ′, C ′)(s, p + 1).
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Lemma 2. We have the identity

G
(a1···as−1as ···ap
ap+1···ap+t ···

)
= G

(a1···asas+1···ap
ap+1···ap+t ···

)
+G

(a1···as−1as+1···ap+1

ap+2···ap+t as ···
)
. (3)

Proof. By Lemma 1, the left side of identity (3) is equal to∑
σ∈X(U,W )qZ(U,W )

e(S ′σ )⊗ e(S ′′σ ). (4)

Obviously, the terms in (4) corresponding toX(U,W ) give the first summand in
(3). By the explicit bijection betweenX({p+1} ∪U, W \ {p+1}) andZ(U,W )
from Lemma 1, the terms in (4) corresponding toZ(U,W ) give the other sum-
mand in (3).

Proof of Proposition 3.Let s < t and write

Gs,t(S) = G
(a1···asas+1···ap
ap+1···ap+t ···

)
.

It is enough to show that eachGs,t(S) can be expressed as a linear combination of
theG(P ;V ) for someP ∈Ap+q and∅ 6= V ⊂ {p + 1, . . . , p + q}. This follows
by induction ons using Lemma 2.

Proof of (II)

Consider the setFλ of all fillings of λ with entries inA. For T ∈ Fλ, let Ti,a be
the number of times the elements smaller than or equal toa appear as entries in
the firsti rows ofT . For anotherT ′ ∈ Fλ we say thatT ′ ≺ T if T ′i,a ≥ Ti,a for
every 1≤ i ≤ l(λ), a ∈A. LetF ′λ be a subset ofFλ of all fillings T whose each
row is weakly increasing. Then the relation≺ restricted toF ′λ defines an ordering
onF ′λ. (Note that, for anyT ∈Fλ, there existsT ′ ∈F ′λ such thatTi,a = T ′i,a for
anyi anda, ande(T ) = e(T ′).)

We now prove that ifT ∈F ′λ is not a tableau then we have a relation of the form

ē(T ) =
∑
T ′≺T

cT ′,T ē(T
′) (5)

in Sλ1E ⊗ · · · ⊗ SλlE/Cλ(E), whereT ′ ∈ F ′λ andcT ′,T ∈ Z. SinceF ′λ is finite,
this leads to a proof of(II) because the first element inF ′λ with respect to≺ is a
tableau.

If T ∈ F ′λ andT is not a tableau then there are two consecutive rows,Tr =
(a1, . . . , ap) andTr+1 = (ap+1, . . . , ap+q), ands ≤ p with ai < ap+i for 1≤ i ≤
s − 1 andap+1 ≤ · · · ≤ ap+s ≤ as ≤ · · · ≤ ap. If S = (a1, . . . , ap+q) then, by
Proposition 3, the elementKr

s−1,s(T ) belongs toCλ(E).
If as > ap+s then this allows us to expressē(T ) in the form of (5), since for

each summand̄e(T ′) with T ′ 6= T, the filling T ′ in Kr
s−1,s(T ) contains an entry

ap+j (1 ≤ j ≤ s) in the rth row and henceT ′ ≺ T becauseap+j < ai for any
j ≤ s andi ≥ s.
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If as = ap+s then several summands inKr
s−1,s(T ) can be equal tōe(T ). Dividing

by a nonzero integer coefficient leads again to a relation of type (5).

Proof of (1) of the Theorem.Note thatẼ(λ) has a highest weight vectorvλ =
e(T0), whereT0 is a filling of λ with all the entries in thej th row equal toj, 1≤
j ≤ l(λ). LetE ′ be a GL(m)-submodule ofẼ(λ) generated byvλ. ThenE ′ is an
irreducible GL(m)-module with highest weightλ; that is,E ′ ∼= E(λ) by (i) of the
Introduction. By (ii) of the Introduction and (2) of the Theorem, the characters of
E ′ andẼ(λ) are the same so thatE ′ = Ẽ(λ). By (2) of the Theorem, we obtain
Ẽ(λ) = 0 if l(λ) > m.

4. Another Set of Generators for Ker888λλλ

We defined the setX(U,W ) for U ⊂ {1, . . . , p} andW ⊂ {p +1, . . . , p + q} just
after the formulation of Proposition 3. We now setX(W ) = X({1, . . . , p},W ).
Note thatτ(∅,∅) = Id ∈ X(W ). Let Y(W ) be a subset ofX(W ) of all τ(B,C)
with #(B) = #(W ). Note thatY(∅) = {Id} and thatX(W ) = ⋃

Y(C), with C
running over all subsets ofW (includingC = ∅).

ForS ∈Ap+q we define

H(S;W) = e(S ′)⊗ e(S ′′)− (−1)#(W )
∑

σ∈Y(W )
e(S ′σ )⊗ e(S ′′σ ),

an element ofSpE ⊗ SqE. ForT a filling of λ with Tr = (a1, . . . , ap) andTr+1=
(ap+1, . . . , ap+q),we defineBλ(E) to be a submodule ofSλ1E⊗· · ·⊗SλlE spanned
by elements of the form

e(T1)⊗ · · · ⊗ e(Tr−1)⊗H(S;W)⊗ e(Tr+2)⊗ · · · ⊗ e(Tl) (6)

for all possibleT, r, andW.

Proposition 4. If #(W ) = n then

(1) G(S;W) =∑n
j=1(−1)j+1∑

#(C)=j H(S;C) and
(2) H(S;W) =∑n

j=1(−1)j+1∑
#(C)=j G(S;C),

withC running over all subsets ofW.

Corollary 2. Bλ(E) = Cλ(E) = Ker8λ.

Corollary 3. If #(W ) = n then

D(S ′)D(S ′′) = (−1)n
∑

σ∈Y(W )
D(S ′σ )D(S

′′
σ ). (7)
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Proof of Proposition 4.SinceX(W ) =⋃j

⋃
#(C)=j Y(C) for C ⊂ W, we obtain

G(S;W) =
n∑

j=0

∑
σ∈Y(C),#(C)=j

e(S ′σ )⊗ e(S ′′σ )

=
n∑

j=0

∑
#(C)=j

(−1)j+1(H(S;C)− e(S ′)⊗ e(S ′′))

=
n∑

j=0

(−1)j+1
∑

#(C)=j
H(S;C)+

( n∑
j=0

(−1)j
(
n

j

))
e(S ′)⊗ e(S ′′)

=
n∑
j=1

(−1)j+1
∑

#(C)=j
H(S;C)

becauseH(S; ∅) = 0.
The second identity is obtained by inverting the first.

5. Representations of Symmetric Groups

The construction of representationsẼ(λ) leads to a construction of dual Specht
modules of symmetric groups.

Letλ be a partition ofm. We defineS̃(λ) to be a linear span of theD(T ),where
T varies over fillings ofλ with all entries distinct;̃S(λ) is a weight space of̃E(λ)
of weight

(1, . . . ,1)︸ ︷︷ ︸
m

.

The symmetric group6m onA = {1, . . . , m} can be identified with a subgroup of
GL(m) by α ↔∑

a∈A Eα(a),a, whereEa,b is the elementary matrix with 1 in the
ath row andbth column and with all other entries 0. The explicit formulas in Sec-
tion 3 show thatαZi,a = Zi,α(a) andαD(T ) = D(α(T )) for α ∈6m, a ∈A, and
T a filling of λ. HenceS̃(λ) becomes a6m-module.

In a similar way, we define a subspaceM(λ) of Sλ1E ⊗ · · · ⊗ SλlE as a lin-
ear span of thee(T ) with T a filling with distinct entries inA. Again,M(λ) is a
6m-module and, in fact, is isomorphic to a module induced from the trivial rep-
resentation of6λ1 × · · · ×6λl to6m. The map

8λ : Sλ1E ⊗ · · · ⊗ SλlE→
∧
(Z)

induces a mapφλ : M(λ)→ S̃(λ) of6m-modules,φλ(e(T )) = D(T ) for T a fill-
ing with distinct entries.

Proposition 5. LetK be a field of characteristic0.

(1) S̃(λ) = Imφλ ∼= M(λ)/Kerφλ is an irreducible6m-module.
(2) The set{D(T ) | T standard tableau} forms a basis ofS̃(λ) overK. (We re-

call that, classically, a tableau is called standard if all its entries are distinct.)
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(3) Kerφλ is generated by elements of the form(2),whereT varies over all fillings
of λ with distinct entries and for all possibler and nonemptyW ; moreover,
Kerφλ is also generated by elements of the form(6) for all T with distinct
entries and all possibler andW.

Proof. The same method as in the proofs of (I) and(II) and in Section 4 prove
(2) and (3). The irreducibility of̃S(λ) can be proved by standard arguments in the
representation theory of symmetric groups (see e.g. [6] or [3]).

Note that the mapφλ : M(λ) → S̃(λ) can be identified with the mapβ : Mλ →
S̃ λ (from [3, p. 96]) in view of Proposition 5(3) and [3, Chap. 7, Ex. 14]. Hence
S̃(λ) ∼= S̃ λ is the6m-module obtained by the construction dual to that of the
Specht module (see [3, Sec. 7.4]).

A careful examination of proofs of (I) and(II) reveals that ifS̃(λ) is considered
overZ then (2) and (3) of Proposition 5 remain valid.
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(4) One can prove that Ker8λ is generated by elements corresponding to
G(S;W) with #(W ) = 1; the same applies to Kerφλ.

(5) If charK 6= 0 then the map8λ can be modified by replacing symmetric
powers by divided powers and changing theD(T ) by dividing them by suitable
integers in order to obtain modules considered in [1].

(6) After obtaining the results presented in this paper, I learned that functions
D(S) were considered in [2] and [5] in the context of invariant theory. I would
like to thank S. Fomin for referring me to one of those papers.

(7) I would like to thank a referee who pointed out that the irreducibility of
Ẽ(λ) and (2) of the Theorem were obtained independently by Sergeev in a re-
cent preprint [8]. His construction leads to a basis forẼ(λ) that differs from
{D(T )} by the constantµ1! · · ·µs!, whereµ is the conjugate ofλ. Sergeev’s
methods are different from mine and provide more general result describing irre-
ducible modules over the sum of general linear Lie superalgebras gl(U)⊕ gl(V )
acting on the symmetric superalgebraS(U ⊗ V ), whereU andV are super-
spaces. He uses in his proof the Schur–Weyl duality for6k and gl(V ) acting
onV ⊗k.
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