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1. Introduction

The purpose of this paper is to provide a characterization of solvable linear alge-
braic groups in terms of a geometric property of representations. Representations
with a related property played an important role in the proof of the equivariant
Riemann—Roch theorem [EG2]. In that paper, we constructed representations
with that property (which we call freely good) for the group of upper triangular
matrices in GL,. We noted that it seemed unlikely that such representations exist
for arbitrary groups; the main result of this paper implies that they do not.

To state our results, we need some definitions. A representdtioina linear
algebraic grougts is said to begood(resp freely goog if there exists a nonempty
G-invariant open subséf c V such that
() G acts properly (resp. freely) dr.

(if) V \ U is the union of a finite number @ -invariant linear subspaces.
Note that freely good representations were called “good” in [EG2].
The main result of the paper is the following theorem.

THeoreM 1.1. LetG be a connected algebraic group over a fiéldf character-
istic not equal t®. ThenG is solvable if and only i&; has a good representation.
Moreover, ifG is solvable and is perfect therGG has a freely good representation.

In characteristic 2, a solvable group still has good representations, and a partial
converse holds (Corollary 4.1). A key step in the proof of the main result is Theo-
rem 4.1, which is inspired by an example of Mumford [MFK, Ex. 0.4].

In characteristic 0, solvable groups are characterized by a weaker property that
does not require the action to be proper. (In generdal, dicts properly orX then
G acts with finite stabilizers oi, but the converse need not hold.)

THEOREM 1.2. LetG be a connected algebraic group over a field of character-
istic 0. Suppose thatr has a representatiol that contains a nonempty open set
U such that

(1) the complement of/ is a finite union of invariant linear subspacesd

(2) G acts with finite stabilizers ofy.

ThenG is solvable.
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Examples (see Section 6) show that this weaker property does not characterize
solvability in positive characteristic.

2. Preliminaries

GROUPS AND REPRESENTATIONs. We letk denote a field with algebraic closure
and separable closukg. If Z is ak-variety andk’ O k is any extension of, then
Z (k") denotes th&’-valued points oZ andZ,;. denotes thé&'-variety Z x; k'.

All groups in this paper are assumed to be linear algebraic groups over & field
We assume that such a groaps geometrically reduced (i.e., th&@f; is reduced).
The identity component of a group is denoteds °.

Unless otherwise stated, a representafibiof a groupG is assumed to be
k-rational; that is,V is ak-vector space and the action mépx V — Vis a
morphism ofk-varieties.

If k" D k is a field extension then we calké&rational representatiovi of G,/
ak’-representation of;. We say that/ is defined ovek if it is obtained by base
change from &-rational representation.

If ¥ O k is a Galois field extension, then Gal/k) acts onk’-representations
of G. Indeed, letV be ak’-representation of; corresponding to &'-morphism
p: Gy — GL(V). Forg € G(k,;) ando in Gal(k'/k), we define’o(g) as fol-
lows (cf. [B, AG14.3, 24.5]). Becauseis defined ovet’, for anyt € Gal(k,/k’)
and anyg € G(k,) we haver(p(t7%(g))) = p(g). Thus, ifo € Gal(k'/k) =
Gal(k,/k)/Gal(k'/k), then

a'(p((0') 7)) € GL(V) (k;)
is independent of the lift of to an elemend’ € Gal(k,/k). We will call this point
°p(g) and sefp(g) = a(p(o ).
The k’-representatiofV is obtained by base change from a representation de-
fined overk if and only if % = p for all o € Gal(k'/k).

FREE AND PROPER AcTIONs. The action of a grougs on a schem« is said to
befreeif the action mapG x X — X x X is a closed embedding. The action is
said to beproper if the mapG x X — X x X is proper. If the action is proper
then the stabilizer of every point is finite. If the stabilizer of every geometric point
is a trivial group scheme then we say that the actiosetstheoretically freeAn
action that is set-theoretically free and proper is free [EGL].

Let H — G be a finite morphism of algebraic groups.dfacts properly on
a schemeX then H also acts properly oX. Thus, if V is a good representation
of G thenV is also a good representation &fvia the action induced by the map
H — G. Moreover, ifH is a closed subgroup andis a freely good representa-
tion of G, thenV is a freely good representation &f.

ExampLE 2.1. LetB be the group of upper triangular matrices in Gl. The

group B acts by left multiplication on the vector spageof upper triangular ma-
trices; it acts with trivial stabilizers on the open sub3etf invertible upper trian-
gular matrices. Since the matrices are upper triang¥lar{/ is the union of the



Good Representations and Solvable Groups 205

invariant subspaces; = {A € V | A; = 0}. This representation is freely good
because the action & on U is identified withB acting itself by left multiplica-
tion. The mapB x B — B x B givenby(A, A’") — (A, AA’) is anisomorphism,
so the action oB on U is free.

By contrast, the action of Glz) by left multiplication on the vector spadd,
of n x n matrices is not good.

3. Existence of Good Representations

In this section we show that every connected solvable géotps good represen-
tations and, ik is perfect, freely good representations.

By the Lie—Kolchin theorem¢y is trigonalizable; that is, it can be embedded
in the groupB; C GL, of upper triangular matrices.

Let V; be the vector space of upper triangutax n matrices. The group;
acts onV; by left multiplication, and we have seen that this representation is freely
good. By restrictiony; is a good representation 6f;. Consider the morphism
p: G; — GL(V;) corresponding to the action 6f; on V;.

Sincep is amorphism of schemes of finite type, itis defined over a field extension
k' O k of finite degree. Write/ = V,. for the corresponding’-representation;
then we havey: G — GL(V).

Case .k’ is Separable ovet

(This will occur wherk is perfect.) In this case we will use Galois descent to con-
struct a freely good representation@f

Replacingk’ by a possibly bigger field extension, we may assumeithat k
is Galois. Enumerate the elements of G&lk) as{l = o1, 02, ..., 04} and con-
sider the representatieh: G, — GL(V ®9), whereG, acts on thgjth factor by
the representatiofio: G, — GL(V).

We defineU; ¢ V@< to be the open set whosg-rational points are the-
tuples(4y, ..., A;), where some; is invertible. We realizé/,; as a complement
of Gy-invariant linear subspaces as follows. Ugt= {A € V | A;; = 0}, a
G-invariant subspace df. Given ad-tuple (ji, ..., ji), define

Lip...jo =Lp® - ® Lj,.
This is aGy -invariant subspace of ®? andU; = V; \ ULy, ...jn-

LemMma 3.1 (cf. [EG2, Thm. 2.2]). G acts freely orlJ,.

Proof. SinceG,. is a closed subgroup df;: and the open séi,; is By invariant,
it suffices to show thaB, acts freely onUJ,. To do this, we must show that the
mapB; x Uy — Uy x Uy given onkg-points by

(A, A1, ..., Ag) > (AA1, 02(A0,(A2)), ..., 04(Ac;H(Ag)))

is a closed embedding.



206 DAN EDIDIN & WILLIAM GRAHAM

First we show that the imageof B, x U, is closed in/; x U,. Let(Ay, Ao, ...,
Ay, Cyq, ..., Cy) be matrix coordinates obi; x U,. Expanding the inverse out in
terms of the adjoint, we see that the image is contained in the subvariety defined
by the matrix equations

ojo; {(detA;)C; = oj0,1(C; Adj A))A;.

Suppose that a®2tuple of matriceS Ay, Ay, ..., Ay, C1, Ca, ..., Cy) €Uy x Uy
satisfies the matrix equations above. At least one ofith@nd one of the; is in-
vertible because we are I, x U,. Let A = a,‘l(CiA,.‘l). Substituting into our
equations we see thét = oZ(Acrfl(Az)) forall I. Moreover,A is invertible since
C; is invertible andC; = aj(Aoj‘l(A,)). Hence every point satisfying the matrix
equations is in the imagé of By x Uy, soZ is closed.

The varietyZ is covered by open sets of the form

(AL, Agy ... Ajy .o  Agy AA, .., AA;, ..., AAy) | detA; # O}

These open sets are isomorphic®=* x B, whereV?~1is the (d — 1)-fold
Cartesian product of. Hence the image is smooth—in particular, normal. The
action ofG- onUy is set-theoretically free, 96, x U; — Z is a birational bijec-
tion. By Zariski's main theorem (cf. [B, AG18]), a birational bijection of normal
varieties is an isomorphism; henGg: x U, — Z is an isomorphism. Therefore,
Gy x U; — Uy x Uy is a closed embedding. O

ReMARkK. The proof of [EG2, Thm. 2.2] is incomplete; the last paragraph of the
preceding argument is needed.

For any basis o¥, there is a natural choice of basis so that, with respect to this
basis, ifg € G(ky) then®(g) is represented by the block diagonal matrix

o(g)
“2p(g)

%p(8)
This representation is not defined owdrecause the Galois group acts by permut-
ing the blocks. More precisely, we have the following. Givedh a d matrix M,
let M[n] denote thend x nd matrix whoseij block is M;; - I,,, wherel, is the
n x n identity matrix. Ifo € Gal(k'/k), let J, denote the permutation matrix cor-
responding to the permutatien — oo;. In matrix form, forg € G (k) we have

D(g) = Jo[n] () s [n].

We will show that® is k’-isomorphic to a freely good representation defined
overk. Choose a primitive elemeatfor the extensiot’ O k, and letA be thed xd
matrix with A;; = o;(a'). The matrixA is invertible sincey, o2(a), ..., o4(a) are
exactly the roots of the irreducible polynomigle k[x] of « overk, so detA =
]_[i<j(—1)d(ai(a) —oj(@)) # 0. The Galois group acts by(A4) = AJ,. Consider
the morphism¥: G, — GL(V®9) defined byW(g) = A[n]®(g)A[n] ™ for
ge€k;. Then®W(g) = W(g) for anyo € Gal(k’/k); henceWw is defined ovek.
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Each of the subspacds;, ... ;,) is Gy-invariant under the actiow. Moreover,
because each;, ..., IS a vector subspace af®4 defined overk, the cor-
responding subrepresentatioGs: — GL(L(j, ... ;) are also defined over.
ThereforeWw is obtained by base change from a freely good representatién of

Case II: The General Case

Here we may assume thatthere is a freely goethtional representatign: G, —

GL (V) defined over a finite normal extensibhof k. Thenk’ D k factors agk’ D

k" > k, with k’/k” purely inseparable of degrge’ andk”/k Galois. The Frobe-

nius endomorphism oW induces a group homomorphism of Gt). Composing

o with thenth power of Frobenius on GIV), we obtain a representation defined
overk”. Because the Frobenius has finite kernel, this representation will no longer
be faithful. However, the action of Frobenius is trivial on geometric point€; so

will act properly on an open set whose complement is a union of linear subspaces.
We can now use the Galois descent argument of Case | to obtain &gatidnal
representation of;.

4. Characterization of Solvable Groups
by Good Representations

In this section we show that if chars 2 then every group with a good repre-
sentation is solvable. However, many of the results of this section are valid in
arbitrary characteristic. In particular, we prove that every reductive group with a
good representation is a torus. We only need thatkebar in part of the proof
of Theoreml.1. Wewill explicitly say when we start assuming this; until then,
chark is arbitrary.

Let T be the diagonal torus in Sland letN(T) be the normalizer of’. We
will first show thatN (T") has no good representations. We begin by recalling some
facts aboutV(T). First, let

0 -1
-2 %)

H(t) = [6 tc_)l].

The groupN(T) is generated by’ andJ; it has two componentd, and J(T).
The action of Sk, on its 2-dimensional standard representatioinduces an ac-
tiononS(V*) = k[x, y] given by

we will also write

a b,
|:c d:|.y|—>ay—cx, X — —by +dx.
Let W; denote the subspace §fV*) spanned by’ andy’; this is an irreducible
representation a¥(T') of dimension 2 (if > 0). Let Wy denote the 1-dimensional
irreducible representation &f(7") on whichT acts trivially and/ acts by multi-
plication by—1.
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If chark # 2, the groupN(T) is linearly reductive; that is, its action on any
representation is completely reducible [MFK 181]. The nextemma shows that
much of this survives in arbitrary characteristic.

LemMma 4.1. LetV be arepresentation a¥ (7).
(1) As arepresentation df(T), V splits as a direct sum a¥(7')-submodules

V=Vo® P V.
i>0
Here V., is the sum of the and —i weight spaces df onV, andV; is the j-
weight space.
(2) The action ofN(T) on Vy; (i > 0) is completely reducible, and.; is iso-
morphic asN(T)-module to a direct sum of copies &f;.
(3) It chark # 2, thenVj is isomorphic to a direct sum of copies 8f, and W{.

Proof. (1) Because the action @ on V is completely reducible, we can decom-
poseV = @ V; as aT-module. AsJH(¢)J ™t = H(t™1), we haveJV; = V_;.
HenceV.,; is anN(T)-submodule and so we have the desired direct sum decom-
position of V.

(2) Letwy, ..., vy be a basis foV; (i > 0). The mapv, — vy, Jv, — —x de-
fines an isomorphism of the spanwf Jv, (denoted(v,, Jv,)) with W;, and the
map Wi@d — Vy;, taking therth component tqv,, Jv,), is an N(T')-module
isomorphism.

(3) Decompose the 0-weight spacelbinto the+1 and—1 eigenspaces aof;
these are isomorphic to sums of copiedigf and W, respectively. O

The proof of the following result was motivated by [MFK, Ex. 0.4].
THEOREM 4.1. The groupN(T') has no good representations.

Proof. If a groupG has good representations, then so d@gsso we may assume
thatk is algebraically closed. Suppose thats a representation @¥(7'), and let
U C V be the complement of a finite set of invariant linear subsp&céSe will
show thatV(T") does not act properly ol = V — | J, .5 L. The strategy of the
proof is as follows. Consider the action mé&p N(T) x U — U x U. We will
find a closed subvariety of N(T) x U whose closed points are of the form

1)

and whose image is not closedlihx U. Hence® is not proper, so the represen-
tation is not good.

We now carry out the proof. Decompoge= & V;, whereV; is thei-weight
space ofV for T. Picku € U and writeu = ) u;, whereu; € V. Some of the;
may be 0 letd be the dimension of the space spanned by the nonzero

Step 1.If a; # O for alli with u; # 0, thenw = Y a,u; € U. Indeed, suppose
not; thenw € L for someL € S. For almost all choices, ..., t; of d elements of
k*, the vectors
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H(t)w = Z tq aj,u;, €

are linearly independent. (Herg ..., i, are the indices, with u;, # 0.) This
follows because thé x d matrix A with entries

lp

Al’q - tq

is nonsingular for almostall, ..., ¢,. (This is because det is a sum of monomi-
als, where each monomial is a product of one term from each row and each column;
each monomial has different multi-degree, soAlé$ not the zero polynomial.)
Therefore, the vector (z,)w span the same space as theand sou € L, con-
tradicting our assumption thate U. We conclude that € U, as claimed.

A similar argument shows thai: + Z#O u; €U.

Step 2.There exists an element = » " u; € U with Ju] = u’, foralli > 0.
To see this, suppose.; # Ju; for somej > 0. Let W; C V; @ V_; be the sub-
space of vectors of the form 4 Jv; (v; € V;). Note thatW generated/; @ V_;
as anN(T)-module. Consider the affine linear subspace

B = Z u; + W;.
i#+j
We claim thatB N U is nonempty. If it is empty then, becauBds affine linear
and is contained in a finite union of the subspaces,inve see thaBB c L for

someL € S. Butthen the span a& is containedin., so} -, ; u; € L andW; C
L. Becausd. is N(T)-stable,V; @ V_; C L as well; hence

ue Y ui+(V;®V)ClL,
i#tj
contradicting: € U. We conclude thaB N U is nonempty. Replacing by an ele-
ment of B N U, which we again call, we do not change; fori # +; but we do
obtainu_; = Ju;. Iterating this process, we obtait of the desired form.
Replacingu by u’, we will assume that/u; = u_; for all i > 0. From the
N(T)-module isomorphism ofi;, Ju;) with (x?, y’) we see that, foi > 0,

1 . L
I:g g :|: u; — )\,ll/t,i, u_; — (—l)’)»_’u,-.
0 -t
I:)L 0 i|u0 = Juo.

v =to+ Y (i +X"up),
i>0
v = Juo+ ) (i + (=D ).
i>0
For all 2 # 0O, bothv, andv; are inU (by Step 1). DefineZ to be the closed
subvariety ofN(T') x U whose points are the pairs

Note also that

Step 3.Define
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(b

®(Z) = {(vs, v;)hazo C U x U.

Then

Consider the point

(v,v") = (Mo + Zu—h Jug + Zu—i)-
i>0 i>0
Reasoning as in Step 1 shows thas in the N(T)-module generated hyor v/,
so if eitherv or v’ were inL thenu would be; but this is impossible sineaes U.
Hencev andv’ are inU, so(v,v’) e U x U. Also, (v, v’) isnotin®(Z) butisin
the closure ofb(Z) in U x U. We conclude tha® is not proper, so the represen-
tation is not good. O

Proof of Theoreni.1. Let G be a connected nonsolvable linear algebraic group.
Consider the surjective map: G - G1 = G/R,G, whereR ,G is the unipo-
tent radical ofG and whereG; is reductive. Becaus€ is not solvableG; is
neither trivial nor a torus. Lef' be a maximal torus of;. ThenT, = n(T) is a
maximal torus ofG;, ands induces an isomorphism of Weyl group& T, G) —
W(T1, G1) [B, 11.20]. (HereW(T, G) = Ng(T)/Zs(T), whereNs andZ¢ de-
note normalizer and centralizer ®fin G, and similarly forG;.) Because ket
is a unipotent group31|T: T — Tjis an isomorphism. Note thdfs;(T) =
T-(R.,G)" [B,13.17]. Becausé is reductive, this fact (applied 1G,) implies
thatZ¢,(T1) = T1. Moreover, anyg € Ng,(T1) can be lifted tag € Ng(T). This
follows because the isomorphism of Weyl groups just described, together with the
structure of the centralizers, implies that each componeNof74) is the image
of a surjective map of a component§ (7).

Since G is not a torus, there is a roat and a homomorphisnp, : SL, —

G4 with kernel either trivial or the set of matric %S with a2 = 1. Moreover

(using the subscript Sl to denote terms for Si defined in the previous subsec-
tion), ¢, (Tsi,) C T andJy := ¢o(JsL,) € Ng,(T1). (See [J, p. 176] for these
facts.) LetH; = ¢o(N(TsL,)); its identity componenHlO = ¢o(TsL,) C Ti.
BecauseH; is a finite image ofN(Ts.,), it has no good representations (and
hence neither do&s,).

Up to this point,chark has been arbitrarynow we assume thahark £ 2.

Becauser|T is an isomorphism, there is a unique subgrdip C T project-
ing isomorphically toH, . As noted previously, we can choose a life Ng(T)
of J; € Ng,(T1). Write J = J,J, for the Jordan decomposition df Because
chark # 2, J; is semisimple and s@(J,) = 1. Therefore we can replaceby J;
and assume that is semisimple. Now/? corresponds to the identity element in
the Weyl group (ag? does), soJ? € Zg(T) = T - (R,G)T. SinceJ is semisim-
ple, we conclude thaf? € T. Because/? is in the subgroupg of 71 and T
maps isomorphically td@;, we conclude thati? € H°. Therefore, the grougl
generated by7° andJ maps isomorphically tdZ; and thus has no good repre-
sentations; henc@ has no good representations. This proves Thedrégm O
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The proof of Theorem 1.1yields the following weaker statement in characteristic 2.
Note that Levi decompositions need not exist in positive characteristic [B, 11.22].

CoroLLARY 4.1. Supposehark = 2. If the connected algebraic grou@ has

a Levi decomposition and & has a good representation, théhis solvable. In
particular, any connected reductive group with a good representation is diagonal-
izable.

Proof. Suppose thaG = LN, whereL is reductive andV unipotent. IfG has
a good representation then so dédesAs we have shown, this implies thatis a
torus, soG is solvable. O

5. Proof of Theorem 1.2

If G has a representation that contains an open st whose complement is a
finite union of invariant subspaces such tidatcts with finite stabilizers o,
thenGj, also has such a representation. Thus we can assunidshagebraically
closed.

Assume thaG is not solvable, and le¥ be a representation @f. Since the
characteristic is 0G has a Levi subgroupy. SinceG is assumed to be nonsolv-
able,L contains a Borel subgroup that is not a torus. Haincentains a nontrivial
unipotent subgroupy.

Since the characteristic is 0 atidis reductive,V decomposes as a direct sum
V=Vi@V,®--- &YV, ofirreducibleL-modules. Every vector in the subspace
VN =v{® V) @---@ V) has a positive dimensional stabilizer. Singes
unipotent,V;" = 0 for eachi and soL(V;") spans all ofV;. Hence the subset
LVN = L(V{' ® --- @ V,)) that consists of vectors with positive dimensional
stabilizers cannot be contained in any propeinvariant subspace. Sindeis a
subgroup ofG, this means thatL.V" is not contained in any prop&z-invariant
subspace. Hence does not have properties (1) and (2). O

6. Examples and Complements

In this section we discuss set-theoretic versions of the conditions “freely good”
and “good”. We will say a representatidhis set-theoretically freely gooftesp.
set-theoretically gooylif it contains a nonempty open subdétwhose comple-
ment is a union of invariant subspaces suchhatts with trivial stabilizers (resp.
finite stabilizers) orJ (cf. Theorem 1.2). Surprisingly, these conditions are not
enough to characterize solvability in arbitrary characteristic.

ExaMmpPLE 6.1. LetV be the standard representation of,&Ind letV;, = S(V*)

be the vector space of homogeneous forms of degrée in Section 4, Sk acts
onV,. If p = chark is an odd prime theW, = V,,_» @ V1 is a set-theoretically
freely good representation of SLThe reason is as follows. The stabilizer of any
pair of forms(f(x, y), [(x, y)) is trivial as long ad(x, y) # 0 and the coeffi-
cient of x?»~1y»~1in f is nonzero. Since the characteristicyisthe subspace
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Ly,—2 C Va,_» of forms with nox?~ty?~1 term is an Sk invariant subspace
(cf. [J, 112.16]). Thus, Sk acts with trivial stabilizers on the open s&f =
W\ (Wop_2® ViU Vy, 2@ 0).

In characteristic 2, the representatigh = V, & V; is not set-theoretically
freely good because the matlﬁ 1] stabilizes the pai(x?y?, x + y). However,
W, is set-theoretically good.

In positive characteristic, we do not know if the group,Sldmits set-theoreti-
cally good representations far> 3.

ExaMpPLE 6.2. Assume that is algebraically closed and that cltag 2. Then
G = PGL; has no representation that is set-theoretically freely good. Indeed, let

e=[7 o] and H=tLg).

If V is any representation af, thenV* generated’ as a representation @f.
Indeed, this holds it/ is irreducible because, for any vecigrthe vectow + gv is
a nonzerdd -invariant. Since char # 2, the action ofH is completely reducible;
hence, if

0> Vi—>V,—>V3—>0

is an exact sequence d@f-modules then the corresponding sequenceHef
invariants is also exact. By induction, we may assume tfatand V4 gen-
erateV; andV3; asG-modules, and a diagram-chase then showswgi’agenerates
V> as aG-module.

It follows that if V is any representation then there is no proper invariant linear
subspace of/ containingV . Therefore,V is not set-theoretically freely good.
A similar argument shows that PGland GL, do not have set-theoretically freely
good representations.

We conclude with a proposition about the inductive construction of good repre-
sentations.

ProrosiTioN 6.1. Let G be a connected linear algebraic group ail a nor-
mal subgroup. Assume thatis algebraically closed. I## and G/H have set-
theoretically freely good representations, then so dGes

Proof. For this proof only, we will use “good” to mean “set-theoretically freely
good”. LetW be a good representation®f with M; a finite set of proper invariant
subspaces containing the vectors with nontrivial stabilizers. Be«ages affine

[B, Thm. 6.8], the vector bundl& x? W is generated by a finite-dimensional
space of global sectioris We will view sections of the vector bundle as regular
functionsy : G — W satisfyingy (gh) = h~*- y(g), where on the right side we
are using the action df on W. The action ofG on the space of sections of the vec-
tor bundle corresponds to the left action@fbn regular functions(g - y)(go) =

v (g7%0). Because the action @ on regular functions is locally finite, by en-
larging the spac€& we may assume that is stable under th&-action.
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Define L; to be the subspace &f consisting of those elements Bfthat are
sections ofG x” M;. EachL; is a G-stable subspace df. Let I'° denote the
complement of th&.; in T".

Let V be a good representation 6/ H, viewed as a representation 6fvia
the mapG — G/H. We claim thatV & T is a set-theoretically good represen-
tation of G. Indeed, letV; be a finite set of invariant subspaceslottontaining
the vectors with nontrivial stabilizer. It suffices to show that the vectors with non-
trivial stabilizer inV @ I are contained in the union of the subspae® I' and
V & L;. To see this, letv, y) be in the complement of these subspaces; hence
v ¢ Vyandy ¢ L; for anyi, j. We must show that staffv, y) is trivial. First,
stal; (v, y) C staly(v) = H. Let h € staly; (v, y). As before, we will viewy
as a functionG — W. Becausey is not in anyL;, we have thay is not a sec-
tion of G x* M; for anyi. In other words, the open subsets'(W \ M;) of G
are nonempty. Choosg in the intersection of these sets,s$@q) ¢ M; for anyi.

Our hypothesis implies that- y = y. By definition, we have

(h-v)(g0) = y(h"g0) = ¥ (g0(g5h 80)) = (8071g0) ¥ (80)-
But staly y (go) = {1}, so we conclude thdt = 1, as desired. O
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