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Local Hulls of Unions of Totally Real Graphs
Lying in Real Analytic Hypersurfaces

NGUYEN QUANG DIEU

|. Introduction

Let Y be a compact subset 6 and letY denote the polynomial convex hull of
Y, that is,

Y =1zeC": Q@) < max Q| for every polynomialQ on c"}.

We say that’ is polynomially convex iff = Y. A closed subseF of C2 s called
locally polynomially convexLPC for short) atz € F if there exists- > 0 such
that the intersectioB(a, r) N F is polynomially convex. Since the intersection
of two polynomially convex sets is again polynomially convex, a polynomially
convex set is LPC everywhere, but the converse is known to be false. Indeed, by
classic work of Wermer, i is aC* totally real submanifold oC" (i.e., if the
real tangent spacg, X contains no complex line for everye X) thenX is LPC
everywhere. But Wermer constructed a totally real embedded disk that bounds an
analytic disk and hence is not (globally) polynomially convex (see e.g. [FS]).

To begin to consider nonsmooth varieties, it seems natural to study the local
polynomial convexity of the union of two totally real submanifold<JA. In the
case where the manifolds are totally real plangS’ina complete picture was ob-
tained by Weinstock (see [W]).

Here we examine the case where the manifolds in question are graphs whose
tangent planes at the origin meet only at one point. More precisely/{eand
M, be two totally real graphs i62 such thatfo M, N ToM» = {0}. We ask under
what conditions the union is LPC at 0, and if it is not LPC then we will try to de-
scribe the hull near the origin. It should be observed th&§M; U ToM, is LPC
at 0 then, by an implicit result of Forstneric and Stout [FS], the uniu M, is
LPC at 0. After a linear change of coordinates, the case whavg U ToM> is
not LPC at O reduces to

Mi={(z, 2+ ¢1(2))} and Mz ={(z, 22 + ¢2(2))}, (*)

wherex > 0, A # 1, andg; (i = 1, 2) are functions of clas&! in a neighborhood
of 0 that satisfyp;(0) = d¢;/9z(0) = d¢;/3z(0) = 0.
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For everyr > 0, the additional polynomial convex hull @M1 U ToM>3) N

B(0, ) is a union of analytic annuli with boundary fyM1 U ToM». By anana-

Iytic annuluswe mean the image of a continuous mappifigrom an annulus

{z :1<|z] < r}into C? such thatf is holomorphic inside this annulus. More-
over, these annuli are contained in the{getw) : Im(zw) = 0}, which away from

0 is a smooth Levi-flat real analytic hypersurface. This phenomenon motivates the
current paper. Notice that if there existedmoothhypersurfaces containingM;
andM, then the tangent hyperplaneSat O would contain the planes = 7 and

w = Az, but this is impossible. Hence, in order to tackle the problem, our setup
must consider hypersurfaces with singularities.

The outline of this paper is as follows. In Section Il we are interested in find-
ing necessary conditions for a real analytic hypersurface (possibly with singulari-
ties) to contain a set and its local nontrivial hull. The main result of this section is
Proposition 2.3, which states roughly that if the polynomial hull of a compact setis
contained in a real analytic hypersurface then either (a) its additional hull is small
or (b) the hypersurface is Levi-flat away from its singular locus. In Section Ill an
analogous (and stronger) result is obtained in the special case where our compact
set is the union of two graphs of the for) (Proposition 3.5). We also prove in
Theorem 3.2 that, iM1 U M, is contained in a real analytic hypersurface defined
by the vanishing of the imaginary part of a holomorphic function, th&rnJ M,
isnot LPC at 0 and its local hull is a union of analytic annuli with boundary in the
two manifolds. Proposition 3.6 gives an example of the hon—polynomially con-
vex situation, where (unlike in the linear case) this lealhinotbe contained in any
real analytic hypersurface defined by the vanishing of the imaginary part of a holo-
morphic function. Another main result of this section is Proposition 3.4, which
generalizes an example of Weinstock [W, p. 137] about the union of two totally
real disks with trivial (local) hull while the union of their tangent spaces has non-
trivial (local) hull. Finally, in the case wherg& is “nondegenerate”, Proposition
4.2 gives a partial converse to Theorem 3.2 in Section I1I; namely, we prove that
if a union of two graphs of the forn) has a nontrivial hull contained in a irre-
ducible real analytic hypersurface, then this hypersurface must be Levi-flat away
from its singular locus. The paper ends with the proofs of some lemmas.

I1. Singular Real Analytic Hypersurfaces

We recall from [BG] that a subsetin C2 is called areal analytic hypersurface
(possibly with singularities) if there exist a neighborhdéaf S and a real ana-
lytic real-valued functionf on U such thatS coincides with the zero set of,
which is a real analytic set of codimension 1. FurthermSrean be decomposed
into the regular locus Rég), which is a smooth real analytic hypersurfac€ifi

and the (possibly empty) singular locus Sifigg which is contained in a real ana-
lytic variety of dimension not exceeding 2. By the Lojaciewicz structure theorem
(see [KP, Chap. 5)), if we considéras a real analytic hypersurfaceRt then
Sing(S) can be stratified into a union of (possibly empty) real analytic submani-
folds of dimension not exceeding 2.
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DEFINITION. Let S be a real analytic hypersurface (possibly with singularities)
in C2 defined byf = 0, where f is real analytic real-valued in a neighborhood
U of §. We call S weakly Levi-flaif Reg(S) is Levi-flat andstrongly Levi-flatif

the functionf can be chosen to be the imaginary part of a holomorphic function
in U. In the case & S, we also callS weakly (resp. strongly) Levi-flat near 0 if
the intersection of and a small ball about 0 is weakly (resp. strongly) Levi-flat.

NotaTION. For a compact seY in C2, we let adY) be its additional hull;
that is, adY) = Y\Y. Coordinates irC2 andC* will be denoted by(z, w) and
(z, w, u, v), respectively. For any sét in C2 thatincludes 0, we denote B the
intersection ofX and the closed baB(0, r). We write for the projection onto
the first coordinate i€ 2. We denote by’({0}) the set o’* functions in a neigh-
borhood of 0= C satisfyinge(0) = d¢/0z(0) = d¢/9z(0) = 0. By an abuse of
notation, for a given real analytic hypersurfata C2, 0 < S, we will denote the
intersection of§ and theopenball B(0, r) by S”.

LemMa 2.0. Let S be an irreducible real analytic hypersurface @2, 0 e
Sing(S), defined byf = 0. Assume thay is irreducible at0. Then, forr > 0
small enough

(@) {peS":df(p) =0} = SingS");
(b) S" is weakly Levi-flat if and only if
2 2 2 2 2
19 —2Re(£%%> + o°f Z—f =0 on Regs").
e

= 920z |dw 9zow ow 0z ) | dwow

By an abuse of language, we c4lkthe Levi form ofS.

Proof. Itis clear that (b) follows from (a). To prove (a), we |gbe the complexi-
fied function of f and set§ = { f = 0}. By Lemma 2.1in [BG], the complexified
function f of f is irreducible near & C*. Next, we choose a small neighbor-
hood U about 0Oc C* such that the smooth locus of U N § is connected and
such that any holomorphic function that vanishestois divisible by f on U.
We claim thatdf cannot vanish on an open setlaf Otherwise,f would divide
all its first derivatives with respect tg w, u, v. It is then easy to prove by induc-
tion that, near &= C*, f divides all its partial derivatives with order larger than
1. This implies that all these derivatives vanish near 0. Thus 0, a contradic-
tion. Hence the setp € V : df(p) = 0} is nowhere dense i¥. This implies
that f is aminimal defining function forS near Oc C* (see [Ch, Chap. 1]) and,
for r > 0 sufficiently small, SingS”) = {p € 8" : df(p) = 0}. Therefore,
{peS :df(p) =0} =SingS"). O

We need also the following lemma.

LemMma 2.1. LetS be areal analytic hypersurface defined py= 0. Assume that
f isirreducible at0. Let K be a compact subset §fsatisfyingk c {f < 0}.
ThenL(g) < 0 for everyg ead(K) N S.
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Proof. Assume that there existse ad(K) N S such thatC(g) > 0. ThenS is
a strictly pseudoconvex hypersurface ngatt is then possible to find a peaking
polynomial atg in a small neighborhood af in { f < 0}. SinceK c {f < 0},
we obtain a contradiction to the local maximum modulus principle [AW; SiJ.

The following fact gives us relations between strongly and weakly Levi-flat real
analytic hypersurfaces.

PropoSITION 2.2. Let S be a real analytic hypersurface i€? with 0 € S.
Consider the following assertions

(i) Sis strongly Levi-flat nead;
(i) SisLPC at0;
(iii) S is weakly Levi-flat nea®.
Then(i) = (ii) = (iii) and these implications are strict.

Proof. First, by [HO, Thm. 4.3.4], we have (B (ii). Next, (ii) = (iii); other-
wise there would exist a poigte S with £L(g) # 0. Then, neay, there exists a
sequence of analytic disks not containedsiwhose boundaries are contained in
S. By the maximum modulus principle, we get a contradiction with (ii). To show
that the implication (i)= (ii) is strict, we takeS = {(z, w) : Im?z + Ré®z =

0}; then it is clear thaf is LPC at 0, althougls is not strongly Levi-flat as was
shown in [BG, Prop. 5.4]. For the other, it suffices to $elbe the complex cone
lw| = |z]. U

ProposiTION 2.3.  Let S be a real analytic hypersurface @2, 0 S, defined by
f = 0. Assume thaf is irreducible near0. Let K be a compact subset Sfwith
0 e K. Suppose thaK is contained inS and

— ad(K”"

fim 12@AED) _ o ve s o, (1)

r—0 ré

where?H, denotes th@-dimensional Hausdorff measure. Thetis weakly Levi-
flat nearO.

Proof. By Lemma 2.1, we hav€ = 0 in adK") N S for » > 0 small enough.
Consider the gerniv = £ ~(0) N £7%(0). It is clear thatV is a real analytic germ
with dimension> 2 and, moreover, that &€”) c V. It follows from [BDM,
Lemma 5.5] and (1) that dii = 3. In other words£ = 0in S” for r > 0 small
enough. We conclude by Lemma 2.0 tl§as weakly Levi-flat. O

I11. Local Hulls of Graphs in Hypersurfaces

For 0 < a < b we define byD(a, b) the annulugz : a < |z| < b}. We call a
bounded functiorp (defined on a deleted neighborhood of @) of orderk if k
is the largest integer satisfying(z) = O(|z|*). If suchk does not exist, thep
is calledof infinite order.Unless otherwise stated, in this section we always take
graphsM; andM, of the form(x). Recall also than’ =M;N BO,r), j =12
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Lemma 3.1. Leta > 0be sufficiently large. Then, for every- 0 small enough,
there exists a domaim, in C? satisfying the following properties.

(i) D, is a non—smoothly bounded strictly pseudoconvex domain whose closure
is a polynomially convex sgih particular, D, is Runge.
(i) 0 €dD, and (M} U M3) C D,.
(i) Foranya’ > a > 0, there exists > 0 such thatD7 \{0} C D,.
(iv) Forany (z, w) € (M] U M3) \ {(0, 0)} we havex(a)|z| < |w| < B(a)lz],
wherea () and 8(a) are two roots of the equatiorf — ar +1 = 0.

Proof. For eachu > 0 we define the domains
D, = {(z, w) :max(|zl], lw]) < 1/a,
falz,w) == |w|* + |z|* — a Re(zw)
+ 109?21 — a?z») + log?(1 — a?|w|?) < 0}.

Fora > max(4, 1+ A?), itis elementary to show that, for> 0 small enough, the
function £, is (a) strictly plurisubharmonic in the bi-digk:, w) : max(|z|, lw|) <
1/a} and (b) nonpositive oM, U M. This implies (i) and (ii). Finally, (iii) and
(iv) are trivial. O

REMARK. As a direct consequence of the lemma we have that, for ever
small enough, the hullM] U M})" cannot contain a neighborhood of the origin
in C2.

The main result of this section is the following theorem, which gives a complete
description of the hul(M] U M})" for the pairM,, M, contained in a strongly
Levi-flat hypersurface.

THEOREM 3.2. LetS be a strongly Levi-flat hypersurface containing a pair of to-
tally real manifoldsM,, M, of the form(x). Then the unior, U M; is not LPC

at 0. More precisely, for > 0 small enoughad(M; U M) is a foliation of dis-
joint analytic annuli with boundary idf] U M.

We need the following lemma about the general form of strongly Levi-flat hyper-
surfaces that contaii; U M» locally at 0. This lemma might be of independent
interest.

LeEmMMA 3.3. Let S be a strongly Levi-flat hypersurface defined in a neighbor-
hood of 0 € C? containingM/ U M}, for somer > 0. Then there exists a defining
functionf for S of the formf = Im g, whereg is holomorphic in a neighborhood
of 0 C? with the representation

gz w)=(@w)" + Y Pz, w):; )

k>2m+1

here theP, are homogeneous polynomials of degtee
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Conversely, for any strongly Levi-flat real analytic hypersurfac€ fndefined
bylm g = 0, whereg is a holomorphic function in a neighborhood 0& C2 with
the expansiori2), one can find\/;, M, such thatM; U M} C S for somer > 0.

Proof. Let f be a defining function of. Then near the origin we may write

flzow) = Im(z Pz, w)),
k>n
where P, are homogeneous polynomials of degktesnd P, # 0 forn > 1. Since
M, C S, we obtain Imf(z, 27+ ¢2(z)) = 0z small enough. Ag, € Ci({O}), we
deduce that In®,(z, A7) = 0 and similarly that InP,(z, z) = 0. By expanding
P, inthe form P, (z, w) = 3_, a;z/w"~/, we find

> Im@n Uz ) =0,

j=0
It follows thaty""_,(a,— ;A — @;A"~/)z/z"~/ = 0. Hencea, jA/ = a;\"/.
Since ImP,(z, z) = 0, by reasoning as before we hawg ; = a;. Thereforen
is even (i.e.p = 2m) and P,(z, w) = a,,(zw)™. Clearly we may putf in the
desired form.

For the converse, suppoSés a strongly Levi-flat real analytic hypersurface de-
fined by f = Im g = 0, whereg is a holomorphic function in a neighborhood of
0 € C? having the expansion (2). It suffices to fipg € C1({0}) such thatM} is
contained inS for somer > 0 (i.e., Img(z, AZ + ¢2(z)) = 0 for z small enough);
finding ¢, is achieved by a similar method.

In the case(z, w) = (zw)™, one may take simply, = 0. Otherwise, we de-
note bys the smallest number greater tham 2uch thatP,; # 0; we also leti(z)
be an arbitrary real-valued function of cla@sdefined in a neighborhood ofC
satisfyingh(z) = A"|z|*" 4+ O(|z|*). Itis enough to findp, such that

2(z, A7+ ¢2(2)) — h(z) =0 for z small enough. (3)

We setG(z, u) = g(z, Az +u) — h(z). EvidentlyG is well-defined in a neighbor-
hood of Oe C2? and holomorphic in.. Now, using the Taylor expansion of (3)
amounts to finding,(z) satisfying

(80(2) + ¢2(2)81(2) — h(z)) + Z 2(2)p4(z) =0 for z small enough,
k>2

where L

g (z, AZ).

g(2) = o 3w

Observe that
go(2) = W"z" = 0(zl),  g1(2) = mA" 22" 4 02 PM).
Hence there exists > 0 such that, for # 0 small enough, we have

> glout

k>2

lgo(z) + ug1(z) — h(z)| >
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whenu belongs to the circléu| = a|z|*~?"*% Sincego(z) + ugi(z) —h(z) =0
has a unique root inside this circle &fis big enough), by the Rouché theorem the
equationG (z, u) = (go(z) + ugi(z) — h(2)) + Y_;-, g(z)u* = 0 has a unique
solution also for a fixed # 0 near the origin; this solution is denoted py(z).
Moreover, by the Cauchy integral formula it is easy to seeghas of classCt in

a punctured neighborhood of0C. Finally, by puttingy»(0) = 0, ¢, extends as

a function of clasg* near 0. O

REMARK. Itis nottrue in general that for arfyof the form (2) we can fing, real
analytic in a neighborhood of ©C such thail; C S for r > 0 sufficiently small.
Indeed, lets = {(z, w) : Im((zw)?+2z°+w®) = 0}. Ifthere existsy, real analytic
inaneighborhood of the origin such thidf, C S forr > 0 small enough, then near
0 C2we would have Inf(A|z]? + z¢2(2))? + z° + (AZ 4+ ¢2(2))°) = 0. Dividing
both sides byz|® and lettingz go to 0, we obtain Irtkz|z|%¢*(z) + z° + 152%) =

0, whereg* is a homogeneous polynomial inz of degree 2. Sincg # 1, this

is impossible.

Proof of Theorem 3.2According to Lemma 3.3, there exists a defining function
f for S of the form f = Im g, whereg is holomorphic in a neighborhood ofd)
C? having the expansion (2). For each > 0 we define

Al =g nM], B =g X0)nMj.

SinceM1U M, C S, we see that sends both these manifolds irfRo Then, as is
well known,
UMy = Jarusy
teR

for everyr > 0.

We claim that there exist positive numbegszo, ¢1, c2 suchthatforany G< ¢ <
to the setsr(A}°) andn (B, °) are disjoint, smooth curves lying inside the annulus
D(c1tY?™, cotY?™). Indeed, from (2) we deduce that both functi@iis, z+¢1(z))
andg(z, Az + ¢2(z)) are asymptoticallyz|>" near the origin; we deduce also that
there exists > 0 such that, on each rdargz = 6, |z| < ro, 6 €0, 27]}, both
functions are increasing. 1§ is chosen small enough then it is easy to see that for
any O< ¢ < o the two setsr(A}°) andx (B,°) are disjoint, smooth curves lying
inside the annuluB (c1t%2™, ¢,1Y2™), wherec; andc;, are constant. The claim is
proved. Furthermore, in view of Lemma 3.1(iv) and the fact t#4tJ B/)" is con-
tained ing~1(r), by expanding the annulu3(c1tY?", ct/?™) one may assume
thatz (A7 U B/)") is contained in this annulus.

Next we claim that there existg > 0 such that, for every > 0 small enough,
the sector

. 1/2m 27
S@) =qw:|w| < c3t?", Jargzw)| < —
3m

contains exactly one root of the equatig(x, w) = ¢, which is a holomorphic
function ofz for z in D(c1tY2™, c,t¥/?™). This is essentially done by the Rouché
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theorem. Explicitly, we notice that ifi(z) the equation(zw)™ = ¢ has only one
rootw = r¥"/z. Now, on the circldw| = c3t¥?" we have

> Puzw)

k>2m+1
for c¢3 big enough and small enough, because the left-hand side is greater than
t(cl'ch — 1) and the other side is dominated by 2" (¢4 > 0). It remains to
check the inequality (4) on each rggrgzw)| = 27/3m. Indeed, on these rays
we always have afgw)™ = £2x/3. This implies thaf(zw)™ — ¢| > ¢ sin(z/3)
and, by the Rouché theorem, the sect@r) contains only one root of the equa-
tion g(z, w) = ¢, which is denoted b¥,(z). The Cauchy integral formula implies
thath, depends continuously anand thus it is, in fact, a holomorphic function
of z. The claim follows. This implies that, for, r small enough, for each point
(z, w) € A} U B we havew = h,(z).

Now we claim that

(ATUB)Y ={(z,w) 1 z€C/, w = h(2)},

whereC/ is the closed set bounded by the two curv€d’) andx (B/). Indeed,
by the maximum modulus principle we see that the set on the right is contained
in the one on the left. Sincet; U B/)" is contained in the graph df, over the
annulusD(c1tY2™, ¢,tY/?™), to prove the reverse inclusion it suffices to show that
7 ((A7 U BI'Y) = C/. Otherwise, there would exigt = (zo, wo) € (A} U B/)’
such thatzg ¢ C/. Sincezg € D(c1tY?", ct¥2™), by the Runge approximation
theorem we can find a holomorphic functigrin D(c1tY/?", c,tY/?™) satisfying
q(zo) > |q(z)| for everyz e (A7) Un(B/). It follows thatg cannot be approxi-
mated uniformly on(A” U B)" by polynomials inz, w. Now we define

D] ={(z,w) : z € D(catY?", c2t¥?™), w = hy(2)}.
Notice that onD; we have
1 w

¢ (= (g w) — gmwm)m

Since|g(z, w) — z"w™| < C max(|z|, |lw|)?"*%, the right-hand side can be ex-
panded as a power series that is convergeniziofw| < C|t|Y@"+D for some

C > 0. We deduce that/k can be approximated uniformly by polynomials in
z, wonD]. Itfollows thatg(z) is also approximable uniformly oB; and in par-
ticular on(A’ U B/)" by polynomials inz, w. Thus we arrive at a contradiction,
and the claim is proved.

Therefore, adA’ U B/') is nonempty exactly when it is an analytic annulus that
is the graph ofi, over the annulus Ir€;. Hence adM; U M3) is union of disjoint
analytic annuli with boundary iM] U M}. To see that in fact we get a foliation
of analytic annuli, it suffices to verifgg(z, w) # 0 on ad M| U M}). However,
this readily follows from (2) and Lemma 3.1(iv). O

l@w)™ — 1] >

4

REMARK. It should be noticed that if = 1 then the unio/; U M, may be LPC
at 0 even whef; U M, is contained in a strongly Levi-flat hypersurface (see [N,
Cor. 2.6]).
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As an application of the preceding results, we shall give a characterization of a
class of functions with a certain “stability” property. First, for any natural number
n > 2 we define the class

Ap=lpeCl{O) |Ip>0:p)= > a ;2’7 |.
n<i+j<2n—2
max(|i[,|jD<p

Note that many functions iA , are not real analytic.

ProrosiTiON 3.4. (a)Lety € A,,, and assume that, ;,; € R for everyl. Then
there exists a functiop* that is real analytic away fron® and of order at least
2n — 1 such thatM; U M is not LPC at0, where My = {(z,z)} and M5 =
{(z, 22+ ¢(2) + 9™ (@)}

(b) With the same notation, if; ;11 ¢ R for somel then, for any functiorp*
satisfying|o*(z)| < C|z|*"~* for z small enough, wher€ is a positive constant,
we have that/, U M3 is LPC at0; in particular, M1 U M is LPC atO.

Proof. (a) Denote byt the smallest positive integer such thaf*~2¢(z) is real
analytic in a neighborhood of @C. We define

w(z’ w) — (Zw)k + Z (bi’jzk+iwk+jfl+mzk#»j*lwk#»i)’
n<i+j<2n-2
where k-1
bl-j _ W‘ai,]’ for i ;é ] —1,
0 fori=j—-1
By Theorem 3.2 it suffices to show that there exigtgeal analytic away from 0
and of order at least2— 1 such thatV/; U M is contained in the strongly Levi-
flat real analytic hypersurface defined fsn v = 0}. Because Imy(z,z) = 0, it
remains to look fogp* real analytic away from 0 and of order at least-21 such
that
Imy(z, Az + @) + ¢*(z)) =0.

We see that
IM(¥(z, 7)) = Im(X|z|%)

+ Im( Z (i =Y, phrighri=1 bi’jkk+zzk+1—1zk+l)>
n<i+j<2n-—-2

— Z Im(b,-,j()\k“_l— )\k+l)Zk+le+']_1)
n<i+j<2n-2

— —k)\,k_l Z |m(a,',_,'Zk+iZk+j_l)
i#j—1
and so

IM(Y(z, 22) + kX217 220(2) = ) Im(as i) |27 ()
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Note thata; ;11 € R for everyi. Hence, it suffices to fing* with the same regu-
larity verifying

Yz, A2+ @(2) + ¢*(2)) — ¥(z, 22) — kA Hz1%220(2) = 0

in a neighborhood of @ C. For this, we will regard>*(z) as an independent vari-
able; more precisely, we define

W(z,u) = Yz, A2+ @(2) +u) — ¥(z, 22) — kA Hz1%220(2).

Expanding? as a polynomial i, we obtainW(z, u) = Zfio ci(z)u!, where the
¢; are real analytic functions outside the origin and of order at least@nak —1).
Moreover, it is easy to see that

c1(z) = kX Yz %22 4+ 0(121%%),  co= 0(z|™) (m > 2k +2n —2).

It follows that there exista > 0 large enough such that, fersmall enough, the
equationco(z) + c1(z)u = 0 has a unique root inside the digK < a|z|™~ 21,
Now we claim that in this disk the equatidi(z, ) = 0 has a unique root, too.
Indeed, on the boundary of this digdg(z) + c1(z)u| ~ |z|™, whereas the other
termsc; (2)u' (I > 2) are of order at least

I(m — 2k +1) + 2k — 1 = I(m — 2k) + 2k > m — 2k + 2k = m.

Thus our claim follows from the Rouché theorem. Denote this roat’ty); by
the Cauchy integral formula,* is real analytic and of order 2n — 1 away from
0. Settingp*(0) = 0, we obtain the desired functias*.

(b) The following result was given in [Ka] in a slightly more restrictive setting.
See [St, p. 386] or [W] for a proof of the present statement.

KaLLIN’S LEMMA. LetK andL be two polynomially convex compact set€ih
If we can find a polynomigh that send<X to the real line and_ to a compact set
meeting the real line only at the origin, and;f*{0} N (K U L) is polynomially
convex, therk U L is polynomially convex.

Denote byl the smallest index such thaf;,; is not real. For any*(z) =
0(|z]*"~Y, from (5) it is immediate to verify that

IM(¥(z, 22 + 9(2) + ¢*(2)) = IM(ar 11012172 + O(|z[* 245D,

This implies that, in a small neighborhood o€ @2, the polynomiaky sendsM;
to a compact set intersecting the real line only at the origin. Cleaid,) is con-
tained in the real line. By Kallin's lemmalf; U M is LPC at 0. O

ReMARK. This result should be compared to Proposition 2.1 in [N], where a sim-
ilar use of the Kallin’s lemma was made.

It seems hard to formulate a satisfactory converse to Theorem 3.2. Nevertheless,
we do have the following result, which improves Proposition 2.3 in our special
situation.
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ProrosITION 3.5. Let S be a real analytic hypersurface @2 defined byf = 0,
where f is real analytic and irreducible af. Assume that the following hald
(i) M isthe plan€((z, 2)};
(i) MiUM,C S;
(iii) for everyr > O sufficiently smallad(M; U M3) is nonempty and contained
inS.
ThensS is weakly Levi-flat nea®.

Proof. By Lemma 2.1,
L(z,w) =0 V(z,w)ecadM; UM;). (6)

We let / and £ be the complexified functions of and £. It is then possible to
choose constants,, Ao, A3, such that—after the change of coordinatés= z,

w = Az +w, u = Az +u, v = Azz + v—the equationg;(z, w,u,v) =
L(z, w, u, v) = 0 take the formfi(z’, w’, u’,v') = L1(z, w', u’,v') = 0, where
JS1andL; are Weierstrass polynomials i Clearly we may assume further that
A1 — A2| # |A3 + 1. This gives a holomorphic functio6 (w’, u,”, v’), which

is theresultantof f; and £; with respect toz’ satisfyingG(w’, u’, v') = 0 if
[z, w' ' v = L1(z, w', u’, v") = 0. Returning to the original coordinates
and taking into account (6), we obtain

Gz+w,Az+Z,k3z+w) =0 V(z,w)eadM; UM3). @)
We claim thatG = 0. Otherwise, we may write
G(a,b,c) = (ks +D(a — b) — (1 — A2))*H(a, b, ¢),

whereH is holomorphic in a neighborhood of€0C? and not identically 0 on the
plane(Az + D(a — b) = (A1 — A2)c. Substituting (7) into the identity just dis-
played yields

(A —A2)(W —2) — (Aa+D(w — 2))'Hr1z +w, Aoz + 7, Aaz +w) =0
V(z, w) €ead(M] U M}). (8)

Now we arbitrarily take((0, 0) #) p = (zo, Zo) € closurgad(M] U M})) N M;.
Then there exists a sequengge = (z,, w,) € ad(M; U M}), n > 1, tending
to p. It follows from (8) thatH (A 1z, + w,, A2z, + Zn, A3z, + w,) = O for all
n. By passing to the limit, we obtaif (A1z¢ + Zo, A2z0 + Zo, A320 + 20) = O.
Defining H*(z, w) = H(AMz + w, A2z + w, A3z + z) then yieldsH*(p) = 0.
Hence closur@d(M; U M})) N My is contained in the zero set &f*. Moreover,
it is clear thatH * is not identically 0.

Using the Puiseux expansion theorem (see [KP, p. 84]) and notinythatreal
analytic, forr > 0 small enough we now have that the gt = 0} N M is either
the origin alone or a contractible compact set consisting of a union of a finite number
of smooth curves. Notice that, fer> 0 small enough, the saf} is polynomially
convex; hence, by Stolzenberg’s theorem about approximation on curves [Sg; St,
p. 404], we conclude that the uniofi’ := M5 U({H* = 0}NM]) is polynomially
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convex. On the other hand, we also have clofad@/{ U M)} N (M] U M3) C
N'. The local maximum modulus principle implies that, for every polynompial
in C2,
sup{|g(x)| : x € ad(M] U M)}
= sup{|g(x)| : x € closurdad(M; U M3)} N (M;] U M3)}
<sup{lg(x)[:xeN"}.

It follows that ad M] U M) ¢ N”. SinceN’" c M U M}, we deduce thal
ad(M;] U M}) C ad(N"). This is a contradiction, sinc¥” is polynomially con-
vex. ThusG = 0, as claimed. It follows thaf; divides£; and hence is weakly
Levi-flat. O

In our next proposition we construct a pair &f;, M, such that the polynomial
hull of (M; U M})" has Hausdorff dimension 3 for all > 0 small enough, but
unlike in Theorem 3.2 this hull cannot be contained in any strongly Levi-flat real
analytic hypersurface. In fact, a bit more is true.

ProposiTiON 3.6. Foranyi > 0, 1 # 1there existg real analytic away from

0 € C and of infinite order such that, for > 0 sufficiently small, the following

assertions hold.

(a) M; is contained in a real analytic hypersurface but is not contained in any
weakly Levi-flat real analytic hypersurface, wheé = {(z, L7 + ¢(2)}.

(b) (M} U M3}) is a union of disjoint analytic annuli with boundary i, U M5,
whereM; = {(z, 2)}. Moreover,(M] U M4)" \ {0} is contained in a strongly
Levi-flat hypersurface in a Runge doma&xsuch that € 9<2.

Proof. We divide the proof into two steps.

Step 1.1n this step we construct the two grapifs and M, satisfying (a). First,
let A be anyC? positive function on(3, oo). Define

Via={z, w):z?+tzw+w? = A1)}
Then, for anyt > 3 we have

AV, N M) = {2 2 4122+ 22 = A@D) = {z — re, 12 A) }

- t + 2cog26)
which is a closed smooth curve around the origi€@in_et us consider (V, N M5).
Our goal is to findp and A such that, for big enoughV, N M, contains the fol-
lowing curve, which is denoted by:

2=r0)e’, w=2rr0)e" +g/(0)e"”,

wherer, (), g;(0) are real-valued functions &[0, 277] and where, (0) = r,(27)
andg,(0) = g,(2n). Clearly this occurs if and only if the two functiomsandg,

verify
r2(0)e?? + tr (0) e (r(0)e ™ + g/(0)e™) + (hr (@) e + g,(0) ™) = At).
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This is equivalent to the following two equalities:

005(29)(%2(9)(1 + %) + tr,(0)8:(0) + 85(9))

+ 2071(0)g:(0) + tAr?(0) = A(t),  (9)
sin(26) (r2(0) (1 — A%) + 17:(8):(6) + g2(9)) = 0. (10)
Obviously (10) is satisfied i§,(0) = c(¢)r,(0), where
c(t) = (=t + (1? — 4L - 2*)"?)/2
is the larger root of the equatiorf + rx +1— A% = 0. Observe that sincke # 1
we haver(t) # 0 and|c(z)| ~ 1/t whent goes to infinity. Moreover; () extends
holomorphically outside a large disk—that is, whenis big enough. Substitut-
ing g;(0) into (9) yields
A7)

2)2c0820) + 2hc(t) + 1A
equivalently (y,) is given by

A@t) = 222+ 7% + @rc(t) + )|z

We choosel(r) = @ This choice works because of the following lemma, whose
proof is given in Section 5.

r(0)? =

LeEmmaA 3.7. There exists a positive real analytic functidaip) defined in a punc-
tured neighborhood 00 € C satisfying

1(z)

logr(z)

for everyz # 0 close to0. Moreover,1/¢ is of infinite order near the origin.

@2+ + IZIZ(M(Z) + 2Ac(t(z)))

Thus, by settinge(z) = zc(¢(z)), we obtain a grapM, = {(z, AZ + ¢(2))} ver-
ifying v, = M, NV,. Sincelc(t)| ~ 1/¢t, the functiong(z) is of infinite order
and real analytic away from the origin. Notice that, sincé€zpiz)) = 0, M, is
contained in the real analytic hypersurfate= {Im(z(w — Az)) = 0}. Now as-
sume that there existsveeaklyLevi-flat real analytic hypersurfacg containing
M. Let f be areal analytic defining function f&f we getf(z, Az + ¢(z)) = 0.
Observe thap(z) = zy(z) wherey is a real valued function and of infinite order.
Define F(t,z) = f(z, A7 + zt) with r € R andz € D. We can expand in the
form F(t,z) = Y -0 Fi(2)t*, whereF, are real analytic functions. Then, since
F(¥(2), z) = 0, we have

Y F@vyt@ =0

k>0
Becausay is of infinite order and zero-free away from 0, it is not hard to prove by
induction onk that F;, = 0 for anyk > 0. It follows that F'(z, z) = O for everyr €
R andz € C. Thus f vanishes or$ = {Im(z(w — 1Z)) = 0} near the origin. Con-
sequentlyS c §’, and sinceS is a smooth real analytic hypersurface away from
the origin butnot weakly Levi-flat, we deduce that cannot be weakly Levi-flat.
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Step 2.Inthis step we will compute the hulM; UM}) for » > 0 small enough.
We denote byD, the domain given in Lemma 3.1 and fix> max(4, 1+ 1?). We
require the following lemma, whose proof is given in Section 5.

Lemma 3.8. For any(z, w) € D,, the equations? + w? + zwe* = ue'’* has
exactly one root: = v(z, w) in the domain

1 1
S(z, w)(a) = {u : §|zw| < |u| < 2|zw], ;lzw| < Reu}.

Moreover,y depends holomorphically o, w) and extends continuously to the
boundary ofD,.

On the other hand we note that, for any paintw) € (M; U M3) \ {0}, the corre-
sponding: satisfyingz? + w? + eY“zw = ue¥* liesin S(z, w)(a). We claim that
Imy(z, w) = 0 on(M; U M)\ {0}. In fact, it is clear for(z, w) € M; \ {0}; if
(z, w) € M5\ {0} then (from Lemma 3.7) we hawg(z, w) = 1/log(¢(z)), which
is a real number.

By invoking an approximation theorem of Henkin [HKL, p. 1389],can be ap-
proximated uniformly onD, by holomorphic functions in neighborhoods bf.
Combining this with the Oka—Weil theorem [AW; HG] gives a sequence of poly-
nomials P, in C? that approximate/ uniformly in D,. Take an arbitrary0 #)
p € (M{UM}). Then, for any: we have

IM(P.(p)I = sup  [IM(Pu(z, w))l.
(z,w)eMl'uMzr
Letting~ go to infinity, one obtains Ity (p)) = 0. Thus(M{ U M;)A \ {0} is con-
tained in the hypersurface Ith = 0 in D,. To compute the huliM] U M})" we
will use the same argument as made in Theorem 3.2. More precisely;sicee
be approximated uniformly ob, by polynomials, we have

(M{UMz) =@ 0N (M]UM3))

for everyr € (M U M3). By the definition ofp, each term in the union on the
right-hand side is made of the two cuns) M; andy,. Notice that, for any in-
side the annulus with boundamy(V; N M1) and= (y,), there exists a unigue(z)
satisfying(z, w(z)) € V, and|w(z)| < |A(r) — z2|Y2. In fact, if wi(z) andwa(z)
are two roots of 2+1zw+w? = A(t), thenjw1(z)wa(z)| = |A(r)—z2|. Thus there
exists one root, say1(z), having its absolute value not greater thary) — z%|¥/2.
Suppose exists such that the two roots have the same absolute Male-z2|Y2;
then, sincaw1(z) + wa(z) = tz, we infer that|rz| < 2|A(r) — z2|Y2. This is ab-
surd because, wheris big enough A(r) « %t|z|2. Hencew;(z) is holomorphic
in z and, as in the proof of Theorem 3.2, we derive that(r) N (M] U M})) is
an analytic annulus with boundam(y;) U 7 (V, N My). O

IV. The Case WhereS Has a Nonvanishing “Quadratic Part”

In this section we will investigate the case $defined byf = 0, where f is
a real analytic germ that is not “highly degenerate”. By using the main result in
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[BG] we will show that, ifS is weakly Levi-flat and contains graphs;, M, near
0, then in factS is strongly Levi-flat and is a small “perturbation” of the hypersur-
face{lm(zw) = 0}.

ProrosITION 4.1. Let S be a weakly Levi-flat real analytic hypersurfaceGa,

Oe S, defined byf = 0. Assume that the quadratic partof f is not identically
0 and irreducible. IfS containsM] U M} for r > 0 sufficiently small, ther§ is

strongly Levi-flat.

Proof. SincesS containsM; U M} for r > 0 small enough, the tangent cofge=

0} must contain the planas = 7z andw = Az. This implies thafg = 0} has di-
mension 3, since is quadric. Moreover, becauseis weakly Levi-flat and the
setqg = 0 has dimension 3, by [BG, Prop. 2.4] and [BG, Thm. 2.3] we have that
the conglq = 0} is also weakly Levi-flat. Furthermore, after a nonsingular linear
change of coordinates, it can be put into one of the following normal forms:

(@) 01 = {Re(z? + w?) =0}

(b) Q2 ={z*+2a|z]?+7?=0,0<a <1}

(€) O3 ={lz| = [wlk

(d) Qa={ImzImw = 0O}.

Observe that (d) cannot hold, singe= 0 is irreducible. Suppose that (b) is
true. Then there exists a nonzero linear functi@n, w) = az + bw such that

h? + 2a|h|* + h? = 0 on(w — Z)(w — AZ) = 0. This givesh = c1h whenw = Z
andh = coh whenw = Az, wherecy, ¢, are roots of the equatiar? + 2ac +1 =

0. Collecting the terms, z, we havea = c1b = coAb andb = ci1a = coa/h.
This impliesa = b = 0, a contradiction. Now assume (c) is valid; then there
existshi(z, w) = az + bw andhy(z, w) = cz + dw such thatud — be # 0 and
|hi|? = |hy)? on (w — Z)(w — AZ) = 0. By collecting the termsz|? andz?,
obtainab = cd and|b| = |d|. This givesad = bc, which is absurd. Thus, there
remains only the case (a), and applying [BG, Thrt] finishes the proof. [

ProrosITION 4.2. Let M1 U M, be contained irf, a real analytic hypersurface
in C? defined byf = 0. Assume that the quadratic part gfis not identically0
and irreducible. Then the following assertions are equivalent

(i) Sis weakly Levi-flat nea®,

(if) S is strongly Levi-flat nea;
(i) for r > 0small enough(M] U M%) is a union of disjoint analytic annuli

whose boundaries are containediy U M>;

(iv) for r > 0small enough(M] U M%) is nontrivial and is contained ii§.

Proof. (ii) follows from (i) by Proposition 4.1, (ii) implies (iii) by Theorem 3.2,
and (iii) trivially implies (iv). Finally, by Proposition 3.5, (i) follows from (iv).
O

V. Appendix

Proof of Lemma 3.7F0rz v # 0, define
F(v,2) = ve¥V — |z12(he? 4+ 2xc(eY?)) — 22(z2 + 72).
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On the circlglv — A|z|?| = |z|* we have
212 —
|vel/v _)\,|Z|231/U| — |Z|4eRe(l/U) > |Z|4el/8)\|g\ > )\-2|ZZ+Z2| + 2)\|Z|2(3(61/U)

for z close to 0. By the Rouché theorem, in the disk- A|z|?| < |z|* the equa-
tion F(v, z) = 0 has a unique root, denoted byz). The Cauchy integral for-
mula then implies that is real analytic inz outside the origin. Observe that
F(Mz|? + |z]*, z) > 0 while F(A|z]2 — |z]4, z) < O; thus,v(z) is a positive num-
ber between.|z|2 — |z|* andA|z|? + |z|*. Evidently,7(z) = ¢¥*®@ is the desired
function. O

Proof of Lemma 3.8For (z, w) € D, andu € S(z, w)(a), define the two func-
tions G(z, w, u) = e¥*(u — zw) — (22 + w?) andG*(z, w, u) = eY*(u — zw).
Notice thatG* = 0 has a unique roat = zw in S(z, w)(a). On the other hand,
foru € 9(S(z, w)(a)) we have

2 w .
|G*(Z1 w, M)| — |M _ Zw|e(Reu)/\u| - uel/4a\ww| > |Z2 + w2|'
a

By the Rouché theorent;i(z, w,u) = 0 has a unique root = v (z, w) in
S(z, w)(a); moreovery is a holomorphic function ofz, w). To see thaty can
be extended continuously to the boundarypf we observe in view of Lemma
3.1(iii) that, by setting/(0, 0) = 0 and shrinkingD,,, we are done. O
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