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McMillan’s Area Problem

Michael D. O’Neill & Robert E. Thurman

1. Introduction

Let A denote the set of ideal accessible boundary points of a simply connected
domain�. Recall that these are the finite radial limit points of the Riemann map
from the unit disk onto� and that each radius along which the limit exists gives
a distinct ideal boundary point. In particular, distinct ideal accessible boundary
points may have the same complex coordinate. Fixw0 ∈ � and for eacha ∈ A
andr < |w0 − a| let γ (a, r) ⊂ {z : |z − a| = r} be the circular crosscut of�
separatinga fromw0 that can be joined toa by a Jordan arc contained in�∩ {z :
|z− a| < r}. Throughout this paper we will refer toγ (a, r) as theprincipal sep-
arating arc for a of radiusr.

LetL(a, r) denote the Euclidean length ofγ (a, r) and let

A(a, r) =
∫ r

0
L(a, ρ) dρ.

In [5], McMillan showed that

lim sup
r→0

A(a, r)

πr 2
≥ 1

2

almost everywhere on∂�with respect to harmonic measure (denoted hereafter by
a.e.-ω).

The purpose of this paper is to prove Theorem A.

Theorem A.

lim inf
r→0

A(a, r)

πr 2
≤ 1

2
a.e.-ω.

This answers a question raised at the end of [5]. In an earlier paper [7], we proved
the following theorem.

Theorem B.

lim inf
r→0

L(a, r)

2πr
≤ 1

2
a.e.-ω.

This is also in answer to the last paragraph of [5]. Theorem A implies Theorem B
but the basic idea of the proof is the same as in [7]. Let
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Em,k = {a ∈A | A(a, r) > (1/2+1/m)πr 2 ∀r < 1/k}
and consider a Riemann mapf : D→ � from the unit disk to� such thatf(0) =
w0. We will show thatf −1(Em,k) has zero Lebesgue measure in the unit circleT
for eachm andk. We do this by showing that, iff −1(Em,k) has a point of density
for somem andk, then the image of that point would be surrounded by a closed
curve contained in�. Since the union of all such sets then has measure zero, this
completes the proof.

The details of the present argument are more complicated than in [7], so it may
be helpful to read [7] first to get the main idea with fewer technicalities. It may
also be helpful to take an early glance at Figures 1 and 2 near the end of this paper.
For more detailed background on the problem, one can also refer to [4], [5], and
[6]. For the ideas from geometric function theory used here, we refer to [1], [3],
and [8].

2. Proof of Theorem A

In order to construct a curve in� that will surround a boundary point and thus
give the contradiction proving Theorem A, we will need to know that centered at
almost every point ofEm,k is a wide-angled annular corridor whose thickness is
bounded from below. That such corridors exist will be a consequence of the accu-
mulation ofEm,k near the image of a point of density off −1(Em,k). In fact, the
abundance of points ofEm,k will allow us to construct a chain of such corridors in
� that will wrap around a boundary point.

We will require the following lemma. Letω(z,E,�) denote the harmonic mea-
sure of the setE ⊂ ∂� from the pointz∈�.
Lemma 2.1. Let� be a simply connected domain inC and letf be a Riemann
mapf : D → �. LetE ⊂ ∂� be a Borel set such thatf −1(E) has a point of
density. Then, givenδ > 0, there is a pointw ∈� such that

ω(w,E, ∂�) > 1− δ.
Proof. Let η be a point of density off −1(E) ⊂ T. For any intervalI ⊂ T cen-
tered atη, there is a uniquer(I, δ) with 0< r(I, δ) < 1 such that

ω(r(I, δ)η, I,D) = 1− δ/2.

Let zI = r(I, δ)η. Given anyε > 0, there is an intervalI centered atη such that

|I \ f −1(E)| < ε|I |,
where | · | denotes linear measure. Integrating the Poisson kernel atzI over
I \ f −1(E) then gives

ω(zI , I \ f −1(E),D) < δ/2

if |I | is sufficiently small. Therefore

ω(zI , I ∩ f −1(E),D) > 1− δ,
and takingw = f(zI ) finishes the proof of the lemma.
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Let df (zI ) denote the Euclidean distance fromf(zI ) to ∂�. Actually, results of
Beurling [2] imply the existence of a constantK such that a disk of radiusKdf (zI )
contains all the harmonic measure of the setE found in the lemma (see [8, p.142]).

Letw0 = f(0) and assume thatη ∈T is a point of density off −1(Em,k) ⊂ T.
The finite number of steps required to obtain a contradiction in the construction to
follow will depend only on the numberm in the definition ofEm,k. It will be clear
from the construction that ifδ > 0 is sufficiently small and ifω(w1, Em,k,�) >

1− δ for some pointw1, then the required number of steps can be completed.
Moreover, the choice ofδ depends only onm. We chooseδ to be this small and
apply Lemma 2.1 withE = Em,k, thus obtaining the desired pointw1.

Let d0 be the Euclidean distance fromw1 to ∂� and letx0 ∈ ∂� be a point such
that |x0 − w1| = d0. Sincef(η) ∈ A we can assumed0 � 1/k, wherek is the
integer in the definition ofEm,k.

We will introduce positive constantsc0, c1, c2, . . . andC1, C2, . . . . Their values
will be determined in the discussion to follow and will either be purely numeri-
cal or depend only onm (in the definition ofEm,k). For anyw ∈C andr > 0, let
D(w, r) denote the set

{z∈C : |z− w| < r}.
Let N be a large integer to be determined later. We will see that it can be

chosen so thatN ≤ (const· m3/2). Sincex0 is a boundary point nearest to
w1, we may chooseR0 so thatD(w1, d0) ∩ D(x0,2NR0) has area greater than(

1
2 − 1

8m

)
π(2NR0)

2. Choosec0 so that ifx∗0 is any point inD(x0, c0R0) then the
area ofD(w1, d0) ∩D(x∗0, R0) is greater than

(
1
2 − 1

4m

)
πR2

0. Later, we will also
needc0� 1/

√
2m. It is clear thatR0 is proportional tod0 in a ratio that depends

only onm.
If δ > 0 is sufficiently small, then there exists a set of points ofEm,k of

positive harmonic measure contained inD(x0, c0R0). In fact, the circular arc
∂D(x0, c0R0) ∩ D(w1, d0) extends to a circular crosscut of� that determines a
unique subdomain,U0, of� not containingw1. The midpoint,w∗, of the circular
arc∂D(x0, c0R0/2)∩D(w1, d0) is contained inU0. By the comparison principle
for harmonic measure and the Beurling projection theorem, there exists a constant
C1 > 0 such that

ω(w∗, ∂U0 ∩ ∂� ∩D(x0, c0R0),�) ≥ C1 > 0;
by repeated application of Harnack’s inequality inD(w1, d0) ∪ U0, there is then
a constantC2 such that

ω(w1, ∂U0 ∩ ∂� ∩D(x0, c0R0),�) ≥ C2 > 0.

By Lemma 2.1, ifδ is sufficiently small then

ω(w1, ∂U0 ∩ ∂� ∩D(x0, c0R0) ∩ Em,k,�) ≥ C2/2> 0, (1)

as claimed.
Let x∗0 be an element of∂U0 ∩ D(x0, c0R0) ∩ Em,k. Note that, becausex∗0 ∈

Em,k, we have ∫ R0

R0/
√

2m
L(x∗0, ρ) dρ ≥

(
1

2
+ 1

2m

)
πr 2
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and, by the choice ofc0, the area of{
z∈C : R0/

√
2m ≤ |z− x∗0| ≤ R0

} ∩D(w1, d0)

is greater than
(

1
2 − 1

2m

)
πR2

0. If

γ (x∗0, r) ∩D(w1, d0) = ∅
for eachr ∈ [R0/

√
2m,R0

]
, then the area of the annulus{

z∈C : R0/
√

2m ≤ |z− x∗0| ≤ R0
}

is greater than (
1

2
+ 1

2m

)
πR2

0 +
(

1

2
− 1

2m

)
πR2

0 = πR2
0.

This contradiction shows that there exists anr ∈ [R0/
√

2m,R0
]

such that
γ (x∗0, r) ∩D(w1, d0) 6= ∅. Simple topological considerations show that circular
crosscuts of smaller radius centered atx∗0 that intersectD(w1, d0)must be principal
separating arcs forx∗0. Letc1= 1/

√
2m. Thus, shrinkingR0 by a factor no smaller

thanc1/3,we may assume that for eachr ≤ 3R0 we haveγ (x∗0, r)∩D(w1, d0) 6=
∅. It follows that for eachr ≤ 2R0 we haveγ (x0, r) ∩D(w1, d0) 6= ∅.

By a slight strengthening of the preceding argument it is clear that there are
constantsc2, c3 > 0 such that, if 0< R < 1/k anda ∈Em,k, then

|{r ∈ [c1R,R] : L(a, r) > (1+ c2/m)πr}| ≥ c3R. (2)

We will now assume without loss of generality thatx0 is the origin and thatw1

is on the positive imaginary axis. Let

A0 = {z : R0 < |z| < 2R0}.
Let

θ0 = inf {θ ∈ (−π/2, π) : Jθ ∩ ∂� 6= ∅},
where

Jθ = {z : arg(z) = −θ, R0 < |z| < 2R0}.
Let

S0 = {z : R0 < |z| < 2R0, −θ0 ≤ arg(z) < π/2}.
(See Figure 2.)

Choosex1 ∈ Jθ0 ∩ ∂�. Let R1 = |x1|/2 and consider the annulusA1 = {z :
c1R1 ≤ |z − x1| ≤ R1}. Any circular arcK centered atx1 in A1 with an angle of
at least(1+ c2/m)π is divided into two or three subarcs by the ray{z : argz =
−θ0}. At least two of the arcs have an angle larger thanc2π/2m. If α > 0 is suf-
ficiently small then the rayL1 = {z : argz = −(θ0 + α)} also dividesK into
two or three subarcs, at least two of which have an angle larger thanc2π/4m. The
same angleα will be used in each step of the construction. It is determined that,
in each new step, newly constructed annular corridors centered at pointsxj+1 with
argxj+1 = −θj will cross the ray{z : argz = −(θj + α)}. The angleα depends
not on the size ofR1 (orRj for laterj) but only onc1 andc2. Specifically, choose
α < α∗ whereα∗ is found by solving the triangle with sidesA = 1, B = c1/2,
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andC and with angles∠AB = π − c2π/2m, ∠CA = α∗, and∠BC. The choice
α = c1c2π/32m is sufficient for our purposes.

We can further choose a sufficiently small constantc4 > 0 such that any circu-
lar arc centered ata ∈D(x1, c4R1) with an angle of at least(1+ c2/m)π and with
radius betweenc1R1 andR1 will also be divided by the rayL1 into at least two
subarcs with angle larger thanc2π/8m. Notice thatc4 depends only onc1 andc2

and not onR1. We will use the same constantc4 in subsequent similar steps of the
construction with different radiiRj .

The circular arc∂D(x1, c4R0)∩S0 extends to a crosscut of� that determines a
subdomainU1 not containingw1. Because the width ofS0 is greater than const·d0,

we may argue as before using Harnack’s inequality and the Beurling projection
theorem inD(w1, d0) ∪ S0 ∪ U1 to find a constantC3 > 0 depending only onm
such that

ω(w1, ∂U1∩ ∂� ∩D(x1, c4R0),�) > C3 > 0. (3)

Therefore,

ω(w1, ∂U1∩ ∂� ∩D(x1, c4R0) ∩ Em,k,�) > C3/2> 0 (4)

by Lemma 2.1 with a sufficiently small initial choice ofδ > 0.
For each pointa ∈Em,k∩∂U1∩D(x1, c4R0), letFa ⊂ [c1R1, R1] denote the set

of r such thatL(a, r) > (1+ c2/m)πr. By (2), the setFa has|Fa| > c3R1 and, for
eachr ∈Fa, γ (a, r) intersects the rayL1. Let x denote the orthogonal projection
of x1 on the lineL1. For pointsz,w in the plane, letzw denote the line segment
with endpointsz andw. ThenL1 = x0x ∪ x{∞} and we writeFa = F +a ∪ F −a ,
whereF +a (resp.,F −a ) is the set ofr ∈ Fa such thatx{∞} (resp.,x0x) divides
γ (a, r) into two subarcs, the smaller of which has an angle at leastc2π/8m. Then
either|F +a | ≥ (c3/2)R1 or |F −a | ≥ (c3/2)R1. Making a choice of+ or− so that
the previous inequality holds, we rename the chosen setF ∗a . Let L∗1 denote the
corresponding side ofL1 with respect to the pointx and let

Ga = {L∗1 ∩ γ (a, r) : r ∈F ∗a }.
By (4) and the pigeonhole principle we finda1, a

∗
1 inEm,k ∩∂U1∩D(x1, c4R0)

and constantsc5 > 0 andc6 > 0 such thatc5R0/2 < |a1 − a∗1| < c5R0 and
|Ga1∩Ga∗1 | > c6R1. Note that here,c5� c4. In fact, it will be seen in the follow-
ing paragraph thatc5 should be chosen to be small compared to the anglec2π/8m.

There are now two cases to consider.

Case I.For eachρ such thatc1R1 ≤ ρ ≤ R1, we haveγ (a1, ρ) ∩ S0 6= ∅.
Case II. There is a radiusρ with c1R1 ≤ ρ ≤ R1 such thatγ (a1, ρ) ∩ S0 = ∅.

Assume that we are in Case I. Givena andb in Ga1 ∩ Ga∗1 , let S(a, b) ⊂ � be
the subdomain of� between the crosscutsγ (a1, |a1− a|) andγ (a1, |a1− b|). Let
S ∗(a, b) denote the annular corridor bounded byγ (a1, |a1− a|), γ (a1, |a1− b|),
ab, and ∂S0. We claim that there is a constantc7 > 0 and pointsa andb in
Ga1∩Ga∗1 such that|a− b| > c7R1 andS ∗(a, b) contains no point of∂�. In fact,
if |a − b| < c∗7R1 and if there is a pointτ ∈ ∂� contained inS ∗(a, b), then some
piece of∂�must connectτ toab and then must extend pastL1 through an angle of
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Figure 1 S ∗(a, b) can contain no point of∂�

at leastc2π/8m in S(a, b). Sincec5 is very small compared toc2π/8m and since
|a∗1−a1| ≥ c5R0/2, simple geometric considerations show that ifc∗7 is sufficiently
small then one of the arcsγ (a∗1, |a∗1 − b|) or γ (a∗1, |a∗1 − a|) would intersect∂� at
a point too close toL1 for the pointsa andb to be contained inGa∗1 (see Figure 1).
Because|Ga1 ∩Ga∗1 | > c6R1 and diam(Ga1 ∩Ga∗1 ) < (1− c1)R1, we find the de-
sired constantc7 with c∗7 > c7 > 0 and the pointsa andb with c7R1 < |a − b| ≤
c∗7R1. Note that the constantc7 depends only on previously introduced constants
and thus only onm. We rename this annular corridorS ∗(a, b) ⊂ � asS ∗0 .

Now, still assuming Case I, let

Jθ = {z : arg(z) = −θ, |a| < |z| < |b|}
and let

S1= {z : |a| < |z| < |b|, −θ1 ≤ argz ≤ −(θ0 + α)},
where

θ1= inf {θ ∈ ((θ0 + α), π) : Jθ ∩ ∂� 6= ∅};
see Figure 2.

Choosex2 ∈ Jθ1 ∩ ∂�. Let R2 = |x2|/2 and letL2 be the ray{z : argz =
−(θ1+α)}. The arc∂D(x2, c4R2)∩S0∪S ∗0 ∪S1 defines a subdomainU2 not con-
tainingw1. Arguing as before (with Harnack’s inequality, the comparison princi-
ple, and the Beurling projection theorem) but now inD(w1, d0)∪S0∪S ∗0 ∪S1∪U2

we find, using Lemma 2.1 with a sufficiently small choice ofδ > 0, a constant
C4 > 0 such that

ω(w1, ∂U2 ∩ ∂� ∩D(x2, c4R2) ∩ Em,k,�) ≥ C4 > 0.
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Figure 2 Step 1 of the construction

As in the preceding step, we find pointsa2 anda∗2 inD(x2, c4R2)∩ ∂U2∩Em,k
and setsGa2,Ga∗2 ⊂ L2 with the same properties as before. Then we again have
Cases I and II as described previously.

Assume we are again in Case I. We repeat the argument made for the pointx1 at
the new pointx2 and find two annular sectors. FirstS ∗1 is found by the pigeonhole
argument in the same way thatS ∗0 was found in the previous step. The new annular
corridorS ∗1 is centered at the pointa2 nearx2 and ends on the rayL2 after having
passed through the additional angle ofα clockwise aroundx0. NowS2 is obtained
in the same manner thatS1 was previously. That is,S2 is centered atx0, begins
whereS ∗1 ends onL2, and is stopped in its clockwise course aroundx0 by a point
x3 ∈ Jθ2∩∂�. In thej th subsequent step, a pointxj is found at the end ofSj−1 and
nearby pointsaj, a∗j ∈Em,k are found as before. Case I at thej th step means that
every principal separating arc foraj with radiusρ betweenc1Rj andRj intersects
the union of the previously constructed annular corridorsS0, S

∗
0, S1, S

∗
1, . . . , Sj−1.

The new annular corridorsS ∗j−1 andSj are now found as in previous steps. Note
that, after thej th step, the union of annular corridors so far constructed has turned
through an angle of at leastjα clockwise from the horizontal throughx0. A suf-
ficiently small initial choice ofδ > 0 ensures that there is an abundance of points
of Em,k near the pointxj at the end ofSj−1 so that the construction may continue
to the(j +1)th step.

Assuming that we only encounter Case I in each step, a sufficiently small choice
of δ at the beginning of the proof allows us to repeat the argumentN = [2π/α]
times, and this determines the choice ofN at the beginning of the construction.
Since the union of constructed corridors turns by an additional angle of at leastα

with each step, we will have constructed a connected union of annular corridorsC
in � contained in the annulus
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{z : 2−NR0 < |z− x0| < 2NR0}.
The union ofC withD(w1, d0) contains a closed curve in� surrounding the bound-
ary pointx0.

If Case II occurs at any stepn before theN th then there is a principal separat-
ing arc foran of radiusρ (c1Rn ≤ ρ ≤ Rn) that does not intersectS0 ∪ S ∗0 ∪ S1∪
S ∗1 ∪ · · · ∪ Sn−1. It follows that the circular crosscut centered atan of radiusρ that
does intersectS0∪S ∗0 ∪S1∪S ∗1 ∪· · ·∪Sn−1 cannot be a separating arc foran at all.
This means thatw0 is located in� on the concave side of this arc but on the con-
vex side of the arcs that make upSn−1. We then continue the construction at the
(n+ 1)th step with the original annulusA0 centered atx0 but now turning in the
counterclockwise direction. Since we have found Case II in the clockwise direc-
tion, we cannot find Case II in the counterclockwise direction without repeating
the situation ofw0 being on the concave side of the last nonseparating circular arc
yet on the convex side of the arcs in the lastSn−1 from Case I. Simple topolog-
ical considerations rule out this possibility and we thus find a closed curve in�

surroundingx0 in at mostN more steps.
It follows that there can be no point of density off −1(Em,k) and that the har-

monic measure ofEm,k is therefore zero. The theorem is proved.
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