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Local Hulls of Unions of Totally Real Graphs
Lying in Real Analytic Hypersurfaces

Nguyen Quang Dieu

I. Introduction

Let Y be a compact subset ofCn and letŶ denote the polynomial convex hull of
Y, that is,

Ŷ = {z∈Cn : |Q(z)| ≤ max
Y
|Q| for every polynomialQ on Cn

}
.

We say thatY is polynomially convex ifŶ = Y. A closed subsetF of C2 is called
locally polynomially convex(LPC for short) ata ∈ F if there existsr > 0 such
that the intersection̄B(a, r) ∩ F is polynomially convex. Since the intersection
of two polynomially convex sets is again polynomially convex, a polynomially
convex set is LPC everywhere, but the converse is known to be false. Indeed, by
classic work of Wermer, ifX is aC1 totally real submanifold ofCn (i.e., if the
real tangent spaceTaX contains no complex line for everya ∈X) thenX is LPC
everywhere. But Wermer constructed a totally real embedded disk that bounds an
analytic disk and hence is not (globally) polynomially convex (see e.g. [FS]).

To begin to consider nonsmooth varieties, it seems natural to study the local
polynomial convexity of the union of two totally real submanifolds inC2. In the
case where the manifolds are totally real planes inCn, a complete picture was ob-
tained by Weinstock (see [W]).

Here we examine the case where the manifolds in question are graphs whose
tangent planes at the origin meet only at one point. More precisely, letM1 and
M2 be two totally real graphs inC2 such thatT0M1∩ T0M2 = {0}. We ask under
what conditions the union is LPC at 0, and if it is not LPC then we will try to de-
scribe the hull near the origin. It should be observed that ifT0M1∪ T0M2 is LPC
at 0 then, by an implicit result of Forstneric and Stout [FS], the unionM1∪M2 is
LPC at 0. After a linear change of coordinates, the case whereT0M1 ∪ T0M2 is
not LPC at 0 reduces to

M1= {(z, z̄+ ϕ1(z))} and M2 = {(z, λz̄+ ϕ2(z))}, (∗)
whereλ > 0, λ 6= 1, andϕi (i = 1,2) are functions of classC1 in a neighborhood
of 0 that satisfyϕi(0) = ∂ϕi/∂z(0) = ∂ϕi/∂z̄(0) = 0.
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For everyr > 0, the additional polynomial convex hull of(T0M1 ∪ T0M2) ∩
B̄(0, r) is a union of analytic annuli with boundary inT0M1∪ T0M2. By anana-
lytic annuluswe mean the image of a continuous mappingf from an annulus
{z : 1≤ |z| ≤ r} into C2 such thatf is holomorphic inside this annulus. More-
over, these annuli are contained in the set{(z, w) : Im(zw) = 0},which away from
0 is a smooth Levi-flat real analytic hypersurface. This phenomenon motivates the
current paper. Notice that if there existed asmoothhypersurfaceS containingM1

andM2 then the tangent hyperplane toS at 0 would contain the planesw = z̄ and
w = λz̄, but this is impossible. Hence, in order to tackle the problem, our setup
must consider hypersurfaces with singularities.

The outline of this paper is as follows. In Section II we are interested in find-
ing necessary conditions for a real analytic hypersurface (possibly with singulari-
ties) to contain a set and its local nontrivial hull. The main result of this section is
Proposition 2.3, which states roughly that if the polynomial hull of a compact set is
contained in a real analytic hypersurface then either (a) its additional hull is small
or (b) the hypersurface is Levi-flat away from its singular locus. In Section III an
analogous (and stronger) result is obtained in the special case where our compact
set is the union of two graphs of the form(∗) (Proposition 3.5). We also prove in
Theorem 3.2 that, ifM1∪M2 is contained in a real analytic hypersurface defined
by the vanishing of the imaginary part of a holomorphic function, thenM1∪M2

is not LPC at 0 and its local hull is a union of analytic annuli with boundary in the
two manifolds. Proposition 3.6 gives an example of the non–polynomially con-
vex situation, where (unlike in the linear case) this hullcannotbe contained in any
real analytic hypersurface defined by the vanishing of the imaginary part of a holo-
morphic function. Another main result of this section is Proposition 3.4, which
generalizes an example of Weinstock [W, p. 137] about the union of two totally
real disks with trivial (local) hull while the union of their tangent spaces has non-
trivial (local) hull. Finally, in the case whereS is “nondegenerate”, Proposition
4.2 gives a partial converse to Theorem 3.2 in Section III; namely, we prove that
if a union of two graphs of the form(∗) has a nontrivial hull contained in a irre-
ducible real analytic hypersurface, then this hypersurface must be Levi-flat away
from its singular locus. The paper ends with the proofs of some lemmas.

II. Singular Real Analytic Hypersurfaces

We recall from [BG] that a subsetS in C2 is called areal analytic hypersurface
(possibly with singularities) if there exist a neighborhoodU of S and a real ana-
lytic real-valued functionf on U such thatS coincides with the zero set off,
which is a real analytic set of codimension 1. Furthermore,S can be decomposed
into the regular locus Reg(S),which is a smooth real analytic hypersurface inC2,

and the (possibly empty) singular locus Sing(S), which is contained in a real ana-
lytic variety of dimension not exceeding 2. By the Lojaciewicz structure theorem
(see [KP, Chap. 5]), if we considerS as a real analytic hypersurface inR4 then
Sing(S) can be stratified into a union of (possibly empty) real analytic submani-
folds of dimension not exceeding 2.
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Definition. Let S be a real analytic hypersurface (possibly with singularities)
in C2 defined byf = 0, wheref is real analytic real-valued in a neighborhood
U of S. We callS weakly Levi-flatif Reg(S) is Levi-flat andstrongly Levi-flatif
the functionf can be chosen to be the imaginary part of a holomorphic function
in U. In the case 0∈ S, we also callS weakly (resp. strongly) Levi-flat near 0 if
the intersection ofS and a small ball about 0 is weakly (resp. strongly) Levi-flat.

Notation. For a compact setY in C2, we let ad(Y ) be its additional hull;
that is, ad(Y ) = Ŷ\Y. Coordinates inC2 andC4 will be denoted by(z, w) and
(z, w, u, v), respectively. For any setX in C2 that includes 0, we denote byXr the
intersection ofX and the closed ball̄B(0, r). We writeπ for the projection onto
the first coordinate inC2. We denote byC1∗({0}) the set ofC1 functions in a neigh-
borhood of 0∈ C satisfyingϕ(0) = ∂ϕ/∂z(0) = ∂ϕ/∂z̄(0) = 0. By an abuse of
notation, for a given real analytic hypersurfaceS in C2, 0∈ S, we will denote the
intersection ofS and theopenball B(0, r) by S r .

Lemma 2.0. Let S be an irreducible real analytic hypersurface inC2, 0 ∈
Sing(S), defined byf = 0. Assume thatf is irreducible at0. Then, forr > 0
small enough:

(a) {p ∈ S r : df(p) = 0} = Sing(S r);
(b) S r is weakly Levi-flat if and only if

L := ∂2f

∂z∂z̄

∣∣∣∣ ∂f∂w
∣∣∣∣2− 2 Re

(
∂2f

∂z∂w̄

∂f

∂w

∂f

∂z̄

)
+ ∂2f

∂w∂w̄

∣∣∣∣∂f∂z
∣∣∣∣2≡ 0 on Reg(S r).

By an abuse of language, we callL the Levi form ofS.

Proof. It is clear that (b) follows from (a). To prove (a), we letf̃ be the complexi-
fied function off and setS̃ = {f̃ = 0}. By Lemma 2.1 in [BG], the complexified
function f̃ of f is irreducible near 0∈ C4. Next, we choose a small neighbor-
hoodU about 0∈ C4 such that the smooth locusV of U ∩ S̃ is connected and
such that any holomorphic function that vanishes onV is divisible by f̃ on U.
We claim thatdf̃ cannot vanish on an open set ofV. Otherwise,f̃ would divide
all its first derivatives with respect toz,w, u, v. It is then easy to prove by induc-
tion that, near 0∈ C4, f̃ divides all its partial derivatives with order larger than
1. This implies that all these derivatives vanish near 0. Thusf ≡ 0, a contradic-
tion. Hence the set{p ∈ V : df̃ (p) = 0} is nowhere dense inV. This implies
that f̃ is aminimal defining function forS̃ near 0∈ C4 (see [Ch, Chap. 1]) and,
for r > 0 sufficiently small, Sing(S̃ r ) = {p ∈ S̃ r : df̃ (p) = 0}. Therefore,
{p ∈ S r : df(p) = 0} = Sing(S r).

We need also the following lemma.

Lemma 2.1. LetS be a real analytic hypersurface defined byf = 0. Assume that
f is irreducible at0. LetK be a compact subset ofS satisfyingK̂ ⊂ {f ≤ 0}.
ThenL(q) ≤ 0 for everyq ∈ ad(K) ∩ S.
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Proof. Assume that there existsq ∈ ad(K) ∩ S such thatL(q) > 0. ThenS is
a strictly pseudoconvex hypersurface nearq. It is then possible to find a peaking
polynomial atq in a small neighborhood ofq in {f ≤ 0}. SinceK̂ ⊂ {f ≤ 0},
we obtain a contradiction to the local maximum modulus principle [AW; St].

The following fact gives us relations between strongly and weakly Levi-flat real
analytic hypersurfaces.

Proposition 2.2. Let S be a real analytic hypersurface inC2 with 0 ∈ S.
Consider the following assertions:

(i) S is strongly Levi-flat near0;
(ii) S is LPC at0;

(iii) S is weakly Levi-flat near0.

Then(i) ⇒ (ii) ⇒ (iii) and these implications are strict.

Proof. First, by [Hö, Thm. 4.3.4], we have (i)⇒ (ii) . Next, (ii)⇒ (iii) ; other-
wise there would exist a pointq ∈ S with L(q) 6= 0. Then, nearq, there exists a
sequence of analytic disks not contained inS whose boundaries are contained in
S. By the maximum modulus principle, we get a contradiction with (ii). To show
that the implication (i)⇒ (ii) is strict, we takeS = {(z, w) : Im2 z + Re3 z =
0}; then it is clear thatS is LPC at 0, althoughS is not strongly Levi-flat as was
shown in [BG, Prop. 5.4]. For the other, it suffices to letS be the complex cone
|w| = |z|.
Proposition 2.3. LetS be a real analytic hypersurface inC2, 0∈ S, defined by
f = 0. Assume thatf is irreducible near0. LetK be a compact subset ofS with
0∈K. Suppose that̂K is contained inS and

lim
r→0

H2(ad(Kr))

r ε
= ∞ ∀ε > 0, (1)

whereH2 denotes the2-dimensional Hausdorff measure. ThenS is weakly Levi-
flat near0.

Proof. By Lemma 2.1, we haveL ≡ 0 in ad(Kr) ∩ S for r > 0 small enough.
Consider the germV = f −1(0)∩L−1(0). It is clear thatV is a real analytic germ
with dimension≥ 2 and, moreover, that ad(Kr) ⊂ V. It follows from [BDM,
Lemma 5.5] and (1) that dimV = 3. In other words,L ≡ 0 in S r for r > 0 small
enough. We conclude by Lemma 2.0 thatS is weakly Levi-flat.

III. Local Hulls of Graphs in Hypersurfaces

For 0< a < b we define byD(a, b) the annulus{z : a < |z| < b}. We call a
bounded functionϕ (defined on a deleted neighborhood of 0∈C) of orderk if k
is the largest integer satisfyingϕ(z) = O(|z|k). If suchk does not exist, thenϕ
is calledof infinite order.Unless otherwise stated, in this section we always take
graphsM1 andM2 of the form(∗). Recall also thatMr

j := Mj ∩ B̄(0, r), j = 1,2.
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Lemma 3.1. Leta > 0 be sufficiently large. Then, for everyr > 0 small enough,
there exists a domainDa in C2 satisfying the following properties.

(i) Da is a non–smoothly bounded strictly pseudoconvex domain whose closure
is a polynomially convex set; in particular,Da is Runge.

(ii) 0 ∈ ∂Da and(M r
1 ∪Mr

2 )̂ ⊂ Da.

(iii) For anya ′ > a > 0, there existsr > 0 such thatDr
a \{0} ⊂ Da ′ .

(iv) For any (z, w) ∈ (M r
1 ∪Mr

2 )̂ \ {(0,0)} we haveα(a)|z| < |w| < β(a)|z|,
whereα(a) andβ(a) are two roots of the equationt 2 − at + 1= 0.

Proof. For eacha > 0 we define the domains

Da = {(z, w) : max(|z|, |w|) < 1/a,

fa(z, w) := |w|2 + |z|2 − aRe(zw)

+ log2(1− a2|z|2)+ log2(1− a2|w|2) < 0}.
Fora > max(4,1+λ2), it is elementary to show that, forr > 0 small enough, the
functionfa is (a) strictly plurisubharmonic in the bi-disk{(z, w) : max(|z|, |w|) <
1/a} and (b) nonpositive onMr

1 ∪Mr
2 . This implies (i) and (ii). Finally, (iii) and

(iv) are trivial.

Remark. As a direct consequence of the lemma we have that, for everyr > 0
small enough, the hull(M r

1 ∪Mr
2 )̂ cannot contain a neighborhood of the origin

in C2.

The main result of this section is the following theorem, which gives a complete
description of the hull(M r

1 ∪ Mr
2 )̂ for the pairM1,M2 contained in a strongly

Levi-flat hypersurface.

Theorem 3.2. LetS be a strongly Levi-flat hypersurface containing a pair of to-
tally real manifoldsM1,M2 of the form(∗). Then the unionM1∪M2 is not LPC
at 0. More precisely, forr > 0 small enough,ad(M r

1 ∪Mr
2) is a foliation of dis-

joint analytic annuli with boundary inMr
1 ∪Mr

2 .

We need the following lemma about the general form of strongly Levi-flat hyper-
surfaces that containM1∪M2 locally at 0. This lemma might be of independent
interest.

Lemma 3.3. Let S be a strongly Levi-flat hypersurface defined in a neighbor-
hood of0∈C2 containingMr

1 ∪Mr
2 for somer > 0. Then there exists a defining

functionf for S of the formf = Im g,whereg is holomorphic in a neighborhood
of 0∈C2 with the representation

g(z,w) = (zw)m +
∑

k≥2m+1

Pk(z,w); (2)

here thePk are homogeneous polynomials of degreek.
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Conversely, for any strongly Levi-flat real analytic hypersurface inC2 defined
by Im g = 0,whereg is a holomorphic function in a neighborhood of0∈C2 with
the expansion(2), one can findM1,M2 such thatMr

1 ∪Mr
2 ⊂ S for somer > 0.

Proof. Let f be a defining function ofS. Then near the origin we may write

f(z,w) = Im
(∑
k≥n

Pk(z, w)

)
,

wherePk are homogeneous polynomials of degreek andPn 6≡ 0 for n ≥ 1. Since
M2 ⊂ S,we obtain Imf(z, λz̄+ϕ2(z)) ≡ 0 z small enough. Asϕ2 ∈ C1∗({0}),we
deduce that ImPn(z, λz̄) ≡ 0 and similarly that ImPn(z, z̄) ≡ 0. By expanding
Pn in the formPn(z,w) =∑n

j=0 ajz
jwn−j, we find

n∑
j=0

Im(ajλ
n−jzj z̄n−j ) = 0.

It follows that
∑n

j=0(an−jλj − āj λn−j )z̄jzn−j ≡ 0. Hencean−jλj = āj λ
n−j.

Since ImPn(z, z̄) ≡ 0, by reasoning as before we havean−j = āj . Therefore,n
is even (i.e.,n = 2m) andPn(z,w) ≡ am(zw)

m. Clearly we may putf in the
desired form.

For the converse, supposeS is a strongly Levi-flat real analytic hypersurface de-
fined byf = Im g = 0, whereg is a holomorphic function in a neighborhood of
0∈ C2 having the expansion (2). It suffices to findϕ2 ∈ C1∗({0}) such thatMr

2 is
contained inS for somer > 0 (i.e., Img(z, λz̄+ ϕ2(z)) ≡ 0 for z small enough);
findingϕ1 is achieved by a similar method.

In the caseg(z,w) ≡ (zw)m, one may take simplyϕ2 ≡ 0. Otherwise, we de-
note bys the smallest number greater than 2m such thatPs 6≡ 0; we also leth(z)
be an arbitrary real-valued function of classC1 defined in a neighborhood of 0∈C
satisfyingh(z) = λm|z|2m +O(|z|s). It is enough to findϕ2 such that

g(z, λz̄+ ϕ2(z))− h(z) = 0 for z small enough. (3)

We setG(z, u) = g(z, λz̄+u)−h(z). EvidentlyG is well-defined in a neighbor-
hood of 0∈C2 and holomorphic inu. Now, using the Taylor expansion ofg, (3)
amounts to findingϕ2(z) satisfying

(g0(z)+ ϕ2(z)g1(z)− h(z))+
∑
k≥2

gk(z)ϕ
k
2(z) = 0 for z small enough,

where

gk(z) = 1

k!

∂kg

∂kw
(z, λz̄).

Observe that

g0(z)− λm|z|2m = O(|z|s), g1(z) = mλm−1z|z|2m−2 +O(|z|2m).
Hence there existsa > 0 such that, forz 6= 0 small enough, we have

|g0(z)+ ug1(z)− h(z)| >
∣∣∣∣∑
k≥2

gk(z)u
k
∣∣∣∣
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whenu belongs to the circle|u| = a|z|s−2m+1. Sinceg0(z)+ ug1(z)− h(z) = 0
has a unique root inside this circle (ifa is big enough), by the Rouché theorem the
equationG(z, u) = (g0(z) + ug1(z) − h(z)) +∑k≥2 gk(z)u

k = 0 has a unique
solution also for a fixedz 6= 0 near the origin; this solution is denoted byϕ2(z).

Moreover, by the Cauchy integral formula it is easy to see thatϕ2 is of classC1 in
a punctured neighborhood of 0∈C. Finally, by puttingϕ2(0) = 0, ϕ2 extends as
a function of classC1 near 0.

Remark. It is not true in general that for anyS of the form (2) we can findϕ2 real
analytic in a neighborhood of 0∈C such thatMr

2 ⊂ S for r > 0 sufficiently small.
Indeed, letS = {(z, w) : Im((zw)2+z5+w5) = 0}. If there existsϕ2 real analytic
in a neighborhood of the origin such thatMr

2 ⊂ S for r > 0 small enough, then near
0∈C2 we would have Im

(
(λ|z|2+ zϕ2(z))

2+ z5+ (λz̄+ϕ2(z))
5
) ≡ 0. Dividing

both sides by|z|5 and lettingz go to 0, we obtain Im(λz|z|2ϕ∗(z)+ z5+ λ5z̄5) ≡
0, whereϕ∗ is a homogeneous polynomial inz, z̄ of degree 2. Sinceλ 6= 1, this
is impossible.

Proof of Theorem 3.2.According to Lemma 3.3, there exists a defining function
f for S of the formf = Im g, whereg is holomorphic in a neighborhood of 0∈
C2 having the expansion (2). For eachr, t > 0 we define

Art = g−1(t) ∩Mr
1 , Brt = g−1(t) ∩Mr

2 .

SinceM1∪M2 ⊂ S, we see thatg sends both these manifolds intoR. Then, as is
well known,

(M r
1 ∪Mr

2 )̂ =
⋃
t∈R

(Art ∪ Brt )̂

for everyr > 0.
We claim that there exist positive numbersr0, t0, c1, c2 such that for any 0< t <

t0 the setsπ(Ar0
t ) andπ(Br0

t ) are disjoint, smooth curves lying inside the annulus
D(c1t

1/2m, c2t
1/2m). Indeed, from (2) we deduce that both functionsg(z, z̄+ϕ1(z))

andg(z, λz̄+ϕ2(z)) are asymptotically|z|2m near the origin; we deduce also that
there existsr0 > 0 such that, on each ray{argz = θ, |z| < r0, θ ∈ [0,2π]}, both
functions are increasing. Ift0 is chosen small enough then it is easy to see that for
any 0< t < t0 the two setsπ(Ar0

t ) andπ(Br0
t ) are disjoint, smooth curves lying

inside the annulusD(c1t
1/2m, c2t

1/2m), wherec1 andc2 are constant. The claim is
proved. Furthermore, in view of Lemma 3.1(iv) and the fact that(Art ∪Brt )̂ is con-
tained ing−1(t), by expanding the annulusD(c1t

1/2m, c2t
1/2m) one may assume

thatπ((Art ∪ Brt )̂ ) is contained in this annulus.
Next we claim that there existsc3 > 0 such that, for everyt > 0 small enough,

the sector

S(z) =
{
w : |w| < c3t

1/2m, |arg(zw)| < 2π

3m

}
contains exactly one root of the equationg(z,w) = t, which is a holomorphic
function ofz for z in D(c1t

1/2m, c2t
1/2m). This is essentially done by the Rouché
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theorem. Explicitly, we notice that inS(z) the equation(zw)m = t has only one
rootw = t1/m/z. Now, on the circle|w| = c3t

1/2m we have

|(zw)m − t | >
∣∣∣∣ ∑
k≥2m+1

Pk(z,w)

∣∣∣∣ (4)

for c3 big enough andt small enough, because the left-hand side is greater than
t(cm1 c

m
3 −1) and the other side is dominated byc4t

1+1/2m (c4 > 0). It remains to
check the inequality (4) on each ray|arg(zw)| = 2π/3m. Indeed, on these rays
we always have arg(zw)m = ±2π/3. This implies that|(zw)m − t | ≥ t sin(π/3)
and, by the Rouché theorem, the sectorS(z) contains only one root of the equa-
tion g(z,w) = t, which is denoted byht(z). The Cauchy integral formula implies
thatht depends continuously onz and thus it is, in fact, a holomorphic function
of z. The claim follows. This implies that, forr, t small enough, for each point
(z, w)∈Art ∪ Brt we havew = ht(z).

Now we claim that

(Art ∪ Brt )̂ = {(z, w) : z∈Cr
t , w = ht(z)},

whereCr
t is the closed set bounded by the two curvesπ(Art ) andπ(Brt ). Indeed,

by the maximum modulus principle we see that the set on the right is contained
in the one on the left. Since(Art ∪ Brt )̂ is contained in the graph ofht over the
annulusD(c1t

1/2m, c2t
1/2m), to prove the reverse inclusion it suffices to show that

π((Art ∪ Brt )̂ ) = Cr
t . Otherwise, there would existp = (z0, w0) ∈ (Art ∪ Brt )̂

such thatz0 /∈ Cr
t . Sincez0 ∈ D(c1t

1/2m, c2t
1/2m), by the Runge approximation

theorem we can find a holomorphic functionq in D(c1t
1/2m, c2t

1/2m) satisfying
q(z0) > |q(z)| for everyz∈π(Art ) ∪ π(Brt ). It follows thatq cannot be approxi-
mated uniformly on(Art ∪ Brt )̂ by polynomials inz,w. Now we define

Dr
t = {(z, w) : z∈D(c1t

1/2m, c2t
1/2m), w = ht(z)}.

Notice that onDr
t we have

1

z
= w

(t − (g(z,w)− zmwm))1/m
.

Since|g(z,w) − zmwm| ≤ Cmax(|z|, |w|)2m+1, the right-hand side can be ex-
panded as a power series that is convergent for|z|, |w| < C|t |1/(2m+1) for some
C > 0. We deduce that 1/z can be approximated uniformly by polynomials in
z,w onDr

t . It follows thatq(z) is also approximable uniformly onDr
t and in par-

ticular on(Art ∪ Brt )̂ by polynomials inz,w. Thus we arrive at a contradiction,
and the claim is proved.

Therefore, ad(Art ∪Brt ) is nonempty exactly when it is an analytic annulus that
is the graph ofht over the annulus IntCr

t . Hence ad(M r
1 ∪Mr

2) is union of disjoint
analytic annuli with boundary inMr

1 ∪Mr
2 . To see that in fact we get a foliation

of analytic annuli, it suffices to verifydg(z,w) 6= 0 on ad(M r
1 ∪Mr

2). However,
this readily follows from (2) and Lemma 3.1(iv).

Remark. It should be noticed that ifλ = 1 then the unionM1∪M2 may be LPC
at 0 even whenM1∪M2 is contained in a strongly Levi-flat hypersurface (see [N,
Cor. 2.6]).
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As an application of the preceding results, we shall give a characterization of a
class of functions with a certain “stability” property. First, for any natural number
n ≥ 2 we define the class

A n =
{
ϕ ∈C1

∗({0})
∣∣ ∃p > 0 : ϕ(z) =

∑
n≤i+j≤2n−2
max(|i|,|j |)<p

ai,j z
i z̄j
}
.

Note that many functions inA n are not real analytic.

Proposition 3.4. (a)Let ϕ ∈ A n, and assume thatal,l+1∈R for everyl. Then
there exists a functionϕ∗ that is real analytic away from0 and of order at least
2n − 1 such thatM1 ∪ M ∗2 is not LPC at0, whereM1 = {(z, z̄)} andM ∗2 ={(z, λz̄+ ϕ(z)+ ϕ∗(z))}.

(b) With the same notation, ifal,l+1 /∈ R for somel then, for any functionϕ∗
satisfying|ϕ∗(z)| ≤ C|z|2n−1 for z small enough, whereC is a positive constant,
we have thatM1∪M ∗2 is LPC at0; in particular,M1∪M2 is LPC at0.

Proof. (a) Denote byk the smallest positive integer such that|z|2k−2ϕ(z) is real
analytic in a neighborhood of 0∈C. We define

ψ(z,w) = (zw)k +
∑

n≤i+j≤2n−2

(bi,j z
k+iwk+j−1+ bi,j zk+j−1wk+i ),

where

bi,j =


kλk−1

λk+i − λk+j−1
ai,j for i 6= j −1,

0 for i = j −1.

By Theorem 3.2 it suffices to show that there existsϕ∗ real analytic away from 0
and of order at least 2n− 1 such thatM1∪M ∗2 is contained in the strongly Levi-
flat real analytic hypersurface defined by{Imψ = 0}. Because Imψ(z, z̄) = 0, it
remains to look forϕ∗ real analytic away from 0 and of order at least 2n−1 such
that

Imψ(z, λz̄+ ϕ(z)+ ϕ∗(z)) ≡ 0.

We see that

Im(ψ(z, λz̄)) = Im(λk|z|2k)

+ Im
( ∑
n≤i+j≤2n−2

(λk+j−1bi,j z
k+i z̄k+j−1+ bi,jλk+izk+j−1z̄ k+i )

)
=

∑
n≤i+j≤2n−2

Im(bi,j(λ
k+j−1− λk+i )zk+i z̄ k+j−1)

= −kλk−1
∑
i 6=j−1

Im(ai,j z
k+i z̄k+j−1)

and so

Im(ψ(z, λz̄)+ kλk−1|z|2k−2zϕ(z)) =
∑

Im(ai,i+1)|z|2i+2k. (5)
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Note thatai,i+1∈R for everyi. Hence, it suffices to findϕ∗ with the same regu-
larity verifying

ψ(z, λz̄+ ϕ(z)+ ϕ∗(z))− ψ(z, λz̄)− kλk−1|z|2k−2zϕ(z) = 0

in a neighborhood of 0∈C. For this, we will regardϕ∗(z) as an independent vari-
able; more precisely, we define

9(z, u) = ψ(z, λz̄+ ϕ(z)+ u)− ψ(z, λz̄)− kλk−1|z|2k−2zϕ(z).

Expanding9 as a polynomial inu,we obtain9(z, u) =∑M
l=0 cl(z)u

l,where the
cl are real analytic functions outside the origin and of order at least max(0,2k− l ).
Moreover, it is easy to see that

c1(z) = kλk−1|z|2k−2z+O(|z|2k), c0 = O(|z|m) (m ≥ 2k + 2n− 2).

It follows that there existsa > 0 large enough such that, forz small enough, the
equationc0(z) + c1(z)u = 0 has a unique root inside the disk|u| < a|z|m−2k+1.

Now we claim that in this disk the equation9(z, u) = 0 has a unique root, too.
Indeed, on the boundary of this disk|c0(z) + c1(z)u| ≈ |z|m, whereas the other
termscl(z)ul (l ≥ 2) are of order at least

l(m− 2k +1)+ 2k − l = l(m− 2k)+ 2k > m− 2k + 2k = m.
Thus our claim follows from the Rouché theorem. Denote this root byϕ∗(z); by
the Cauchy integral formula,ϕ∗ is real analytic and of order≥ 2n−1 away from
0. Settingϕ∗(0) = 0, we obtain the desired functionϕ∗.

(b) The following result was given in [Ka] in a slightly more restrictive setting.
See [St, p. 386] or [W] for a proof of the present statement.

Kallin’s Lemma. LetK andL be two polynomially convex compact sets inCn.

If we can find a polynomialp that sendsK to the real line andL to a compact set
meeting the real line only at the origin, and ifp−1{0} ∩ (K ∪ L) is polynomially
convex, thenK ∪ L is polynomially convex.

Denote byl the smallest index such thatal,l+1 is not real. For anyϕ∗(z) =
O(|z|2n−1), from (5) it is immediate to verify that

Im
(
ψ(z, λz̄+ ϕ(z)+ ϕ∗(z))) = Im(al,l+1)|z|2l+2k +O(|z|2l+2k+1).

This implies that, in a small neighborhood of 0∈C2, the polynomialψ sendsM ∗2
to a compact set intersecting the real line only at the origin. Clearlyψ(M1) is con-
tained in the real line. By Kallin’s lemma,M1∪M ∗2 is LPC at 0.

Remark. This result should be compared to Proposition 2.1 in [N], where a sim-
ilar use of the Kallin’s lemma was made.

It seems hard to formulate a satisfactory converse to Theorem 3.2. Nevertheless,
we do have the following result, which improves Proposition 2.3 in our special
situation.
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Proposition 3.5. LetS be a real analytic hypersurface inC2 defined byf = 0,
wheref is real analytic and irreducible at0. Assume that the following hold:

(i) M1 is the plane{(z, z̄)};
(ii) M1∪M2 ⊂ S;

(iii) for everyr > 0 sufficiently small,ad(M r
1 ∪Mr

2) is nonempty and contained
in S.

ThenS is weakly Levi-flat near0.

Proof. By Lemma 2.1,

L(z, w) = 0 ∀(z, w)∈ ad(M r
1 ∪Mr

2). (6)

We let f̃ andL̃ be the complexified functions off andL. It is then possible to
choose constantsλ1, λ2, λ3, such that—after the change of coordinatesz ′ = z,

w ′ = λ1z + w, u′ = λ2z + u, v ′ = λ3z + v—the equationsf̃ (z, w, u, v) =
L̃(z, w, u, v) = 0 take the formf1(z

′, w ′, u′, v ′) = L1(z
′, w ′, u′, v ′) = 0, where

f1 andL1 are Weierstrass polynomials inz ′. Clearly we may assume further that
|λ1− λ2| 6= |λ3 + 1|. This gives a holomorphic functionG(w ′, u,′ , v ′), which
is the resultantof f1 andL1 with respect toz ′ satisfyingG(w ′, u′, v ′) = 0 if
f1(z

′, w ′, u′, v ′) = L1(z
′, w ′, u′, v ′) = 0. Returning to the original coordinates

and taking into account (6), we obtain

G(λ1z+ w, λ2z+ z̄, λ3z+ w̄) = 0 ∀(z, w)∈ ad(M r
1 ∪Mr

2). (7)

We claim thatG ≡ 0. Otherwise, we may write

G(a, b, c) = ((λ3+1)(a − b)− (λ1− λ2)c)
kH(a, b, c),

whereH is holomorphic in a neighborhood of 0∈C3 and not identically 0 on the
plane(λ3 + 1)(a − b) = (λ1− λ2)c. Substituting (7) into the identity just dis-
played yields

((λ1− λ2)(w̄ − z)− (λ3+1)(w − z̄))kH(λ1z+ w, λ2z+ z̄, λ3z+ w̄) = 0

∀(z, w)∈ ad(M r
1 ∪Mr

2). (8)

Now we arbitrarily take((0,0) 6=) p = (z0, z̄0) ∈ closure(ad(M r
1 ∪Mr

2)) ∩M1.

Then there exists a sequencepn = (zn, wn) ∈ ad(M r
1 ∪ Mr

2), n ≥ 1, tending
to p. It follows from (8) thatH(λ1zn + wn, λ2zn + z̄n, λ3zn + w̄n) = 0 for all
n. By passing to the limit, we obtainH(λ1z0 + z̄0, λ2z0 + z̄0, λ3z0 + z0) = 0.
DefiningH ∗(z, w) = H(λ1z + w, λ2z + w, λ3z + z) then yieldsH ∗(p) = 0.
Hence closure(ad(M r

1 ∪Mr
2))∩M1 is contained in the zero set ofH ∗. Moreover,

it is clear thatH ∗ is not identically 0.
Using the Puiseux expansion theorem (see [KP, p. 84]) and noting thatM1 is real

analytic, forr > 0 small enough we now have that the set{H ∗ = 0}∩Mr
1 is either

the origin alone or a contractible compact set consisting of a union of a finite number
of smooth curves. Notice that, forr > 0 small enough, the setMr

2 is polynomially
convex; hence, by Stolzenberg’s theorem about approximation on curves [Sg; St,
p. 404], we conclude that the unionNr := Mr

2∪({H ∗ = 0}∩Mr
1 ) is polynomially
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convex. On the other hand, we also have closure{ad(M r
1 ∪Mr

2)} ∩ (M r
1 ∪Mr

2) ⊂
Nr. The local maximum modulus principle implies that, for every polynomialq

in C2,

sup{|q(x)| : x ∈ ad(M r
1 ∪Mr

2)}
= sup{|q(x)| : x ∈ closure{ad(M r

1 ∪Mr
2)} ∩ (M r

1 ∪Mr
2)}

≤ sup{|q(x)| : x ∈Nr}.
It follows that ad(M r

1 ∪Mr
2) ⊂ N̂ r . SinceNr ⊂ Mr

1 ∪Mr
2, we deduce that∅ 6=

ad(M r
1 ∪Mr

2) ⊂ ad(N r). This is a contradiction, sinceNr is polynomially con-
vex. ThusG ≡ 0, as claimed. It follows thatf1 dividesL1 and henceS is weakly
Levi-flat.

In our next proposition we construct a pair ofM1,M2 such that the polynomial
hull of (M r

1 ∪Mr
2 )̂ has Hausdorff dimension 3 for allr > 0 small enough, but

unlike in Theorem 3.2 this hull cannot be contained in any strongly Levi-flat real
analytic hypersurface. In fact, a bit more is true.

Proposition 3.6. For anyλ > 0, λ 6= 1 there existsϕ real analytic away from
0 ∈ C and of infinite order such that, forr > 0 sufficiently small, the following
assertions hold.

(a) Mr
2 is contained in a real analytic hypersurface but is not contained in any

weakly Levi-flat real analytic hypersurface, whereM2 = {(z, λz̄+ ϕ(z)}.
(b) (M r

1 ∪Mr
2 )̂ is a union of disjoint analytic annuli with boundary inM1∪M2,

whereM1 = {(z, z̄)}. Moreover,(M r
1 ∪Mr

2 )̂ \ {0} is contained in a strongly
Levi-flat hypersurface in a Runge domain� such that0∈ ∂�.

Proof. We divide the proof into two steps.

Step 1.In this step we construct the two graphsM1 andM2 satisfying (a). First,
letA be anyC1 positive function on(3,∞). Define

Vt,A = {(z, w) : z2 + tzw + w2 = A(t)}.
Then, for anyt > 3 we have

π(Vt ∩M1) = {z : z2 + t |z|2 + z̄2 = A(t)} =
{
z = reiθ , r 2 = A(t)

t + 2 cos(2θ)

}
,

which is a closed smooth curve around the origin inC. Let us considerπ(Vt∩M2).

Our goal is to findϕ andA such that, fort big enough,Vt ∩M2 contains the fol-
lowing curve, which is denoted byγt :

z = rt(θ)eiθ , w = λrt(θ)e−iθ + gt(θ)eiθ ,
wherert(θ), gt(θ) are real-valued functions inC1[0,2π] and wherert(0) = rt(2π)
andgt(0) = gt(2π). Clearly this occurs if and only if the two functionsrt andgt
verify

r 2
t (θ)e

2iθ + trt(θ)eiθ(λrt(θ)e−iθ + gt(θ)eiθ )+ (λrt(θ)e−iθ + gt(θ)eiθ )2 = A(t).
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This is equivalent to the following two equalities:

cos(2θ)
(
r 2
t (θ)(1+ λ2)+ trt(θ)gt(θ)+ g2

t (θ)
)

+ 2λrt(θ)gt(θ)+ tλr 2
t (θ) = A(t), (9)

sin(2θ)(r 2
t (θ)(1− λ2)+ trt(θ)gt(θ)+ g2

t (θ)) = 0. (10)

Obviously (10) is satisfied ifgt(θ) = c(t)rt(θ), where

c(t) = (−t + (t 2 − 4(1− λ2))1/2)/2

is the larger root of the equationx 2 + tx + 1− λ2 = 0. Observe that sinceλ 6= 1
we havec(t) 6= 0 and|c(t)| ≈ 1/t whent goes to infinity. Moreover,c(t) extends
holomorphically outside a large disk—that is, when|t | is big enough. Substitut-
ing gt(θ) into (9) yields

rt(θ)
2 = A(t)

2λ2 cos(2θ)+ 2λc(t)+ tλ ;
equivalently,π(γt ) is given by

A(t) = λ2(z2 + z̄2)+ (2λc(t)+ tλ)|z|2.
We chooseA(t) = t

log t . This choice works because of the following lemma, whose
proof is given in Section 5.

Lemma 3.7. There exists a positive real analytic functiont(z) defined in a punc-
tured neighborhood of0∈C satisfying

t(z)

log t(z)
= λ2(z2 + z̄2)+ |z|2(λt(z)+ 2λc(t(z))

)
for everyz 6= 0 close to0. Moreover,1/t is of infinite order near the origin.

Thus, by settingϕ(z) = zc(t(z)), we obtain a graphM2 = {(z, λz̄ + ϕ(z))} ver-
ifying γt = M2 ∩ Vt . Since|c(t)| ≈ 1/t, the functionϕ(z) is of infinite order
and real analytic away from the origin. Notice that, since Im(z̄ϕ(z)) ≡ 0, M2 is
contained in the real analytic hypersurfaceS = {Im(z̄(w − λz̄)) = 0}. Now as-
sume that there exists aweaklyLevi-flat real analytic hypersurfaceS ′ containing
M2. Let f be a real analytic defining function forS ′ we getf(z, λz̄+ ϕ(z)) ≡ 0.
Observe thatϕ(z) = zψ(z)whereψ is a real valued function and of infinite order.
DefineF(t, z) = f(z, λz̄ + zt) with t ∈ R andz ∈ D. We can expandF in the
form F(t, z) = ∑k≥0Fk(z)t

k, whereFk are real analytic functions. Then, since
F(ψ(z), z) ≡ 0, we have ∑

k≥0

Fk(z)ψ
k(z) ≡ 0.

Becauseψ is of infinite order and zero-free away from 0, it is not hard to prove by
induction onk thatFk ≡ 0 for anyk ≥ 0. It follows thatF(t, z) ≡ 0 for everyt ∈
R andz∈C. Thusf vanishes onS = {Im(z̄(w−λz̄)) = 0} near the origin. Con-
sequentlyS ⊂ S ′, and sinceS is a smooth real analytic hypersurface away from
the origin butnot weakly Levi-flat, we deduce thatS ′ cannot be weakly Levi-flat.
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Step 2.In this step we will compute the hull(M r
1∪Mr

2 )̂ for r > 0 small enough.
We denote byDa the domain given in Lemma 3.1 and fixa > max(4,1+ λ2). We
require the following lemma, whose proof is given in Section 5.

Lemma 3.8. For any (z, w) ∈Da, the equationz2 + w2 + zwe1/u = ue1/u has
exactly one rootu = ψ(z,w) in the domain

S(z,w)(a) :=
{
u :

1

2
|zw| < |u| < 2|zw|, 1

a
|zw| < Reu

}
.

Moreover,ψ depends holomorphically on(z, w) and extends continuously to the
boundary ofDa.

On the other hand we note that, for any point(z, w)∈ (M r
1 ∪Mr

2) \{0}, the corre-
spondingu satisfyingz2+w2+ e1/uzw = ue1/u lies inS(z,w)(a). We claim that
Imψ(z,w) = 0 on(M r

1 ∪Mr
2) \ {0}. In fact, it is clear for(z, w) ∈Mr

1 \ {0}; if
(z, w)∈Mr

2 \ {0} then (from Lemma 3.7) we haveψ(z,w) = 1/ log(t(z)), which
is a real number.

By invoking an approximation theorem of Henkin [HKL, p. 139],ψ can be ap-
proximated uniformly onDa by holomorphic functions in neighborhoods ofDa.

Combining this with the Oka–Weil theorem [AW; Hö] gives a sequence of poly-
nomialsPn in C2 that approximateψ uniformly inDa. Take an arbitrary(0 6=)
p ∈ (M r

1 ∪Mr
2 )̂ . Then, for anyn we have

|Im(Pn(p))| ≤ sup
(z,w)∈Mr

1∪Mr
2

|Im(Pn(z,w))|.

Lettingn go to infinity, one obtains Im(ψ(p)) = 0. Thus(M r
1 ∪Mr

2 )̂ \{0} is con-
tained in the hypersurface Imψ = 0 inDa. To compute the hull(M r

1 ∪Mr
2 )̂ we

will use the same argument as made in Theorem 3.2. More precisely, sinceψ can
be approximated uniformly onDa by polynomials, we have

(M r
1 ∪Mr

2 )̂ =
⋃
(ψ−1(t) ∩ (M r

1 ∪Mr
2))̂

for everyt ∈ψ(Mr
1 ∪Mr

2). By the definition ofϕ, each term in the union on the
right-hand side is made of the two curvesVt ∩M1 andγt . Notice that, for anyz in-
side the annulus with boundaryπ(Vt ∩M1) andπ(γt ), there exists a uniquew(z)
satisfying(z, w(z)) ∈ Vt and|w(z)| < |A(t)− z2|1/2. In fact, if w1(z) andw2(z)

are two roots ofz2+tzw+w2 = A(t), then|w1(z)w2(z)| = |A(t)−z2|. Thus there
exists one root, sayw1(z), having its absolute value not greater than|A(t)−z2|1/2.

Supposez exists such that the two roots have the same absolute value|A(t)−z2|1/2;
then, sincew1(z) + w2(z) = tz, we infer that|tz| ≤ 2|A(t) − z2|1/2. This is ab-
surd because, whent is big enough,A(t)� 1

2 t |z|2. Hencew1(z) is holomorphic
in z and, as in the proof of Theorem 3.2, we derive thatψ−1(t) ∩ (M r

1 ∪Mr
2))̂ is

an analytic annulus with boundaryπ(γt ) ∪ π(Vt ∩M1).

IV. The Case WhereS Has a Nonvanishing “Quadratic Part”

In this section we will investigate the case ofS defined byf = 0, wheref is
a real analytic germ that is not “highly degenerate”. By using the main result in
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[BG] we will show that, ifS is weakly Levi-flat and contains graphsM1,M2 near
0, then in factS is strongly Levi-flat and is a small “perturbation” of the hypersur-
face{Im(zw) = 0}.
Proposition 4.1. Let S be a weakly Levi-flat real analytic hypersurface inC2,

0∈ S, defined byf = 0. Assume that the quadratic partq of f is not identically
0 and irreducible. IfS containsMr

1 ∪Mr
2 for r > 0 sufficiently small, thenS is

strongly Levi-flat.

Proof. SinceS containsMr
1 ∪Mr

2 for r > 0 small enough, the tangent cone{q =
0} must contain the planesw = z̄ andw = λz̄. This implies that{q = 0} has di-
mension 3, sinceq is quadric. Moreover, becauseS is weakly Levi-flat and the
setq = 0 has dimension 3, by [BG, Prop. 2.4] and [BG, Thm. 2.3] we have that
the cone{q = 0} is also weakly Levi-flat. Furthermore, after a nonsingular linear
change of coordinates, it can be put into one of the following normal forms:

(a) Q1= {Re(z2 + w2) = 0};
(b) Q2 = {z2 + 2α|z|2 + z̄2 = 0, 0 ≤ α ≤ 1};
(c) Q3 = {|z| = |w|};
(d) Q4 = {Im z Imw = 0}.
Observe that (d) cannot hold, sinceq = 0 is irreducible. Suppose that (b) is
true. Then there exists a nonzero linear functionh(z,w) = az + bw such that
h2+ 2α|h|2+ h̄2 ≡ 0 on(w− z̄)(w− λz̄) = 0. This givesh ≡ c1h̄ whenw = z̄
andh ≡ c2h̄ whenw = λz̄, wherec1, c2 are roots of the equationc2+2αc+1=
0. Collecting the termsz, z̄, we havea = c1b̄ = c2λb̄ andb = c1ā = c2ā/λ.

This impliesa = b = 0, a contradiction. Now assume (c) is valid; then there
existsh1(z, w) = az + bw andh2(z, w) = cz + dw such thatad − bc 6= 0 and
|h1|2 ≡ |h2|2 on (w − z̄)(w − λz̄) = 0. By collecting the terms|z|2 andz2, we
obtainab̄ = cd̄ and|b| = |d|. This givesad = bc, which is absurd. Thus, there
remains only the case (a), and applying [BG, Thm.1.1] finishes the proof.

Proposition 4.2. LetM1∪M2 be contained inS, a real analytic hypersurface
in C2 defined byf = 0. Assume that the quadratic part off is not identically0
and irreducible. Then the following assertions are equivalent:

(i) S is weakly Levi-flat near0;
(ii) S is strongly Levi-flat near0;

(iii) for r > 0 small enough,(M r
1 ∪Mr

2 )̂ is a union of disjoint analytic annuli
whose boundaries are contained inM1∪M2;

(iv) for r > 0 small enough,(M r
1 ∪Mr

2 )̂ is nontrivial and is contained inS.

Proof. (ii) follows from (i) by Proposition 4.1, (ii) implies (iii) by Theorem 3.2,
and (iii) trivially implies (iv). Finally, by Proposition 3.5, (i) follows from (iv).

V. Appendix

Proof of Lemma 3.7.For z, v 6= 0, define

F(v, z) = ve1/v − |z|2(λe1/v + 2λc(e1/v))− λ2(z2 + z̄2).
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On the circle|v − λ|z|2| = |z|4 we have

|ve1/v − λ|z|2e1/v| = |z|4eRe(1/v) > |z|4e1/8λ|z|2 > λ2|z2 + z̄2| + 2λ|z|2c(e1/v)

for z close to 0. By the Rouché theorem, in the disk|v − λ|z|2| < |z|4 the equa-
tion F(v, z) = 0 has a unique root, denoted byv(z). The Cauchy integral for-
mula then implies thatv is real analytic inz outside the origin. Observe that
F(λ|z|2+ |z|4, z) > 0 whileF(λ|z|2− |z|4, z) < 0; thus,v(z) is a positive num-
ber betweenλ|z|2 − |z|4 andλ|z|2 + |z|4. Evidently,t(z) = e1/v(z) is the desired
function.

Proof of Lemma 3.8.For (z, w) ∈ Da andu ∈ S(z,w)(a), define the two func-
tionsG(z,w, u) = e1/u(u − zw) − (z2 + w2) andG∗(z, w, u) = e1/u(u − zw).
Notice thatG∗ = 0 has a unique rootu = zw in S(z,w)(a). On the other hand,
for u∈ ∂(S(z,w)(a)) we have

|G∗(z, w, u)| = |u− zw|e(Reu)/|u|2 >
|zw|
a
e1/4a|zw| > |z2 + w2|.

By the Rouché theorem,G(z,w, u) = 0 has a unique rootu = ψ(z,w) in
S(z,w)(a); moreover,ψ is a holomorphic function of(z, w). To see thatψ can
be extended continuously to the boundary ofDa, we observe in view of Lemma
3.1(iii) that, by settingψ(0,0) = 0 and shrinkingDa, we are done.
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