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1. Introduction

Let n,m ∈ N andd = (d1, . . . , dm) ∈ Rm. Define the family of dilations{δt }t>0

onRm by
δt(x1, . . . , xm) = (t d1x1, . . . , t

dmxm). (1)

We say that8 : Rn → Rm is a (nonisotropic) homogeneous mapping of degree
d if

8(ty) = δt(8(y)) (2)

holds for allt > 0 andy ∈Rn.

Let Sn−1 denote the unit sphere inRn that is equipped with the normalized
Lebesgue measuredσ. For a Calderón–Zygmund kernel onRn,

K(y) = �(y)

|y|n , (3)

where� is homogeneous of degree 0 and satisfies∫
Sn−1

�(y) dσ(y) = 0; (4)

we define the singular integral operatorT�,8 onRm by

(T�,8f )(x) = p.v.
∫

Rn
f(x −8(y))K(y) dy (5)

for x ∈Rm.

The operators defined in (5) have their roots in the classical Calderón–Zygmund
operators

(T�,I f )(x) = p.v.
∫

Rn
f(x − y)K(y) dy, (6)

which corresponds ton = m, d = (1, . . . ,1), and8 = I = idRn→Rn. In their
fundamental work on the theory of singular integrals, Calderón and Zygmund
[1] proved that the operatorsT�,I in (6) are bounded onLp for 1 < p < ∞ if
� ∈ L log+L(Sn−1). Their result is nearly optimal in the sense that the space
L log+L(Sn−1) cannot be replaced by any other Orlicz spaceLφ(Sn−1) with aφ
that is increasing and satisfies
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lim
t→∞

φ(t)

t ln t
= 0

(e.g.,φ(t) = t(ln t)1−ε).
In the ensuing development, an improvement of the result of Calderón and Zyg-

mund was obtained by Connet [4] and Ricci and Weiss [12], who proved inde-
pendently that theLp boundedness ofT�,I still holds if � ∈ H1(Sn−1). Here,
H1(Sn−1) denotes the Hardy space on the unit sphere and containsL log+L(Sn−1)

as a proper subspace. Their result can be stated as follows.

Theorem A. Let � ∈ H1(Sn−1) satisfy(4), and letI denote the identity map-
ping fromRn to itself. Then, for everyp ∈ (1,∞), there exists aCp > 0 such
that

‖T�,I f ‖Lp(Rn) ≤ Cp‖f ‖Lp(Rn). (7)

Fan, Guo, and Pan [6] have studied theLp boundedness of singular integrals along
homogeneous surfaces with rough kernels.

Theorem B [6]. Let�∈H1(Sn−1) satisfy(4). Letφ : Rn→ R be homogeneous
of degreeh with h > 0 and8(y) = (y, φ(y)). Let T�,8 be defined as in(5). If
φ
∣∣
Sn−1 is real-analytic then, for everyp ∈ (1,∞), there exists aCp > 0 such that

‖T�,8f ‖Lp(Rn+1) ≤ Cp‖f ‖Lp(Rn+1). (8)

One of our main results in this paper is the following theorem.

Theorem 1. Let�∈H1(Sn−1) satisfy(4). Let8 : Rn→ Rm be a homogeneous
mapping of degreed = (d1, . . . , dm) with d1, . . . , dm > 0. LetT�,8 be defined as
in (5). If 8

∣∣
Sn−1 is real-analytic then, for everyp ∈ (1,∞), there exists aCp > 0

such that
‖T�,8f ‖Lp(Rm) ≤ Cp‖f ‖Lp(Rm). (9)

Remarks. (1) The functionT�,8f is defined initially forf in a dense subset of
Lp(Rn), sayS(Rn). Once (9) is established for allf ∈S(Rn), the operatorT�,8
can be extended to the fullLp(Rn) in the usual manner.

(2) Theorem B can now be seen as a special case of Theorem 1 by settingm =
n + 1, 8(y) = (y, φ(y)), andd = (1, . . . ,1, h). It should be mentioned that the
caseh < 0 was also addressed in [6]. We shall treat the cased = (d1, . . . , dm) /∈
(R+)m in Theorem 2.

(3) One may combine Theorem 1 with the method described in [15, Chap. XI,
Sec. 2.4] to obtain theLp boundedness ofT�,8 when8 is a polynomial (or gen-
eralized polynomial) mapping and�∈H1(Sn−1). See also [7] and [14].

The main tools used in this paper come from Duoandikoetxea and Rubio de Francia
[5], Fan and Pan [7], and Ricci and Stein [10]. The paper is organized as follows.
A few definitions and lemmas will be recalled or proved in Section 2. Section 3
contains the proof of Theorem 1. Section 4 discusses extensions of Theorem 1 by
allowing thedj to be negative.

Throughout the rest of this paper, the letterC will stand for a constant but not
necessarily the same one in each occurrence.
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2. Some Definitions and Lemmas

The Hardy spaceH1(Sn−1) has many equivalent definitions, one of which is given
in terms of the following radial maximal operator onSn−1:

P + : f → sup
t∈[0,1)

∣∣∣∣∫
Sn−1

Ptx(y)f(y) dσ

∣∣∣∣,
wherePu(y) = (1− |u|2)/|y − u|n.
Definition 2.1. An integrable functionf on Sn−1 is in the spaceH1(Sn−1) if
‖f ‖Sn−1 = ‖P +f ‖L1(Sn−1) <∞.
Next we shall recall the atomic decomposition forH1(Sn−1). For z ∈ Sn−1 and
r > 0, we letD(z, r) = Sn−1∩ {y ∈Rn : |y − z| < r}.
Definition 2.2. A functiona : Sn−1 → C is anH1 atom if the following are
satisfied:

(i) supp(a) ⊆ D(z, r) for somez∈Sn−1 andr > 0;
(ii) ‖a‖∞ ≤ r−(n−1);
(iii)

∫
D(z,r)

a(y) dσ(y) = 0.

The following result is well known (see e.g. [2; 3]).

Lemma 2.3. If �∈H1(Sn−1) satisfies(4), then there exist{cj }j∈N ⊂ C andH1

atoms{aj }j∈N such that

� =
∞∑
j=1

cj aj and ‖�‖H1(Sn−1) ≈
∞∑
j=1

|cj |.

In part of our analysis we shall encounter oscillatory integrals with generalized
polynomials as their phase functions. Thus we need the following lemma of van
der Corput type, which was proved by Ricci and Stein [10].

Lemma 2.4. Letn ∈N, µ1, . . . , µn ∈ R, andd1, . . . , dn be distinct positive real
numbers. Letε = min{1/d1,1/n}. Then there exists a positive constantC, inde-
pendent of{µj }, such that∣∣∣∣∫ τ

δ

ei(µ1t
d1+···+µnt dn )ψ(t) dt

∣∣∣∣ ≤ C|µ1|−ε
(
|ψ(τ)| +

∫ τ

δ

|ψ ′(t)| dt
)

(10)

holds for0 ≤ δ < τ ≤ 1 andψ ∈C1([0,1]).

Lemma 2.5. Leth1, . . . , hl > 0 be distinct and

Q(t, u) = t h1
∑
|α|≤s

aαu
α +

n∑
j=2

t hj wj(u),

wheret ∈ R, u = (u1, . . . , un−1) ∈ Rn−1, α ∈ (N ∪ {0})n−1, aα ∈ R, andwj(·)
are real-valued. Letr > 0 andb(u) be a measurable function on[−r, r] n−1 that
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satisfies‖b‖∞ ≤ r−(n−1). Then there exist positive constantsC and γ indepen-
dent of {aα}, {wj(·)}, b(·), r such that∫ 1

0

∣∣∣∣∫
[−r,r] n−1

eiQ(t,u)b(u) du

∣∣∣∣ dt ≤ C(r s ∑
|α|=s
|aα|

)−γ
. (11)

Proof. We shall establish (11) by employing the ideas in [6] in conjunction with
Lemma 2.4. By using a dilation and a rotation (if necessary) we may assume that
r = 1 and

|a(s,0, ...,0)| ≈
∑
|α|=s
|aα|. (12)

Let η = (u2, . . . , un−1) andR(u) =∑|α|≤s aαuα. Then∫ 1

0

∣∣∣∣∫
[−1,1]n−1

eiQ(t,u)b(u) du

∣∣∣∣ dt
≤
∫

[−1,1]n−2

(∫ 1

0

∣∣∣∣∫ 1

−1
eiQ(t,u1,η)b(u1, η) du1

∣∣∣∣2 dt)1/2

dη

≤
∫

[−1,1]n−2

(∫ 1

−1

∫ 1

−1
I(u1, v1, η) du1 dv1

)1/2

dη,

where

I(u1, v1, η) =
∣∣∣∣∫ 1

0
ei[Q(t,u1,η)−Q(t,v1,η)] dt

∣∣∣∣
≤ C|R(u1, η)− R(v1, η)|−2γ

with 2γ = min{1/h1,1/l,1/(s +1)}. Since

R(u1, η) = a(s,0, ...,0)us1 + lower powers inu1,

we may apply an inequality proved by Ricci and Stein [10, p. 182] and (12) to
obtain ∫ 1

−1
I(u1, v1, η) du1 ≤ C

( ∑
|α|=s
|aα|

)−2γ

uniformly in v1 andη. Therefore,∫ 1

0

∣∣∣∣∫
[−1,1]n−1

eiQ(t,u)b(u) du

∣∣∣∣ dt ≤ C( ∑
|α|=s
|aα|

)−γ
,

which proves (11).

Lemma 2.6. For j ∈ {1,2}, letUj be a domain inRnj andKj a compact subset of
Uj . Leth(·, ·) be a real-analytic function onU1×U2 such thath(·, z) is a nonzero
function for everyz ∈ U2. Then there exists a positive numberδ = δ(h,K1,K2)

such that

sup
z∈K2

∫
K1

|h(w, z)|−δ dw <∞. (13)
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Proof. By the compactness ofK1 andK2 it suffices to show that, for every
(w0, z0) ∈ U1× U2, there exist positive numbersr = r(w0, z0), s = s(w0, z0),

andδ = δ(w0, z0) such that

sup
|z−z0|<s

∫
|w−w0|<r

|h(w, z)|−δ dw <∞. (14)

Clearly we may assume that(w0, z0) = (0,0) andh(0,0) = 0. Sinceh(·,0)
is not identically zero, there exists ak ∈N such that

∂βh(w,0)

∂wβ

∣∣
w=0 = 0

for every multi-indexβ = (β1, . . . , βn1) satisfying|β| < k and

∂αh(w,0)

∂wα

∣∣
w=0 6= 0

for someα = (α1, . . . , αn1) with |α| = k. Thus, there exists a unit vectorη such
that

(η · ∇w)kh(w,0)
∣∣
w=0 6= 0.

By using a rotation (in thew variable) if necessary, we may assume thatη =
(1,0, . . . ,0). Then

∂ lh

∂wl
1

(0,0) = 0

for 0 ≤ l ≤ k −1 and
∂kh

∂wk
1

(0,0) 6= 0.

Let w̃ = (w2, . . . , wn1). By the Malgrange preparation theorem [8] there exist
ρ > 0 and smooth functionsc(w, z), b0(w̃, z), . . . , bk−1(w̃, z) on {|w| < ρ} ×
{|z| < ρ} such that

h(w, z) = c(w, z)[wk
1 + bk−1(w̃, z)w

k−1
1 + · · · + b0(w̃, z)]

andc(w, z) 6= 0 for |w|, |z| < ρ. Therefore,

sup
|w̃|,|z|<ρ/2

∫ ρ/2

−ρ/2
|h(w, z)|−1/(k+1) dw1 <∞.

By selectingr = s = ρ/2 andδ = 1/(k + 1), we see that (14) holds. This com-
pletes the proof of (13).

We shall rely heavily on the following result in [6], which was established on the
basis of earlier work by Duoandikoetxea and Rubio de Francia.

Lemma 2.7. Let q > 1, l, m ∈ N, and {σs,k : 1 ≤ s ≤ l + 1 and k ∈ Z} be a
family of measures onRm with σl+1,k = 0 for everyk ∈ Z. Let {αsj : 1≤ s ≤ l,
j = 1,2} ⊂ (0,∞), {λs : 1≤ s ≤ l} ⊂ (0,∞)\{1}, {Ms : 1≤ s ≤ l} ⊂ N, and
{L(s) : 1≤ s ≤ l} ⊂ L(Rm,RMs ),whereL(Rm,RMs ) denotes the space of linear
transformations fromRm into RMs . Suppose that:
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(i) ‖σs,k‖ ≤ 1 for k ∈Z and1≤ s ≤ l;
(ii) |σ̂s,k(ξ)| ≤ C(λks |L(s)ξ|)−αs2 for ξ ∈Rm, k ∈Z, and1≤ s ≤ l;

(iii) |σ̂s,k(ξ)− σ̂s+1,k(ξ)| ≤ C(λks |L(s)ξ|)αs1 for ξ ∈Rm, k ∈Z, and1≤ s ≤ l;
(iv) for 1 ≤ s ≤ l, σ ∗s is a bounded operator onLq(Rm), whereσ ∗s (f ) =

supk∈Z(|σs,k| ∗ |f |).
Then, for2q/(q +1) < p < 2q/(q −1), there exists aCp > 0 independent of
{L(s)}ls=1 such that ∥∥∥∥∑

k∈Z

σ1,k ∗ f
∥∥∥∥
Lp(Rm)

≤ Cp‖f ‖Lp(Rm) (15)

and ∥∥∥∥(∑
k∈Z

|σ1,k ∗ f |2
)1/2∥∥∥∥

Lp(Rm)

≤ Cp‖f ‖Lp(Rm) (16)

hold for all f ∈Lp(Rm).

We shall adopt some of the notation used in [6] and [7]. For8 : Rn\{0} → Rm,

� : Sn−1→ C, andk ∈Z we useσ�,8,k to denote the measure given by∫
Rm

f(x) dσ�,8,k =
∫

2k≤|y|<2k+1
f(8(y))�

(
y

|y|
)
|y|−n dy. (17)

3. Proof of Theorem 1

In this section we shall let8 be a homogeneous mapping fromRn to Rm of degree
d = (d1, . . . , dm). We also assume the following:

(a) d1, . . . , dm > 0;
(b) 8

∣∣
Sn−1 is real-analytic;

(c) there arel, l̃ ∈ N such thatl ≤ l̃ ≤ m, {j : 1 ≤ j ≤ m anddj = d1} =
{1, . . . , l̃}, and{81, . . . , 8l} forms a basis for span{81, . . . , 8l̃}.

Conditions (a) and (b) imposed on8 are exactly the same as given in Theorem 1,
while (c) can be satisfied by a simple reordering of81, . . . , 8m (if necessary) un-
less{8j : dj = d1} = {0}. Forξ = (ξ1, . . . , ξm)∈Rm we shall let̃ξ = (ξ1, . . . , ξl̃).

Under the foregoing assumptions, we have the following lemma.

Lemma 3.1. There existε,A > 0 andL∈L(Rl̃ ,Rl) such that

|σ̂�,8,k(ξ)| ≤ A(2d1k|Lξ̃|)−ε‖�‖2 (18)

holds wheneverk ∈Z, ξ ∈Rm, and�∈L2(Sn−1).

Proof. By assumption there exists anL = (L1, . . . , Ll)∈L(Rl̃ ,Rl) such that

l̃∑
j=1

ξj8j(y) =
l∑
s=1

(Ls ξ̃)8s(y). (19)

Defineh : Sn−1× Sl−1→ R by
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h(y, ω) =
l∑

j=1

ωj8j(y),

wherey ∈Sn−1 andω = (ω1, . . . , ωl)∈Sl−1. Since{81, . . . , 8l} is linearly inde-
pendent,h(·, ω) is a nonzero function for everyω ∈ Sl−1. By Lemma 2.6, there
exists aδ1 > 0 such that

sup
ω∈Sl−1

∫
Sn−1
|h(y, ω)|−δ1 dσ = A1 <∞.

By letting ε = min{1/d1,1/m, δ1/2} and using Lemma 2.4,

|σ̂�,8,k(ξ)| =
∣∣∣∣∫

Sn−1

(∫ 2

1
exp

{
i

[
2d1k

l∑
s=1

(Ls ξ̃)8s(y)t
d1

+
m∑

j= l̃+1

2dj kξj8j(y)t
dj

]}
dt

t

)
�(y) dσ(y)

∣∣∣∣
≤ A22−εd1k

∫
Sn−1
|�(y)|

∣∣∣∣ l∑
s=1

(Ls ξ̃)8s(y)

∣∣∣∣−ε dσ(y)
≤ (A1A2)(2

d1k|Lξ̃|)−ε‖�‖L2(Sn−1).

Proof of Theorem 1.Let p ∈ (1,∞). By the atomic decomposition ofH1(Sn−1),

it suffices to prove that

‖T�,8f ‖Lp(Rm) ≤ Ap‖f ‖Lp(Rm) (20)

when� satisfies

(i) supp(�) ⊆ D(z0, r) for somez0 ∈Sn−1 andr ∈ (0,2];
(ii) ‖�‖∞ ≤ r−(n−1);
(iii)

∫
Sn−1�(y) dσ(y) = 0.

We shall begin by assuming that� satisfies(i)–(iii) with z0 = (0, . . . ,0,1) and
0< r < 1/4. An application of Lemma 3.1 gives

|σ̂�,8,k(ξ)| ≤ A(2d1k|Lξ̃|)−εr−(n−1)/2. (21)

For 1≤ j ≤ l̃ and|u| = |(u1, . . . , un−1)| < r, let

φj(u) = 8j(u, (1− |u|2)1/2).

Let

ajα = 1

α!

∂αφj

∂uα
(0)

for 1≤ j ≤ l̃ and|α| < M = [(n−1)/(2ε)] +1.
Next we introduce the mappings9(1), . . . , 9(M+1) : Rn\{0} → Rm by

9(1)(y) = 8(y)
and
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9(s)(y) =
(
|y|d1

∑
|α|≤M−s+1

a1α(y
′)α, . . . , |y|d1

∑
|α|≤M−s+1

al̃α(y
′)α,

8l̃+1(y), . . . , 8m(y)

)
for 1< s ≤ M +1, wherey = (y1, . . . , yn) 6= 0 andy ′ = (y1/|y|, . . . , yn−1/|y|).
Thus, for ally satisfying 2k ≤ |y| < 2k+1 andy/|y| ∈ supp(�),

|9(1)(y)−9(2)(y)| ≤ C2d1kr(n−1)/(2ε) (22)
and

|9(s)(y)−9(s+1)(y)| ≤ C2d1krM−s+1 (23)

when 1< s ≤ M.
For 1≤ s ≤ M + 1 let σs,k = σ9(s),�,k. Let L(1)ξ = r(n−1)/(2ε)Lξ̃, whereLξ̃

is given as in Lemma 3.1. For 1< s ≤ M, let ns denote the number of monomi-
alsuα = uα1

1 · · · uαn−1
n−1 of degree|α| = M − s+1 and letRns be labeled byα (i.e.,

Rns = {(xα)}|α|≤M−s+1). For s = 2, . . . ,M, defineL(s) ∈L(Rm,Rns ) by

L(s)ξ =
(
rM−s+1

l̃∑
j=1

ajαξj

)
|α|≤M−s+1

.

It follows from (19), (22), and (23) that

|σ̂s,k(ξ)− σ̂s+1,k(ξ)| ≤ C(2d1k|L(s)ξ|) (24)

for s = 1, . . . ,M. We claim that

|σ̂s,k(ξ)| ≤ C(2d1k|L(s)ξ|)−γs (25)

holds for 1≤ s ≤ M and some positive exponentsγs.
Clearly, fors = 1, (25) follows from (21) with the choiceγ1 = ε. For 1< s ≤

M, let

Qk(t, y, ξ) = t d1
∑

|α|≤M−s+1

( l̃∑
j=1

ajαξj

)
(y ′)α +

m∑
j= l̃+1

t djξj8j(y).

Then it follows from Lemma 2.5 that, for someγs > 0,

|σ̂s,k(ξ)| ≤
∫ 2

1

∣∣∣∣∫
Sn−1

eiQk(2
k t,y,ξ)�(y) dσ(y)

∣∣∣∣ dt
≤ C

(
2d1krM−s+1

∑
|α|=M−s+1

∣∣∣∣ l̃∑
j=1

ajαξj

∣∣∣∣)−γs = C(2d1k|L(s)ξ|)−γs

holds for allk ∈Z. Thus (25) holds fors = 1, . . . ,M.
In addition to (24) and (25), we have

‖σs,k‖ ≤ C (26)
and ∥∥∥sup

k∈Z
(|σs,k| ∗ |f |)

∥∥∥
p
≤ Cp‖f ‖p (27)

for 1 ≤ s ≤ M and 1< p < ∞, the latter of which comes as a consequence of
theLp boundedness of the maximal operator
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f → sup
k∈Z

1

2k

∫ 2k+1

2k
|f(x1− t d1, . . . , xm − t dm)| dt

established in [11] and [16]. Observe that

9(M+1)(y) = (|y|d181(z0), . . . , |y|d18l̃ (z0),8l̃+1(y), . . . , 8m(y)).

By repeating the preceding arguments we can find additional mappings

9(M+2), . . . , 9(N ), 9(N+1)

from Rn\{0} to Rm such that

9(N+1)(y) = (|y|d181(z0), . . . , |y|dm8m(z0)) (28)

and (24)–(27) hold forσs,k = σ9(s),�,k (with appropriate choices ofL(s), γs and
with d1 replaced by thedj ), M +1< s ≤ N. It follows from (28) and∫

Sn−1
�(y) dσ(y) = 0

thatσN+1,k = 0 for all k ∈Z. Applying Lemma 2.7 then gives

‖T�,8f ‖Lp(Rm) =
∥∥∥∥∑
k∈Z

σ1,k ∗ f
∥∥∥∥
Lp(Rm)

≤ Cp‖f ‖Lp(Rm)

for 1< p <∞.
Finally, let us point out that the restrictionz0 = (0, . . . ,0,1) can be lifted by

using an appropriate rotation onSn−1. For 1/4 ≤ r ≤ 2 the entire process can be
greatly simplified because the factorr−(n−1)/2 in (21) becomes harmless; we omit
the details. This ends the proof of Theorem 1.

4. Further Results

In this section we discuss how the boundedness result in Theorem 1 can be ex-
tended to cover the case where some or all of thedj are negative.

The first step is to obtain the following variant of Lemma 2.4.

Lemma 4.1. Let n ∈ N, µ1, . . . , µn ∈ R, andd1, . . . , dn be distinct nonzero real
numbers. Then there exists a positive constantC independent of{µj } such that∣∣∣∣∫ β

α

ei(µ1t
d1+···+µnt dn )ψ(t) dt

∣∣∣∣ ≤ C|µ1|−1/n

(
|ψ(β)| +

∫ β

α

|ψ ′(t)| dt
)

holds for1/2 ≤ α < β ≤ 1 andψ ∈C1([1/2,1]).

Lemma 4.1 can be verified by using the Ricci–Stein [10] arguments in Section 3.
Combining Lemma 4.1 with the method used in Section 3 allows us to obtain the
following.

Theorem 2. Let�∈H1(Sn−1) satisfy(4). Let8 : Rn→ Rm be a homogeneous
mapping of degreed = (d1, . . . , dm) with dj 6= 0 for 1≤ j ≤ m. Suppose8

∣∣
Sn−1
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is real-analytic and setT�,8f =∑k∈Z σ�,8,k ∗ f (in the sense of distribution).
Then for everyp ∈ (1,∞) there exists aCp > 0 such that

‖T�,8f ‖Lp(Rm) ≤ Cp‖f ‖Lp(Rm)
for all f ∈S(Rm).
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