McMillan's Area Problem

Michael D. O'Neill \& Robert E. Thurman

1. Introduction

Let A denote the set of ideal accessible boundary points of a simply connected domain Ω. Recall that these are the finite radial limit points of the Riemann map from the unit disk onto Ω and that each radius along which the limit exists gives a distinct ideal boundary point. In particular, distinct ideal accessible boundary points may have the same complex coordinate. Fix $w_{0} \in \Omega$ and for each $a \in A$ and $r<\left|w_{0}-a\right|$ let $\gamma(a, r) \subset\{z:|z-a|=r\}$ be the circular crosscut of Ω separating a from w_{0} that can be joined to a by a Jordan arc contained in $\Omega \cap\{z$: $|z-a|<r\}$. Throughout this paper we will refer to $\gamma(a, r)$ as the principal separating arc for a of radius r.

Let $L(a, r)$ denote the Euclidean length of $\gamma(a, r)$ and let

$$
A(a, r)=\int_{0}^{r} L(a, \rho) d \rho
$$

In [5], McMillan showed that

$$
\limsup _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}} \geq \frac{1}{2}
$$

almost everywhere on $\partial \Omega$ with respect to harmonic measure (denoted hereafter by a.e. $-\omega$).

The purpose of this paper is to prove Theorem A.
Theorem A.

$$
\liminf _{r \rightarrow 0} \frac{A(a, r)}{\pi r^{2}} \leq \frac{1}{2} \quad \text { a.e. }-\omega .
$$

This answers a question raised at the end of [5]. In an earlier paper [7], we proved the following theorem.

Theorem B.

$$
\liminf _{r \rightarrow 0} \frac{L(a, r)}{2 \pi r} \leq \frac{1}{2} \quad \text { a.e. }-\omega .
$$

This is also in answer to the last paragraph of [5]. Theorem A implies Theorem B but the basic idea of the proof is the same as in [7]. Let

$$
E_{m, k}=\left\{a \in A \mid A(a, r)>(1 / 2+1 / m) \pi r^{2} \forall r<1 / k\right\}
$$

and consider a Riemann map $f: \mathbb{D} \rightarrow \Omega$ from the unit disk to Ω such that $f(0)=$ w_{0}. We will show that $f^{-1}\left(E_{m, k}\right)$ has zero Lebesgue measure in the unit circle \mathbb{T} for each m and k. We do this by showing that, if $f^{-1}\left(E_{m, k}\right)$ has a point of density for some m and k, then the image of that point would be surrounded by a closed curve contained in Ω. Since the union of all such sets then has measure zero, this completes the proof.

The details of the present argument are more complicated than in [7], so it may be helpful to read [7] first to get the main idea with fewer technicalities. It may also be helpful to take an early glance at Figures 1 and 2 near the end of this paper. For more detailed background on the problem, one can also refer to [4], [5], and [6]. For the ideas from geometric function theory used here, we refer to [1], [3], and [8].

2. Proof of Theorem A

In order to construct a curve in Ω that will surround a boundary point and thus give the contradiction proving Theorem A, we will need to know that centered at almost every point of $E_{m, k}$ is a wide-angled annular corridor whose thickness is bounded from below. That such corridors exist will be a consequence of the accumulation of $E_{m, k}$ near the image of a point of density of $f^{-1}\left(E_{m, k}\right)$. In fact, the abundance of points of $E_{m, k}$ will allow us to construct a chain of such corridors in Ω that will wrap around a boundary point.

We will require the following lemma. Let $\omega(z, E, \Omega)$ denote the harmonic measure of the set $E \subset \partial \Omega$ from the point $z \in \Omega$.

Lemma 2.1. Let Ω be a simply connected domain in \mathbb{C} and let f be a Riemann map $f: \mathbb{D} \rightarrow \Omega$. Let $E \subset \partial \Omega$ be a Borel set such that $f^{-1}(E)$ has a point of density. Then, given $\delta>0$, there is a point $w \in \Omega$ such that

$$
\omega(w, E, \partial \Omega)>1-\delta
$$

Proof. Let η be a point of density of $f^{-1}(E) \subset \mathbb{T}$. For any interval $I \subset \mathbb{T}$ centered at η, there is a unique $r(I, \delta)$ with $0<r(I, \delta)<1$ such that

$$
\omega(r(I, \delta) \eta, I, \mathbb{D})=1-\delta / 2
$$

Let $z_{I}=r(I, \delta) \eta$. Given any $\varepsilon>0$, there is an interval I centered at η such that

$$
\left|I \backslash f^{-1}(E)\right|<\varepsilon|I|,
$$

where $|\cdot|$ denotes linear measure. Integrating the Poisson kernel at z_{I} over $I \backslash f^{-1}(E)$ then gives

$$
\omega\left(z_{I}, I \backslash f^{-1}(E), \mathbb{D}\right)<\delta / 2
$$

if $|I|$ is sufficiently small. Therefore

$$
\omega\left(z_{I}, I \cap f^{-1}(E), \mathbb{D}\right)>1-\delta,
$$

and taking $w=f\left(z_{I}\right)$ finishes the proof of the lemma.

Let $d_{f}\left(z_{I}\right)$ denote the Euclidean distance from $f\left(z_{I}\right)$ to $\partial \Omega$. Actually, results of Beurling [2] imply the existence of a constant K such that a disk of radius $K d_{f}\left(z_{I}\right)$ contains all the harmonic measure of the set E found in the lemma (see [8, p. 142]).

Let $w_{0}=f(0)$ and assume that $\eta \in \mathbb{T}$ is a point of density of $f^{-1}\left(E_{m, k}\right) \subset \mathbb{T}$. The finite number of steps required to obtain a contradiction in the construction to follow will depend only on the number m in the definition of $E_{m, k}$. It will be clear from the construction that if $\delta>0$ is sufficiently small and if $\omega\left(w_{1}, E_{m, k}, \Omega\right)>$ $1-\delta$ for some point w_{1}, then the required number of steps can be completed. Moreover, the choice of δ depends only on m. We choose δ to be this small and apply Lemma 2.1 with $E=E_{m, k}$, thus obtaining the desired point w_{1}.

Let d_{0} be the Euclidean distance from w_{1} to $\partial \Omega$ and let $x_{0} \in \partial \Omega$ be a point such that $\left|x_{0}-w_{1}\right|=d_{0}$. Since $f(\eta) \in A$ we can assume $d_{0} \ll 1 / k$, where k is the integer in the definition of $E_{m, k}$.

We will introduce positive constants $c_{0}, c_{1}, c_{2}, \ldots$ and C_{1}, C_{2}, \ldots Their values will be determined in the discussion to follow and will either be purely numerical or depend only on m (in the definition of $E_{m, k}$). For any $w \in \mathbb{C}$ and $r>0$, let $D(w, r)$ denote the set

$$
\{z \in \mathbb{C}:|z-w|<r\} .
$$

Let N be a large integer to be determined later. We will see that it can be chosen so that $N \leq$ (const $\cdot m^{3 / 2}$). Since x_{0} is a boundary point nearest to w_{1}, we may choose R_{0} so that $D\left(w_{1}, d_{0}\right) \cap D\left(x_{0}, 2^{N} R_{0}\right)$ has area greater than $\left(\frac{1}{2}-\frac{1}{8 m}\right) \pi\left(2^{N} R_{0}\right)^{2}$. Choose c_{0} so that if x_{0}^{*} is any point in $D\left(x_{0}, c_{0} R_{0}\right)$ then the area of $D\left(w_{1}, d_{0}\right) \cap D\left(x_{0}^{*}, R_{0}\right)$ is greater than $\left(\frac{1}{2}-\frac{1}{4 m}\right) \pi R_{0}^{2}$. Later, we will also need $c_{0} \ll 1 / \sqrt{2 m}$. It is clear that R_{0} is proportional to d_{0} in a ratio that depends only on m.

If $\delta>0$ is sufficiently small, then there exists a set of points of $E_{m, k}$ of positive harmonic measure contained in $D\left(x_{0}, c_{0} R_{0}\right)$. In fact, the circular arc $\partial D\left(x_{0}, c_{0} R_{0}\right) \cap D\left(w_{1}, d_{0}\right)$ extends to a circular crosscut of Ω that determines a unique subdomain, U_{0}, of Ω not containing w_{1}. The midpoint, w^{*}, of the circular $\operatorname{arc} \partial D\left(x_{0}, c_{0} R_{0} / 2\right) \cap D\left(w_{1}, d_{0}\right)$ is contained in U_{0}. By the comparison principle for harmonic measure and the Beurling projection theorem, there exists a constant $C_{1}>0$ such that

$$
\omega\left(w^{*}, \partial U_{0} \cap \partial \Omega \cap D\left(x_{0}, c_{0} R_{0}\right), \Omega\right) \geq C_{1}>0
$$

by repeated application of Harnack's inequality in $D\left(w_{1}, d_{0}\right) \cup U_{0}$, there is then a constant C_{2} such that

$$
\omega\left(w_{1}, \partial U_{0} \cap \partial \Omega \cap D\left(x_{0}, c_{0} R_{0}\right), \Omega\right) \geq C_{2}>0
$$

By Lemma 2.1, if δ is sufficiently small then

$$
\begin{equation*}
\omega\left(w_{1}, \partial U_{0} \cap \partial \Omega \cap D\left(x_{0}, c_{0} R_{0}\right) \cap E_{m, k}, \Omega\right) \geq C_{2} / 2>0 \tag{1}
\end{equation*}
$$

as claimed.
Let x_{0}^{*} be an element of $\partial U_{0} \cap D\left(x_{0}, c_{0} R_{0}\right) \cap E_{m, k}$. Note that, because $x_{0}^{*} \in$ $E_{m, k}$, we have

$$
\int_{R_{0} / \sqrt{2 m}}^{R_{0}} L\left(x_{0}^{*}, \rho\right) d \rho \geq\left(\frac{1}{2}+\frac{1}{2 m}\right) \pi r^{2}
$$

and, by the choice of c_{0}, the area of

$$
\left\{z \in \mathbb{C}: R_{0} / \sqrt{2 m} \leq\left|z-x_{0}^{*}\right| \leq R_{0}\right\} \cap D\left(w_{1}, d_{0}\right)
$$

is greater than $\left(\frac{1}{2}-\frac{1}{2 m}\right) \pi R_{0}^{2}$. If

$$
\gamma\left(x_{0}^{*}, r\right) \cap D\left(w_{1}, d_{0}\right)=\emptyset
$$

for each $r \in\left[R_{0} / \sqrt{2 m}, R_{0}\right]$, then the area of the annulus

$$
\left\{z \in \mathbb{C}: R_{0} / \sqrt{2 m} \leq\left|z-x_{0}^{*}\right| \leq R_{0}\right\}
$$

is greater than

$$
\left(\frac{1}{2}+\frac{1}{2 m}\right) \pi R_{0}^{2}+\left(\frac{1}{2}-\frac{1}{2 m}\right) \pi R_{0}^{2}=\pi R_{0}^{2}
$$

This contradiction shows that there exists an $r \in\left[R_{0} / \sqrt{2 m}, R_{0}\right]$ such that $\gamma\left(x_{0}^{*}, r\right) \cap D\left(w_{1}, d_{0}\right) \neq \emptyset$. Simple topological considerations show that circular crosscuts of smaller radius centered at x_{0}^{*} that intersect $D\left(w_{1}, d_{0}\right)$ must be principal separating arcs for x_{0}^{*}. Let $c_{1}=1 / \sqrt{2 m}$. Thus, shrinking R_{0} by a factor no smaller than $c_{1} / 3$, we may assume that for each $r \leq 3 R_{0}$ we have $\gamma\left(x_{0}^{*}, r\right) \cap D\left(w_{1}, d_{0}\right) \neq$ \emptyset. It follows that for each $r \leq 2 R_{0}$ we have $\gamma\left(x_{0}, r\right) \cap D\left(w_{1}, d_{0}\right) \neq \emptyset$.

By a slight strengthening of the preceding argument it is clear that there are constants $c_{2}, c_{3}>0$ such that, if $0<R<1 / k$ and $a \in E_{m, k}$, then

$$
\begin{equation*}
\left|\left\{r \in\left[c_{1} R, R\right]: L(a, r)>\left(1+c_{2} / m\right) \pi r\right\}\right| \geq c_{3} R \tag{2}
\end{equation*}
$$

We will now assume without loss of generality that x_{0} is the origin and that w_{1} is on the positive imaginary axis. Let

$$
A_{0}=\left\{z: R_{0}<|z|<2 R_{0}\right\}
$$

Let

$$
\theta_{0}=\inf \left\{\theta \in(-\pi / 2, \pi): J_{\theta} \cap \partial \Omega \neq \emptyset\right\}
$$

where

$$
J_{\theta}=\left\{z: \arg (z)=-\theta, R_{0}<|z|<2 R_{0}\right\}
$$

Let

$$
S_{0}=\left\{z: R_{0}<|z|<2 R_{0},-\theta_{0} \leq \arg (z)<\pi / 2\right\}
$$

(See Figure 2.)
Choose $x_{1} \in J_{\theta_{0}} \cap \partial \Omega$. Let $R_{1}=\left|x_{1}\right| / 2$ and consider the annulus $A_{1}=\{z$: $\left.c_{1} R_{1} \leq\left|z-x_{1}\right| \leq R_{1}\right\}$. Any circular arc K centered at x_{1} in A_{1} with an angle of at least $\left(1+c_{2} / m\right) \pi$ is divided into two or three subarcs by the ray $\{z: \arg z=$ $\left.-\theta_{0}\right\}$. At least two of the arcs have an angle larger than $c_{2} \pi / 2 m$. If $\alpha>0$ is sufficiently small then the ray $L_{1}=\left\{z: \arg z=-\left(\theta_{0}+\alpha\right)\right\}$ also divides K into two or three subarcs, at least two of which have an angle larger than $c_{2} \pi / 4 m$. The same angle α will be used in each step of the construction. It is determined that, in each new step, newly constructed annular corridors centered at points x_{j+1} with $\arg x_{j+1}=-\theta_{j}$ will cross the ray $\left\{z: \arg z=-\left(\theta_{j}+\alpha\right)\right\}$. The angle α depends not on the size of R_{1} (or R_{j} for later j) but only on c_{1} and c_{2}. Specifically, choose $\alpha<\alpha^{*}$ where α^{*} is found by solving the triangle with sides $A=1, B=c_{1} / 2$,
and C and with angles $\angle A B=\pi-c_{2} \pi / 2 m, \angle C A=\alpha^{*}$, and $\angle B C$. The choice $\alpha=c_{1} c_{2} \pi / 32 m$ is sufficient for our purposes.

We can further choose a sufficiently small constant $c_{4}>0$ such that any circular arc centered at $a \in D\left(x_{1}, c_{4} R_{1}\right)$ with an angle of at least $\left(1+c_{2} / m\right) \pi$ and with radius between $c_{1} R_{1}$ and R_{1} will also be divided by the ray L_{1} into at least two subarcs with angle larger than $c_{2} \pi / 8 m$. Notice that c_{4} depends only on c_{1} and c_{2} and not on R_{1}. We will use the same constant c_{4} in subsequent similar steps of the construction with different radii R_{j}.

The circular arc $\partial D\left(x_{1}, c_{4} R_{0}\right) \cap S_{0}$ extends to a crosscut of Ω that determines a subdomain U_{1} not containing w_{1}. Because the width of S_{0} is greater than const $\cdot d_{0}$, we may argue as before using Harnack's inequality and the Beurling projection theorem in $D\left(w_{1}, d_{0}\right) \cup S_{0} \cup U_{1}$ to find a constant $C_{3}>0$ depending only on m such that

$$
\begin{equation*}
\omega\left(w_{1}, \partial U_{1} \cap \partial \Omega \cap D\left(x_{1}, c_{4} R_{0}\right), \Omega\right)>C_{3}>0 . \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\omega\left(w_{1}, \partial U_{1} \cap \partial \Omega \cap D\left(x_{1}, c_{4} R_{0}\right) \cap E_{m, k}, \Omega\right)>C_{3} / 2>0 \tag{4}
\end{equation*}
$$

by Lemma 2.1 with a sufficiently small initial choice of $\delta>0$.
For each point $a \in E_{m, k} \cap \partial U_{1} \cap D\left(x_{1}, c_{4} R_{0}\right)$, let $F_{a} \subset\left[c_{1} R_{1}, R_{1}\right]$ denote the set of r such that $L(a, r)>\left(1+c_{2} / m\right) \pi r$. By (2), the set F_{a} has $\left|F_{a}\right|>c_{3} R_{1}$ and, for each $r \in F_{a}, \gamma(a, r)$ intersects the ray L_{1}. Let x denote the orthogonal projection of x_{1} on the line L_{1}. For points z, w in the plane, let $\overline{z w}$ denote the line segment with endpoints z and w. Then $L_{1}=\overline{x_{0} x} \cup \overline{x\{\infty\}}$ and we write $F_{a}=F_{a}^{+} \cup F_{a}^{-}$, where F_{a}^{+}(resp., F_{a}^{-}) is the set of $r \in F_{a}$ such that $\overline{x\{\infty\}}$ (resp., $\overline{x_{0} x}$) divides $\gamma(a, r)$ into two subarcs, the smaller of which has an angle at least $c_{2} \pi / 8 m$. Then either $\left|F_{a}^{+}\right| \geq\left(c_{3} / 2\right) R_{1}$ or $\left|F_{a}^{-}\right| \geq\left(c_{3} / 2\right) R_{1}$. Making a choice of + or - so that the previous inequality holds, we rename the chosen set F_{a}^{*}. Let L_{1}^{*} denote the corresponding side of L_{1} with respect to the point x and let

$$
G_{a}=\left\{L_{1}^{*} \cap \gamma(a, r): r \in F_{a}^{*}\right\} .
$$

By (4) and the pigeonhole principle we find a_{1}, a_{1}^{*} in $E_{m, k} \cap \partial U_{1} \cap D\left(x_{1}, c_{4} R_{0}\right)$ and constants $c_{5}>0$ and $c_{6}>0$ such that $c_{5} R_{0} / 2<\left|a_{1}-a_{1}^{*}\right|<c_{5} R_{0}$ and $\left|G_{a_{1}} \cap G_{a_{1}^{*}}\right|>c_{6} R_{1}$. Note that here, $c_{5} \ll c_{4}$. In fact, it will be seen in the following paragraph that c_{5} should be chosen to be small compared to the angle $c_{2} \pi / 8 \mathrm{~m}$.

There are now two cases to consider.
Case I. For each ρ such that $c_{1} R_{1} \leq \rho \leq R_{1}$, we have $\gamma\left(a_{1}, \rho\right) \cap S_{0} \neq \emptyset$.
Case II. There is a radius ρ with $c_{1} R_{1} \leq \rho \leq R_{1}$ such that $\gamma\left(a_{1}, \rho\right) \cap S_{0}=\emptyset$.
Assume that we are in Case I. Given a and b in $G_{a_{1}} \cap G_{a_{1}^{*}}$, let $S(a, b) \subset \Omega$ be the subdomain of Ω between the crosscuts $\gamma\left(a_{1},\left|a_{1}-a\right|\right)$ and $\gamma\left(a_{1},\left|a_{1}-b\right|\right)$. Let $S^{*}(a, b)$ denote the annular corridor bounded by $\gamma\left(a_{1},\left|a_{1}-a\right|\right), \gamma\left(a_{1},\left|a_{1}-b\right|\right)$, $\overline{a b}$, and ∂S_{0}. We claim that there is a constant $c_{7}>0$ and points a and b in $G_{a_{1}} \cap G_{a_{1}^{*}}$ such that $|a-b|>c_{7} R_{1}$ and $S^{*}(a, b)$ contains no point of $\partial \Omega$. In fact, if $|a-b|<c_{7}^{*} R_{1}$ and if there is a point $\tau \in \partial \Omega$ contained in $S^{*}(a, b)$, then some piece of $\partial \Omega$ must connect τ to $\overline{a b}$ and then must extend past L_{1} through an angle of

Figure $1 S^{*}(a, b)$ can contain no point of $\partial \Omega$
at least $c_{2} \pi / 8 m$ in $S(a, b)$. Since c_{5} is very small compared to $c_{2} \pi / 8 m$ and since $\left|a_{1}^{*}-a_{1}\right| \geq c_{5} R_{0} / 2$, simple geometric considerations show that if c_{7}^{*} is sufficiently small then one of the $\operatorname{arcs} \gamma\left(a_{1}^{*},\left|a_{1}^{*}-b\right|\right)$ or $\gamma\left(a_{1}^{*},\left|a_{1}^{*}-a\right|\right)$ would intersect $\partial \Omega$ at a point too close to L_{1} for the points a and b to be contained in $G_{a_{1}^{*}}$ (see Figure 1). Because $\left|G_{a_{1}} \cap G_{a_{1}^{*}}\right|>c_{6} R_{1}$ and $\operatorname{diam}\left(G_{a_{1}} \cap G_{a_{1}^{*}}\right)<\left(1-c_{1}\right) R_{1}$, we find the desired constant c_{7} with $c_{7}^{*}>c_{7}>0$ and the points a and b with $c_{7} R_{1}<|a-b| \leq$ $c_{7}^{*} R_{1}$. Note that the constant c_{7} depends only on previously introduced constants and thus only on m. We rename this annular corridor $S^{*}(a, b) \subset \Omega$ as S_{0}^{*}.

Now, still assuming Case I, let

$$
J_{\theta}=\{z: \arg (z)=-\theta,|a|<|z|<|b|\}
$$

and let

$$
S_{1}=\left\{z:|a|<|z|<|b|,-\theta_{1} \leq \arg z \leq-\left(\theta_{0}+\alpha\right)\right\}
$$

where

$$
\theta_{1}=\inf \left\{\theta \in\left(\left(\theta_{0}+\alpha\right), \pi\right): J_{\theta} \cap \partial \Omega \neq \emptyset\right\}
$$

see Figure 2.
Choose $x_{2} \in J_{\theta_{1}} \cap \partial \Omega$. Let $R_{2}=\left|x_{2}\right| / 2$ and let L_{2} be the ray $\{z: \arg z=$ $\left.-\left(\theta_{1}+\alpha\right)\right\}$. The arc $\partial D\left(x_{2}, c_{4} R_{2}\right) \cap S_{0} \cup S_{0}^{*} \cup S_{1}$ defines a subdomain U_{2} not containing w_{1}. Arguing as before (with Harnack's inequality, the comparison principle, and the Beurling projection theorem) but now in $D\left(w_{1}, d_{0}\right) \cup S_{0} \cup S_{0}^{*} \cup S_{1} \cup U_{2}$ we find, using Lemma 2.1 with a sufficiently small choice of $\delta>0$, a constant $C_{4}>0$ such that

$$
\omega\left(w_{1}, \partial U_{2} \cap \partial \Omega \cap D\left(x_{2}, c_{4} R_{2}\right) \cap E_{m, k}, \Omega\right) \geq C_{4}>0 .
$$

Figure 2 Step 1 of the construction
As in the preceding step, we find points a_{2} and a_{2}^{*} in $D\left(x_{2}, c_{4} R_{2}\right) \cap \partial U_{2} \cap E_{m, k}$ and sets $G_{a_{2}}, G_{a_{2}^{*}} \subset L_{2}$ with the same properties as before. Then we again have Cases I and II as described previously.

Assume we are again in Case I. We repeat the argument made for the point x_{1} at the new point x_{2} and find two annular sectors. First S_{1}^{*} is found by the pigeonhole argument in the same way that S_{0}^{*} was found in the previous step. The new annular corridor S_{1}^{*} is centered at the point a_{2} near x_{2} and ends on the ray L_{2} after having passed through the additional angle of α clockwise around x_{0}. Now S_{2} is obtained in the same manner that S_{1} was previously. That is, S_{2} is centered at x_{0}, begins where S_{1}^{*} ends on L_{2}, and is stopped in its clockwise course around x_{0} by a point $x_{3} \in J_{\theta_{2}} \cap \partial \Omega$. In the j th subsequent step, a point x_{j} is found at the end of S_{j-1} and nearby points $a_{j}, a_{j}^{*} \in E_{m, k}$ are found as before. Case I at the j th step means that every principal separating arc for a_{j} with radius ρ between $c_{1} R_{j}$ and R_{j} intersects the union of the previously constructed annular corridors $S_{0}, S_{0}^{*}, S_{1}, S_{1}^{*}, \ldots, S_{j-1}$. The new annular corridors S_{j-1}^{*} and S_{j} are now found as in previous steps. Note that, after the j th step, the union of annular corridors so far constructed has turned through an angle of at least $j \alpha$ clockwise from the horizontal through x_{0}. A sufficiently small initial choice of $\delta>0$ ensures that there is an abundance of points of $E_{m, k}$ near the point x_{j} at the end of S_{j-1} so that the construction may continue to the $(j+1)$ th step.

Assuming that we only encounter Case I in each step, a sufficiently small choice of δ at the beginning of the proof allows us to repeat the argument $N=[2 \pi / \alpha]$ times, and this determines the choice of N at the beginning of the construction. Since the union of constructed corridors turns by an additional angle of at least α with each step, we will have constructed a connected union of annular corridors \mathcal{C} in Ω contained in the annulus

$$
\left\{z: 2^{-N} R_{0}<\left|z-x_{0}\right|<2^{N} R_{0}\right\}
$$

The union of \mathcal{C} with $D\left(w_{1}, d_{0}\right)$ contains a closed curve in Ω surrounding the boundary point x_{0}.

If Case II occurs at any step n before the N th then there is a principal separating arc for a_{n} of radius $\rho\left(c_{1} R_{n} \leq \rho \leq R_{n}\right)$ that does not intersect $S_{0} \cup S_{0}^{*} \cup S_{1} \cup$ $S_{1}^{*} \cup \cdots \cup S_{n-1}$. It follows that the circular crosscut centered at a_{n} of radius ρ that does intersect $S_{0} \cup S_{0}^{*} \cup S_{1} \cup S_{1}^{*} \cup \cdots \cup S_{n-1}$ cannot be a separating arc for a_{n} at all. This means that w_{0} is located in Ω on the concave side of this arc but on the convex side of the arcs that make up S_{n-1}. We then continue the construction at the $(n+1)$ th step with the original annulus A_{0} centered at x_{0} but now turning in the counterclockwise direction. Since we have found Case II in the clockwise direction, we cannot find Case II in the counterclockwise direction without repeating the situation of w_{0} being on the concave side of the last nonseparating circular arc yet on the convex side of the arcs in the last S_{n-1} from Case I. Simple topological considerations rule out this possibility and we thus find a closed curve in Ω surrounding x_{0} in at most N more steps.

It follows that there can be no point of density of $f^{-1}\left(E_{m, k}\right)$ and that the harmonic measure of $E_{m, k}$ is therefore zero. The theorem is proved.

References

[1] L. V. Ahlfors, Conformal invariants, Topics in geometric function theory, McGrawHill, New York, 1973.
[2] A. Beurling, Ensembles exceptionels, Acta Math. 72 (1939), 1-13.
[3] J. Garnett and D. Marshall, Harmonic measure, Cambridge University Press (to appear).
[4] J. E. McMillan, Boundary behavior of a conformal mapping, Acta Math. 123 (1969), 43-67.
[5] -, On the boundary correspondence under conformal mapping, Duke Math. J. 37 (1970), 725-739.
[6] M. D. O'Neill, J. E. McMillan's area theorem, Colloq. Math. 79 (1999), 229-234.
[7] M. D. O'Neill and R. E. Thurman, A problem of McMillan on conformal mappings, Pacific Math. J. (to appear).
[8] Ch. Pommerenke, Boundary behavior of conformal maps, Springer-Verlag, Berlin, 1992.
M. D. O'Neill

Department of Mathematics
Claremont McKenna College
Claremont, CA 91711
moneill@mckenna.edu
R. E. Thurman

Insightful Corp.
1700 Westlake Avenue N, Suite 500
Seattle, WA 98109
rthurman@insightful.com

