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1. Introduction

The purpose of this paper is to provide a characterization of solvable linear alge-
braic groups in terms of a geometric property of representations. Representations
with a related property played an important role in the proof of the equivariant
Riemann–Roch theorem [EG2]. In that paper, we constructed representations
with that property (which we call freely good) for the group of upper triangular
matrices in GLn. We noted that it seemed unlikely that such representations exist
for arbitrary groups; the main result of this paper implies that they do not.

To state our results, we need some definitions. A representationV of a linear
algebraic groupG is said to begood(resp.freely good) if there exists a nonempty
G-invariant open subsetU ⊂ V such that
(i) G acts properly (resp. freely) onU.

(ii) V \U is the union of a finite number ofG-invariant linear subspaces.
Note that freely good representations were called “good” in [EG2].

The main result of the paper is the following theorem.

Theorem 1.1. LetG be a connected algebraic group over a fieldk of character-
istic not equal to2. ThenG is solvable if and only ifG has a good representation.
Moreover, ifG is solvable andk is perfect thenG has a freely good representation.

In characteristic 2, a solvable group still has good representations, and a partial
converse holds (Corollary 4.1). A key step in the proof of the main result is Theo-
rem 4.1, which is inspired by an example of Mumford [MFK, Ex. 0.4].

In characteristic 0, solvable groups are characterized by a weaker property that
does not require the action to be proper. (In general, ifG acts properly onX then
G acts with finite stabilizers onX, but the converse need not hold.)

Theorem 1.2. LetG be a connected algebraic group over a field of character-
istic 0. Suppose thatG has a representationV that contains a nonempty open set
U such that:
(1) the complement ofU is a finite union of invariant linear subspaces; and
(2) G acts with finite stabilizers onU.

ThenG is solvable.
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Examples (see Section 6) show that this weaker property does not characterize
solvability in positive characteristic.

2. Preliminaries

Groups and Representations. We letk denote a field with algebraic closurek̄
and separable closureks. If Z is ak-variety andk ′ ⊃ k is any extension ofk, then
Z(k ′) denotes thek ′-valued points ofZ andZk ′ denotes thek ′-varietyZ ×k k ′.

All groups in this paper are assumed to be linear algebraic groups over a fieldk.

We assume that such a groupG is geometrically reduced (i.e., thatGk̄ is reduced).
The identity component of a groupG is denotedG0.

Unless otherwise stated, a representationV of a groupG is assumed to be
k-rational; that is,V is a k-vector space and the action mapG × V → V is a
morphism ofk-varieties.

If k ′ ⊃ k is a field extension then we call ak ′-rational representationV of Gk ′

a k ′-representation ofG. We say thatV is defined overk if it is obtained by base
change from ak-rational representation.

If k ′ ⊃ k is a Galois field extension, then Gal(k ′/k) acts onk ′-representations
of G. Indeed, letV be ak ′-representation ofG corresponding to ak ′-morphism
ρ:Gk ′ → GL(V ). For g ∈ G(ks) andσ in Gal(k ′/k), we defineσρ(g) as fol-
lows (cf. [B, AG14.3, 24.5]). Becauseρ is defined overk ′, for anyτ ∈Gal(ks/k ′)
and anyg ∈ G(ks) we haveτ(ρ(τ−1(g))) = ρ(g). Thus, if σ ∈ Gal(k ′/k) =
Gal(ks/k)/Gal(k ′/k), then

σ ′(ρ((σ ′)−1g))∈GL(V )(ks)

is independent of the lift ofσ to an elementσ ′ ∈Gal(ks/k). We will call this point
σρ(g) and setσρ(g) = σ(ρ(σ−1g)).

Thek ′-representationV is obtained by base change from a representation de-
fined overk if and only if σρ = ρ for all σ ∈Gal(k ′/k).

Free and Proper Actions. The action of a groupG on a schemeX is said to
be free if the action mapG× X → X × X is a closed embedding. The action is
said to beproper if the mapG × X → X × X is proper. If the action is proper
then the stabilizer of every point is finite. If the stabilizer of every geometric point
is a trivial group scheme then we say that the action isset-theoretically free.An
action that is set-theoretically free and proper is free [EG1].

Let H → G be a finite morphism of algebraic groups. IfG acts properly on
a schemeX thenH also acts properly onX. Thus, ifV is a good representation
ofG thenV is also a good representation ofH via the action induced by the map
H → G. Moreover, ifH is a closed subgroup andV is a freely good representa-
tion ofG, thenV is a freely good representation ofH.

Example 2.1. LetB be the group of upper triangular matrices in GL(n). The
groupB acts by left multiplication on the vector spaceV of upper triangular ma-
trices; it acts with trivial stabilizers on the open subsetU of invertible upper trian-
gular matrices. Since the matrices are upper triangular,V \U is the union of the
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invariant subspacesLi = {A ∈ V | Aii = 0}. This representation is freely good
because the action ofB onU is identified withB acting itself by left multiplica-
tion. The mapB×B → B×B given by(A,A′) 7→ (A,AA′) is an isomorphism,
so the action ofB onU is free.

By contrast, the action of GL(n) by left multiplication on the vector spaceMn

of n× n matrices is not good.

3. Existence of Good Representations

In this section we show that every connected solvable groupG has good represen-
tations and, ifk is perfect, freely good representations.

By the Lie–Kolchin theorem,Gk̄ is trigonalizable; that is, it can be embedded
in the groupBk̄ ⊂ GLn of upper triangular matrices.

Let Vk̄ be the vector space of upper triangularn × n matrices. The groupBk̄
acts onVk̄ by left multiplication, and we have seen that this representation is freely
good. By restriction,Vk̄ is a good representation ofGk̄. Consider the morphism
ρ:Gk̄ → GL(Vk̄) corresponding to the action ofGk̄ onVk̄.

Sinceρ is a morphism of schemes of finite type, it is defined over a field extension
k ′ ⊃ k of finite degree. WriteV = Vk ′ for the correspondingk ′-representation;
then we haveρ:Gk ′ → GL(V ).

Case I:k ′ is Separable overk

(This will occur whenk is perfect.) In this case we will use Galois descent to con-
struct a freely good representation ofG.

Replacingk ′ by a possibly bigger field extension, we may assume thatk ′ ⊃ k
is Galois. Enumerate the elements of Gal(k ′/k) as{1= σ1, σ2, . . . , σd} and con-
sider the representation8:Gk ′ → GL(V ⊕d), whereGk ′ acts on thej th factor by
the representationσjρ:Gk ′ → GL(V ).

We defineUd ⊂ V ⊕d to be the open set whoseks-rational points are thed-
tuples(A1, . . . , Ad), where someAi is invertible. We realizeUd as a complement
of Gk ′ -invariant linear subspaces as follows. LetLj = {A ∈ V | Ajj = 0}, a
Gk ′ -invariant subspace ofV. Given ad-tuple(j1, . . . , jd), define

L(j1,. . . ,jd ) = Lj1⊕ · · · ⊕ Ljd .
This is aGk ′ -invariant subspace ofV ⊕d andUd = Vd \

⋃
L(j1,. . . ,jd ).

Lemma 3.1 (cf. [EG2, Thm. 2.2]). Gk ′ acts freely onUd.

Proof. SinceGk ′ is a closed subgroup ofBk ′ and the open setUd isBk ′ invariant,
it suffices to show thatBk ′ acts freely onUd. To do this, we must show that the
mapBk ′ × Ud → Ud × Ud given onks-points by

(A,A1, . . . , Ad) 7→ (AA1, σ2(Aσ
−1
2 (A2)), . . . , σd(Aσ

−1
d (Ad)))

is a closed embedding.
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First we show that the imageZ ofBk ′ ×Ud is closed inUd×Ud. Let(A1, A2, . . . ,

Ad, C1, . . . , Cd) be matrix coordinates onUd × Ud. Expanding the inverse out in
terms of the adjoint, we see that the image is contained in the subvariety defined
by the matrix equations

σjσ
−1
i (detAi)Cj = σjσ−1

i (Ci Adj Ai)Aj .

Suppose that a 2d-tuple of matrices(A1, A2, . . . , Ad, C1, C2, . . . , Cd) ∈Ud × Ud
satisfies the matrix equations above. At least one of theAi and one of theCj is in-
vertible because we are inUd × Ud. LetA = σ−1

i (CiA
−1
i ). Substituting into our

equations we see thatCl = σl(Aσ−1
l (Al)) for all l. Moreover,A is invertible since

Cj is invertible andCj = σj(Aσ−1
j (Aj )). Hence every point satisfying the matrix

equations is in the imageZ of Bk ′ × Ud, soZ is closed.
The varietyZ is covered by open sets of the form

{(A1, A2, . . . , Aj, . . . , Ad, AA1, . . . , AAj, . . . , AAd) | detAj 6= 0}.
These open sets are isomorphic toV d−1× Bk ′ , whereV d−1 is the(d − 1)-fold
Cartesian product ofV. Hence the image is smooth—in particular, normal. The
action ofGk ′ onUd is set-theoretically free, soGk ′ ×Ud → Z is a birational bijec-
tion. By Zariski’s main theorem (cf. [B, AG18]), a birational bijection of normal
varieties is an isomorphism; henceGk ′ ×Ud → Z is an isomorphism. Therefore,
Gk ′ × Ud → Ud × Ud is a closed embedding.

Remark. The proof of [EG2, Thm. 2.2] is incomplete; the last paragraph of the
preceding argument is needed.

For any basis ofV, there is a natural choice of basis so that, with respect to this
basis, ifg ∈G(ks) then8(g) is represented by the block diagonal matrix

ρ(g)
σ2ρ(g)

. . .
σdρ(g)

.
This representation is not defined overk because the Galois group acts by permut-
ing the blocks. More precisely, we have the following. Given ad × d matrixM,
letM[n] denote thend × nd matrix whoseij block isMij · In, whereIn is the
n× n identity matrix. Ifσ ∈Gal(k ′/k), let Jσ denote the permutation matrix cor-
responding to the permutationσi 7→ σσi. In matrix form, forg ∈G(ks) we have

σ8(g) = Jσ [n]−18(g)Jσ [n].

We will show that8 is k ′-isomorphic to a freely good representation defined
overk. Choose a primitive elementα for the extensionk ′ ⊃ k,and letAbe thed×d
matrix withAij = σj(αi). The matrixA is invertible sinceα, σ2(α), . . . , σd(α) are
exactly the roots of the irreducible polynomialf ∈ k [x] of α overk, so detA =∏

i<j(−1)d(σi(α)−σj(α)) 6= 0. The Galois group acts byσ(A) = AJσ . Consider
the morphism9 : Gk ′ → GL(V ⊕d) defined by9(g) = A[n]8(g)A[n]−1 for
g ∈ ks. Thenσ9(g) = 9(g) for anyσ ∈ Gal(k ′/k); hence9 is defined overk.
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Each of the subspacesL(j1,. . . ,jd ) isGk ′ -invariant under the action9. Moreover,
because eachL(j1,. . . ,jd ) is a vector subspace ofV ⊕d defined overk, the cor-
responding subrepresentationsGk ′ → GL(L(j1,. . . ,jd )) are also defined overk.
Therefore9 is obtained by base change from a freely good representation ofG.

Case II: The General Case

Here we may assume that there is a freely goodk ′-rational representationρ : Gk ′ →
GL(V ) defined over a finite normal extensionk ′ of k. Thenk ′ ⊃ k factors ask ′ ⊃
k ′′ ⊃ k, with k ′/k ′′ purely inseparable of degreepn andk ′′/k Galois. The Frobe-
nius endomorphism onV induces a group homomorphism of GL(V ). Composing
ρ with thenth power of Frobenius on GL(V ), we obtain a representation defined
overk ′′. Because the Frobenius has finite kernel, this representation will no longer
be faithful. However, the action of Frobenius is trivial on geometric points, soG

will act properly on an open set whose complement is a union of linear subspaces.
We can now use the Galois descent argument of Case I to obtain a goodk-rational
representation ofG.

4. Characterization of Solvable Groups
by Good Representations

In this section we show that if chark 6= 2 then every group with a good repre-
sentation is solvable. However, many of the results of this section are valid in
arbitrary characteristic. In particular, we prove that every reductive group with a
good representation is a torus. We only need that chark 6= 2 in part of the proof
of Theorem1.1. Wewill explicitly say when we start assuming this; until then,
chark is arbitrary.

Let T be the diagonal torus in SL2 and letN(T ) be the normalizer ofT . We
will first show thatN(T ) has no good representations. We begin by recalling some
facts aboutN(T ). First, let

J =
[

0 −1
1 0

]
;

we will also write

H(t) =
[
t 0
0 t−1

]
.

The groupN(T ) is generated byT andJ ; it has two components,T andJ(T ).
The action of SL2 on its 2-dimensional standard representationV induces an ac-
tion onS(V ∗) ∼= k [x, y] given by[

a b

c d

]
: y 7→ ay − cx, x 7→ −by + dx.

LetWi denote the subspace ofS(V ∗) spanned byxi andyi; this is an irreducible
representation ofN(T ) of dimension 2 (ifi > 0). LetW ′0 denote the1-dimensional
irreducible representation ofN(T ) on whichT acts trivially andJ acts by multi-
plication by−1.



208 Dan Edidin & Will iam Graham

If chark 6= 2, the groupN(T ) is linearly reductive; that is, its action on any
representation is completely reducible [MFK, p.191]. The nextlemma shows that
much of this survives in arbitrary characteristic.

Lemma 4.1. LetV be a representation ofN(T ).
(1) As a representation ofN(T ), V splits as a direct sum ofN(T )-submodules:

V = V0⊕
⊕
i>0

V±i .

HereV±i is the sum of thei and−i weight spaces ofT onV, andVj is thej -
weight space.

(2) The action ofN(T ) on V±i (i > 0) is completely reducible, andV±i is iso-
morphic asN(T )-module to a direct sum of copies ofWi.

(3) If chark 6= 2, thenV0 is isomorphic to a direct sum of copies ofW0 andW ′0.

Proof. (1) Because the action ofT onV is completely reducible, we can decom-
poseV = ⊕

Vi as aT -module. AsJH(t)J−1 = H(t−1), we haveJVi = V−i .
HenceV±i is anN(T )-submodule and so we have the desired direct sum decom-
position ofV.

(2) Let v1, . . . , vd be a basis forVi (i > 0). The mapvr 7→ y, Jvr 7→ −x de-
fines an isomorphism of the span ofvr, Jvr (denoted〈vr, Jvr〉) with Wi, and the
mapW ⊕di → V±i , taking therth component to〈vr, Jvr〉, is anN(T )-module
isomorphism.

(3) Decompose the 0-weight space ofV into the+1 and−1 eigenspaces ofJ ;
these are isomorphic to sums of copies ofW0 andW ′0, respectively.

The proof of the following result was motivated by [MFK, Ex. 0.4].

Theorem 4.1. The groupN(T ) has no good representations.

Proof. If a groupG has good representations, then so doesGk̄, so we may assume
thatk is algebraically closed. Suppose thatV is a representation ofN(T ), and let
U ⊂ V be the complement of a finite set of invariant linear subspacesS. We will
show thatN(T ) does not act properly onU = V −⋃L∈S L. The strategy of the
proof is as follows. Consider the action map8 : N(T ) × U → U × U. We will
find a closed subvarietyZ of N(T )× U whose closed points are of the form([

0 −λ−1

λ 0

]
, vλ

)
and whose image is not closed inU ×U. Hence8 is not proper, so the represen-
tation is not good.

We now carry out the proof. DecomposeV =⊕Vi, whereVi is thei-weight
space ofV for T . Picku ∈U and writeu =∑ ui, whereui ∈ V. Some of theui
may be 0; let d be the dimension of the space spanned by the nonzeroui.

Step 1.If ai 6= 0 for all i with ui 6= 0, thenw =∑ aiui ∈U. Indeed, suppose
not; thenw ∈L for someL∈S. For almost all choicest1, . . . , td of d elements of
k∗, the vectors
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H(tq)w =
∑
p

t
ip
q aipuip ∈L

are linearly independent. (Herei1, . . . , id are the indicesip with uip 6= 0.) This
follows because thed × d matrixA with entries

Apq = t ipq
is nonsingular for almost allt1, . . . , td . (This is because detA is a sum of monomi-
als, where each monomial is a product of one term from each row and each column;
each monomial has different multi-degree, so detA is not the zero polynomial.)
Therefore, the vectorsH(tq)w span the same space as theui and sou∈L, con-
tradicting our assumption thatu∈U. We conclude thatw ∈U, as claimed.

A similar argument shows thatJu0 +
∑

i 6=0 ui ∈U.
Step 2.There exists an elementu′ = ∑ u′i ∈ U with Ju′i = u′−i for all i > 0.

To see this, supposeu−j 6= Juj for somej > 0. LetWj ⊂ Vj ⊕ V−j be the sub-
space of vectors of the formvj + Jvj (vj ∈Vj ). Note thatWj generatesVj ⊕ V−j
as anN(T )-module. Consider the affine linear subspace

B =
∑
i 6=±j

ui +Wj.

We claim thatB ∩ U is nonempty. If it is empty then, becauseB is affine linear
and is contained in a finite union of the subspaces inS, we see thatB ⊂ L for
someL∈S. But then the span ofB is contained inL, so

∑
i 6=±j ui ∈L andWj ⊂

L. BecauseL isN(T )-stable,Vj ⊕ V−j ⊂ L as well; hence

u∈
∑
i 6=±j

ui + (Vj ⊕ V−j ) ⊂ L,

contradictingu∈U. We conclude thatB ∩U is nonempty. Replacingu by an ele-
ment ofB ∩U, which we again callu, we do not changeui for i 6= ±j but we do
obtainu−j = Juj . Iterating this process, we obtainu′ of the desired form.

Replacingu by u′, we will assume thatJui = u−i for all i > 0. From the
N(T )-module isomorphism of〈ui, Jui〉 with 〈xi, y i〉 we see that, fori > 0,[

0 −λ−1

λ 0

]
: ui 7→ λiu−i , u−i 7→ (−1)iλ−iui .

Note also that [
0 −λ−1

λ 0

]
u0 = Ju0.

Step 3.Define
vλ = u0 +

∑
i>0

(u−i + λ−iui),

v ′λ = Ju0 +
∑
i>0

(u−i + (−1)iλ−iui).

For all λ 6= 0, both vλ andv ′λ are inU (by Step 1). DefineZ to be the closed
subvariety ofN(T )× U whose points are the pairs
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0 −λ−1

λ 0

]
, vλ

)
.

Then
8(Z) = {(vλ, v ′λ)}λ6=0 ⊂ U × U.

Consider the point

(v, v ′) =
(
u0 +

∑
i>0

u−i , Ju0 +
∑
i>0

u−i

)
.

Reasoning as in Step 1 shows thatu is in theN(T )-module generated byv or v ′,
so if eitherv or v ′ were inL thenu would be; but this is impossible sinceu ∈U.
Hencev andv ′ are inU, so(v, v ′)∈U ×U. Also, (v, v ′) is not in8(Z) but is in
the closure of8(Z) in U ×U. We conclude that8 is not proper, so the represen-
tation is not good.

Proof of Theorem1.1. LetG be a connected nonsolvable linear algebraic group.
Consider the surjective mapπ : G → G1 = G/RuG, whereRuG is the unipo-
tent radical ofG and whereG1 is reductive. BecauseG is not solvable,G1 is
neither trivial nor a torus. LetT be a maximal torus ofG. ThenT1 = π(T ) is a
maximal torus ofG1, andπ induces an isomorphism of Weyl groupsW(T,G)→
W(T1,G1) [B, 11.20]. (HereW(T,G) = NG(T )/ZG(T ), whereNG andZG de-
note normalizer and centralizer ofT in G, and similarly forG1.) Because kerπ
is a unipotent group,π

∣∣
T

: T → T1 is an isomorphism. Note thatZG(T ) =
T · (RuG)

T [B, 13.17]. BecauseG1 is reductive, this fact (applied toG1) implies
thatZG1(T1) = T1. Moreover, anyg1 ∈NG1(T1) can be lifted tog ∈NG(T ). This
follows because the isomorphism of Weyl groups just described, together with the
structure of the centralizers, implies that each component ofNG1(T1) is the image
of a surjective map of a component ofNG(T ).

SinceG1 is not a torus, there is a rootα and a homomorphismφα : SL2 →
G1 with kernel either trivial or the set of matrices

[
a 0
0 a

]
with a2 = 1. Moreover

(using the subscript SL2 to denote terms for SL2 defined in the previous subsec-
tion), φα(TSL2) ⊂ T andJ1 := φα(JSL2) ∈ NG1(T1). (See [J, p. 176] for these
facts.) LetH1 = φα(N(TSL2)); its identity componentH 0

1 = φα(TSL2) ⊂ T1.

BecauseH1 is a finite image ofN(TSL2), it has no good representations (and
hence neither doesG1).

Up to this point,chark has been arbitrary; now we assume thatchark 6= 2.
Becauseπ

∣∣
T

is an isomorphism, there is a unique subgroupH 0 ⊂ T project-
ing isomorphically toH 0

1 . As noted previously, we can choose a liftJ ∈ NG(T )
of J1 ∈ NG1(T1). Write J = JsJu for the Jordan decomposition ofJ. Because
chark 6= 2, J1 is semisimple and soπ(Ju) = 1. Therefore we can replaceJ by Js
and assume thatJ is semisimple. NowJ 2 corresponds to the identity element in
the Weyl group (asJ 2

1 does), soJ 2 ∈ZG(T ) = T · (RuG)
T . SinceJ is semisim-

ple, we conclude thatJ 2 ∈ T . BecauseJ 2
1 is in the subgroupH 0

1 of T1 andT
maps isomorphically toT1, we conclude thatJ 2 ∈ H 0. Therefore, the groupH
generated byH 0 andJ maps isomorphically toH1 and thus has no good repre-
sentations; henceG has no good representations. This proves Theorem1.1.
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The proof of Theorem1.1yields the following weaker statement in characteristic 2.
Note that Levi decompositions need not exist in positive characteristic [B, 11.22].

Corollary 4.1. Supposechark = 2. If the connected algebraic groupG has
a Levi decomposition and ifG has a good representation, thenG is solvable. In
particular, any connected reductive group with a good representation is diagonal-
izable.

Proof. Suppose thatG = LN, whereL is reductive andN unipotent. IfG has
a good representation then so doesL. As we have shown, this implies thatL is a
torus, soG is solvable.

5. Proof of Theorem 1.2

If G has a representationV that contains an open setU whose complement is a
finite union of invariant subspaces such thatG acts with finite stabilizers onU,
thenGk̄ also has such a representation. Thus we can assume thatk is algebraically
closed.

Assume thatG is not solvable, and letV be a representation ofG. Since the
characteristic is 0,G has a Levi subgroupL. SinceG is assumed to be nonsolv-
able,L contains a Borel subgroup that is not a torus. HenceL contains a nontrivial
unipotent subgroupN.

Since the characteristic is 0 andL is reductive,V decomposes as a direct sum
V = V1⊕ V2⊕ · · · ⊕ Vp of irreducibleL-modules. Every vector in the subspace
V N = V N1 ⊕ V N2 ⊕ · · · ⊕ V Np has a positive dimensional stabilizer. SinceN is
unipotent,V Ni 6= 0 for eachi and soL(V Ni ) spans all ofVi. Hence the subset
LV N = L(V N1 ⊕ · · · ⊕ V Np ) that consists of vectors with positive dimensional
stabilizers cannot be contained in any properL-invariant subspace. SinceL is a
subgroup ofG, this means thatLV N is not contained in any properG-invariant
subspace. HenceV does not have properties (1) and (2).

6. Examples and Complements

In this section we discuss set-theoretic versions of the conditions “freely good”
and “good”. We will say a representationV is set-theoretically freely good(resp.
set-theoretically good) if it contains a nonempty open subsetU whose comple-
ment is a union of invariant subspaces such thatG acts with trivial stabilizers (resp.
finite stabilizers) onU (cf. Theorem 1.2). Surprisingly, these conditions are not
enough to characterize solvability in arbitrary characteristic.

Example 6.1. LetV be the standard representation of SL2 and letVd = S(V ∗)
be the vector space of homogeneous forms of degreed. As in Section 4, SL2 acts
onVd. If p = chark is an odd prime thenWp = V2p−2⊕ V1 is a set-theoretically
freely good representation of SL2. The reason is as follows. The stabilizer of any
pair of forms(f(x, y), l(x, y)) is trivial as long asl(x, y) 6= 0 and the coeffi-
cient of xp−1yp−1 in f is nonzero. Since the characteristic isp, the subspace
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L2p−2 ⊂ V2p−2 of forms with noxp−1yp−1 term is an SL2 invariant subspace
(cf. [J, II2.16]). Thus, SL2 acts with trivial stabilizers on the open setUp =
Wp \ (W2p−2⊕ V1∪ V2p−2⊕ 0).

In characteristic 2, the representationW2 = V2 ⊕ V1 is not set-theoretically

freely good because the matrix
[

0 1
1 0

]
stabilizes the pair(x2y2, x + y). However,

W2 is set-theoretically good.
In positive characteristic, we do not know if the group SLn admits set-theoreti-

cally good representations forn ≥ 3.

Example 6.2. Assume thatk is algebraically closed and that chark 6= 2. Then
G = PGL2 has no representation that is set-theoretically freely good. Indeed, let

g =
[0 1

1 0

]
and H = {1, g}.

If V is any representation ofG, thenV H generatesV as a representation ofG.
Indeed, this holds ifV is irreducible because, for any vectorv, the vectorv+gv is
a nonzeroH -invariant. Since chark 6= 2, the action ofH is completely reducible;
hence, if

0→ V1→ V2→ V3→ 0

is an exact sequence ofG-modules then the corresponding sequence ofH -
invariants is also exact. By induction, we may assume thatV H1 andV H3 gen-
erateV1 andV3 asG-modules, and a diagram-chase then shows thatV H2 generates
V2 as aG-module.

It follows that ifV is any representation then there is no proper invariant linear
subspace ofV containingV H . Therefore,V is not set-theoretically freely good.
A similar argument shows that PGLn and GLn do not have set-theoretically freely
good representations.

We conclude with a proposition about the inductive construction of good repre-
sentations.

Proposition 6.1. LetG be a connected linear algebraic group andH a nor-
mal subgroup. Assume thatk is algebraically closed. IfH andG/H have set-
theoretically freely good representations, then so doesG.

Proof. For this proof only, we will use “good” to mean “set-theoretically freely
good”. LetW be a good representation ofH,withMi a finite set of proper invariant
subspaces containing the vectors with nontrivial stabilizers. BecauseG/H is affine
[B, Thm. 6.8], the vector bundleG ×H W is generated by a finite-dimensional
space of global sections0. We will view sections of the vector bundle as regular
functionsγ : G→ W satisfyingγ (gh) = h−1 · γ (g), where on the right side we
are using the action ofH onW. The action ofG on the space of sections of the vec-
tor bundle corresponds to the left action ofG on regular functions:(g · γ )(g0) =
γ (g−1g0). Because the action ofG on regular functions is locally finite, by en-
larging the space0 we may assume that0 is stable under theG-action.
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DefineLi to be the subspace of0 consisting of those elements of0 that are
sections ofG ×H Mi. EachLi is aG-stable subspace of0. Let 00 denote the
complement of theLi in 0.

Let V be a good representation ofG/H, viewed as a representation ofG via
the mapG → G/H. We claim thatV ⊕ 0 is a set-theoretically good represen-
tation ofG. Indeed, letVj be a finite set of invariant subspaces ofV containing
the vectors with nontrivial stabilizer. It suffices to show that the vectors with non-
trivial stabilizer inV ⊕ 0 are contained in the union of the subspacesVj ⊕ 0 and
V ⊕ Li. To see this, let(v, γ ) be in the complement of these subspaces; hence
v /∈ Vj andγ /∈ Li for any i, j. We must show that stabG(v, γ ) is trivial. First,
stabG(v, γ ) ⊂ stabG(v) = H. Let h ∈ stabG(v, γ ). As before, we will viewγ
as a functionG→ W. Becauseγ is not in anyLi, we have thatγ is not a sec-
tion ofG ×H Mi for any i. In other words, the open subsetsγ−1(W \Mi) of G
are nonempty. Chooseg0 in the intersection of these sets, sos(g0) /∈Mi for anyi.
Our hypothesis implies thath · γ = γ. By definition, we have

(h · γ )(g0) = γ (h−1g0) = γ (g0(g
−1
0 h
−1g0)) = (g−1

0 hg0)γ (g0).

But stabH γ (g0) = {1}, so we conclude thath = 1, as desired.

References

[B] A. Borel, Linear algebraic groups,Grad. Texts in Math., 126, Springer-Verlag,
New York, 1991.

[EG1] D. Edidin and W. A. Graham,Equivariant intersection theory, Invent. Math.,
131 (1998), 595–634.

[EG2] , Riemann–Roch for equivariant Chow groups, Duke Math. J. 102
(2000), 567–594.

[J] J. C. Jantzen,Representations of algebraic groups,Pure Appl. Math.,131,
Academic Press, Boston, 1987.

[MFK] D. Mumford, J. Fogarty, and F. Kirwan,Geometric invariant theory,Ergeb.
Math. Grenzgeb. (3), 34, Springer-Verlag, Berlin, 1994.

D. Edidin W. Graham
Department of Mathematics Department of Mathematics
University of Missouri University of Georgia
Columbia, MO 65211 Boyd Graduate Studies Research Center

edidin@math.missouri.edu
Athens, GA 30602

wag@math.uga.edu


