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e to theA, in a New Way

Paul Federbush

The support of the Fourier transform ofeiA was established by Nelson in [4] (that
is, the Fourier transform of each entry of the matrixeiA in terms of the entries of
the hermitian matrixA). But I believe this result of Nelson is very little known in
the mathematical community at large. In further work [1; 3; 5], the transform was
exhibited in the 2×2 case and presented in some unwieldy forms in higher dimen-
sions. Our expressions are new and in practical form for some low-dimensional
cases. We exhibit explicit expressions for traceless hermitian matrices of sizes
2× 2, 3× 3, and 4× 4. In d dimensions, whereA acts onCd , we employ ma-
tricesW, hermitian projections of rank 1. ThusW may be written asWij = viv̄j,
wherevi is a unit vector inCd and Tr(AW ) = 〈v,Av〉. The integral

∫
d� de-

notes a normalized integral over all suchW defined by integrating the associated
vi over a unit sphere inCd with the normalized unitary-invariant measure. (That
the support of the Fourier transform lies on the complex projective space of such
W is the content of Nelson’s theorem.) The expressions we give are not unique
among similar forms, and it is clear that one can derive such expressions in any
number of dimensions. Substantial progress in the general case is made in [2].
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3-dimensional case:
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4-dimensional case:
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These expressions were derived using trickery and chicanery that will likely
not be useful to one proving a general theory: extracting leading and subleading
asymptotic behaviors as one eigenvalue ofA approaches∞ (see Appendix B);
finding the simple rational numbers involved in the “angular integrals” ofW by
numerical integration (see Appendix A). The expressions were also checked by
numerical integration. The 2-dimensional expression of equation (1) is intimately
related to the expression derived in [1] for this dimension.

Appendix A

In this appendix we collect the most useful of the “angular integrals” computed.
All of these results were derived numerically, but analytic derivation should be
straightforward, if tedious. We denote

Av(f ) ≡
∫
d�f (4)

for any function ofW,f.
2 dimensions:
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3 dimensions:
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4 dimensions:
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Appendix B

In this appendix we sketch the computations used to derive equation (2) in 3 di-
mensions. The derivation of the 4-dimensional case, equation (3), is similar but
more complex. We letA have the form 1 0 0

0 λ1 0
0 0 λ2

, (12)

with
1+ λ1+ λ2 = 0 (13)

and
1> λ1, 1> λ2. (14)

We also set

W0 =
 1 0 0

0 0 0
0 0 0

. (15)

We then find (via steepest descent or Laplace’s method) that

I(s) ≡
∫
d�es Tr(AW )P(W ) (16)

ass goes to+∞ and has leading asymptotic behavior coming entirely from an
arbitrarily small neighborhood ofW0, and that

I(s) ∼ 2

s2(1− λ1)(1− λ2)
esP(W0). (17)

A little calculation then shows

(1− λ1)(1− λ2) = 3(Tr(AW0))
2 − 1

2 Tr(A2). (18)

Equations (16)–(18) explain the choice of terms in (2) quadratic inA. We found
terms linear inA by writing the most general invariant linear expression and check-
ing the supposed identity (2) order-by-order inA, using the formulas in Appen-
dix A. (If we allow the invariant Tr(A2W) to appear in the quadratic terms, say
by adding the expression Tr(A2W) − (Tr(AW ))2 to the quadratic terms and ap-
propriately modifying the linear terms, then alternate expressions for the identity
equation (2) are obtained.)
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