A Note on Brieskorn Spheres and the Generalized Smith Conjecture

Zhi LÜ

1. Introduction

Let $f: \mathbf{C}^{n} \rightarrow \mathbf{C}$ be the complex polynomial function defined by

$$
f\left(z_{1}, \ldots, z_{n}\right)=z_{1}^{a_{1}}+\cdots+z_{n}^{a_{n}}
$$

where the a_{k} are integers greater than 1 . Then the origin is the only isolated singular point of the hypersurface $f^{-1}(0)$. In [9] Milnor showed that the intersection $\Sigma_{\mathbf{a}}=\Sigma\left(a_{1}, \ldots, a_{n}\right)$ of $f^{-1}(0)$ with a sufficiently small sphere S_{ε} centered at the origin is a $(2 n-3)$-dimensional smooth manifold and also is $(n-3)$-connected, where \mathbf{a} denotes the n-tuple $\left(a_{1}, \ldots, a_{n}\right)$ of the a_{k}. For each $1 \leq k \leq n, \Sigma_{\mathbf{a}}$ admits a periodic diffeomorphism T_{k} of period a_{k} defined by

$$
T_{k}\left(z_{1}, \ldots, z_{k}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, \omega_{k} z_{k}, \ldots, z_{n}\right)
$$

such that the fixed point set of T_{k} is $\Sigma_{\hat{\mathbf{a}}_{k}}$, where ω_{k} is a primitive a_{k} th root of unity and $\hat{\mathbf{a}}_{k}=\left(a_{1}, \ldots, \hat{a}_{k}, \ldots, a_{n}\right)$. For the complement $\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$ of $\Sigma_{\hat{\mathbf{a}}_{k}}$ in $\Sigma_{\mathbf{a}}$, we first show the following theorem, which implies that $\Sigma_{\hat{\mathbf{a}}_{k}}$ is knotted in $\Sigma_{\mathbf{a}}$.

Theorem 1.1. For each $1 \leq k \leq n$ and $n \geq 4, \Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$ does not have the same homotopy type as S^{1}.

It is well known that, for many suitable $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $n \neq 3, \Sigma_{\mathbf{a}}$ is a topological sphere (called a Brieskorn sphere). Milnor [9] and Brieskorn [1] gave the necessary and sufficient condition for $\Sigma_{\mathbf{a}}$ to be a topological sphere. We use a simple method of determining whether $\Sigma_{\mathbf{a}}$ is a topological sphere in terms of $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{n}\right)$ given by Brieskorn. By choosing a special $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ such that $\Sigma_{\mathbf{a}}$ and $\Sigma_{\hat{\mathbf{a}}_{k}}$ (for some k) are topological spheres, we obtain a counterexample for the generalized Smith conjecture in the topological category.

Theorem 1.2. Let m and n be integers such that $m \geq 2$ and $n \geq 5$. For $\mathbf{a}=$ $(\underbrace{2, \ldots, 2}_{n-3}, 2 m-1,2 m+1, m)$, the Brieskorn manifolds $\Sigma_{\mathbf{a}}$ and $\Sigma_{\hat{\mathbf{a}}_{n}}$ are the topological spheres of dimensions $2 n-3$ and $2 n-5$, respectively. The \mathbf{Z}_{m}-action T_{n} on $\Sigma_{\mathbf{a}}$ has the fixed point set $\Sigma_{\hat{\mathbf{a}}_{n}}$ that is knotted in $\Sigma_{\mathbf{a}}$.

[^0]Brieskorn spheres can be exotic spheres or the spheres with standard differentiable structure (here called the standard spheres). By using the Arf invariant and the signature, Brieskorn [1] gave methods for determining whether $\Sigma_{\mathbf{a}}$ is an exotic sphere or a standard sphere. We also obtain counterexamples of the generalized Smith conjecture with fixed point set being a differentiably knotted standard sphere in the standard sphere. Let

$$
\sigma_{l}=2^{2 l+1}\left(2^{2 l-1}-1\right) \cdot \text { numerator }\left(4 B_{l} / l\right)
$$

where B_{l} denotes the l th Bernoulli number. Then our result is stated as follows.
Theorem 1.3. Let m and l be integers such that $m \geq 2$ and $l \geq 2$.
(i) For $\mathbf{a}=(\underbrace{2, \ldots, 2}_{2 l-1}, 2 m \sigma_{l}+1,2 m \sigma_{l}-1, m)$, the Brieskorn manifolds $\Sigma_{\mathbf{a}}$ and $\Sigma_{\hat{\mathbf{a}}_{2 l+2}}$ are the standard spheres of dimensions $4 l+1$ and $4 l-1$, respectively. The \mathbf{Z}_{m}-action $T_{2 l+2}$ on $\Sigma_{\mathbf{a}}$ has the fixed point set $\Sigma_{\hat{\mathbf{a}}_{2 l+2}}$, which is differentiably knotted in $\Sigma_{\mathbf{a}}$.
(ii) For $\mathbf{a}=(\underbrace{2, \ldots, 2}_{2 l-2}, 2 m \sigma_{l}+1,2 m \sigma_{l}-1, m)$, the Brieskorn manifolds $\Sigma_{\mathbf{a}}$ and $\Sigma_{\hat{\mathbf{a}}_{2 l+1}}$ are the standard spheres of dimensions $4 l-1$ and $4 l-3$, respectively. The \mathbf{Z}_{m}-action $T_{2 l+1}$ on $\Sigma_{\mathbf{a}}$ has the fixed point set $\Sigma_{\hat{\mathbf{a}}_{2 l+1}}$, which is differentiably knotted in $\Sigma_{\mathbf{a}}$.

Remark. The original Smith conjecture, which states that no periodic transformation of S^{3} can have a tame knotted S^{1} as its fixed point set, has been solved provided that the transformation is required to be a diffeomorphism (see [10]). However, its higher-dimensional analogs-known collectively as the generalized Smith conjecture (i.e., for all $n>3$ no periodic transformation of S^{n} can have the tame knotted S^{n-2} as fixed point set) -are false in either category, as Giffen [3], Sumners [12], and Gordon [4] have shown using different methods. The idea of using Brieskorn manifolds to construct counterexamples is indicated by Davis [2]. The theorems just stated give explicit counterexamples of periodic actions on Brieskorn manifolds for any period $m>1$; these examples are of interest because of their algebraic nature. The Brieskorn manifold $\Sigma\left(a_{1}, a_{2}, a_{3}\right)$ is not, in general, simply connected. For example, $\Sigma(2,3,5)$ is the Poincaré dodecahedral space $\operatorname{SO}(3) / I$ (see [9]). Hence the counterexample using a Brieskorn manifold is given for odd-dimensional spheres of dimension not less than 7 . Of course, our method is different from those methods used in [3], [12], and [4].

Theorem 1.1 is proved in Section 2. In Section 3 we review the work of Brieskorn-that is, the necessary and sufficient condition for $\Sigma_{\mathbf{a}}$ to be a topological sphere and the methods that determine $\Sigma_{\mathbf{a}}$ to be an exotic sphere or a standard sphere-and then give the proofs of Theorems 1.2 and 1.3. Throughout this paper, for a real number d, $[d]$ denotes the greatest integer not greater than d. For integers $a, b>1$, by (a, b) we mean the greatest common divisor of a and b.

2. Proof of Theorem 1.1

Let $\Xi_{\mathbf{a}}(t)=\left\{\mathbf{z} \in \mathbf{C}^{n} \mid z_{1}^{a_{1}}+\cdots+z_{n}^{a_{n}}=t\right\}$ and $\Xi_{\mathbf{a}}=\Xi_{\mathbf{a}}(1)$. It is easy to see that, for $t \neq 0, \Xi_{\mathbf{a}}(t)$ is diffeomorphic to $\boldsymbol{\Xi}_{\mathbf{a}}$ (also see [11]). In a natural way there exist diffeomorphisms $\xi_{k}^{l}: \Xi_{\mathbf{a}} \rightarrow \Xi_{\mathbf{a}}$ defined by

$$
\xi_{k}^{l}\left(z_{1}, \ldots, z_{k}, \ldots, z_{n}\right)=\left(z_{1}, \ldots, \omega_{k}^{l} z_{k}, \ldots, z_{n}\right)
$$

where $\omega_{k}=\exp \left(2 \pi \mathbf{i} / a_{k}\right)$ and $1 \leq l \leq a_{k}$. All such ξ_{k}^{l} can generate a group denoted by $\Omega_{\mathbf{a}}$, and we let $\mathbf{Z}_{a_{k}}=\left\{\exp \left(2 \pi l \mathbf{i} / a_{k}\right) \mid l=1, \ldots, a_{k}\right\}$; then $\Omega_{\mathbf{a}}=\prod_{k=1}^{n} \mathbf{Z}_{a_{k}}$, the direct product of cyclic groups. Again let J_{a} denote the integer groupring on $\Omega_{\mathbf{a}}$, and let $I_{\mathbf{a}}$ be the ideal in $J_{\mathbf{a}}$ generated by elements $1+\xi_{k}+\cdots+\xi_{k}^{a_{k}-1}$. The following two results are due to Pham [11] and Brieskorn [1].

Lemma 2.1 (Pham). For $i \neq 0$ and $n-1, H_{i}\left(\Xi_{\mathbf{a}} ; \mathbf{Z}\right) \cong 0$ and $H_{n-1}\left(\Xi_{\mathbf{a}} ; \mathbf{Z}\right) \cong$ $J_{\mathrm{a}} / I_{\mathrm{a}}$ are nontrivial.

Lemma 2.2 (Brieskorn). For each $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $n \geq 3, \Xi_{\mathbf{a}}$ is $(n-2)$ connected.

In order to prove the Theorem 1.1, we look at $L=f^{-1}(0)-\left\{\mathbf{z} \in f^{-1}(0) \mid z_{k}=0\right\}$.
Lemma 2.3. $\quad \Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$ is a deformation retract of L.
Proof. Consider the diffeomorphism $\varphi:\left(\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}\right) \times \mathbf{R}^{+} \rightarrow L$ defined by

$$
\varphi\left(z_{1}, \ldots, z_{n}, t\right)=\left(t^{1 / a_{1}} z_{1}, \ldots, t^{1 / a_{n}} z_{n}\right)
$$

Given any $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right) \in L$, there exists only one $t_{\mathbf{z}}$ determined by \mathbf{z} such that $\left(t_{\mathbf{z}}^{-1 / a_{1}} z_{1}, \ldots, t_{\mathbf{z}}^{-1 / a_{n}} z_{n}\right) \in \Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$. In particular, if $\mathbf{z} \in \Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$ then $t_{\mathbf{z}}=1$. Now consider the map $F: L \times[0,1] \rightarrow L$ defined by

$$
F(\mathbf{z}, s)=\left(t_{\mathbf{z}}^{-s / a_{1}} z_{1}, \ldots, t_{\mathbf{z}}^{-s / a_{n}} z_{n}\right)
$$

Then F satisfies the following three properties: (i) $F(\mathbf{z}, 0)=\mathbf{z}$ for $\mathbf{z} \in L$; (ii) $F(\mathbf{z}, 1) \in \Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$ for $\mathbf{z} \in L$; (iii) $F(\mathbf{z}, s)=\mathbf{z}$ for $\mathbf{z} \in \Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$. This means exactly that $\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$ is a deformation retract of L.

Let $p: L \rightarrow \mathbf{C}^{*}=C-\{0\}$ be the map defined by

$$
p\left(z_{1}, \ldots, z_{k}, \ldots, z_{n}\right)=z_{k}
$$

It is obvious that $p^{-1}(s)=\Xi_{\hat{\mathbf{a}}_{k}}\left(-s^{a_{k}}\right)$ for each $s \in \mathbf{C}^{*}$.
Lemma 2.4. The map $p: L \rightarrow \mathbf{C}^{*}$ is a locally trivial fiber bundle over \mathbf{C}^{*} with typical fiber $p^{-1}(1)=\Xi_{\hat{\mathbf{a}}_{k}}(-1)$.

Proof. Consider the diffeomorphism $h_{t}: L \rightarrow L$ defined by

$$
h_{t}\left(z_{1}, \ldots, z_{n}\right)=\left(t^{1 / a_{1}} z_{1}, \ldots, t^{1 / a_{n}} z_{n}\right)
$$

where $t \in \mathbf{C}^{*}-R^{-}$and $t^{1 / a_{i}}$ denotes the single-value branch with $1^{1 / a_{i}}=1$. Clearly h_{t} carries each fiber $p^{-1}(s)$ diffeomorphically onto the fiber $p^{-1}\left(t^{1 / a_{k}} s\right)$. Given $s_{0} \in \mathbf{C}^{*}$, let U be a small neighborhood of s_{0} in \mathbf{C}^{*}. Then the correspondence $\psi: U \times p^{-1}\left(s_{0}\right) \rightarrow p^{-1}(U)$ defined by

$$
\begin{aligned}
& \psi\left(s,\left(z_{1}, \ldots, z_{k-1}, s_{0}, z_{k+1}, \ldots, z_{n}\right)\right) \\
& \quad=h_{\left(s_{0}^{-1} s\right)^{a_{k}}\left(z_{1}, \ldots, z_{k-1}, s_{0}, z_{k+1}, \ldots, z_{n}\right)}=\left(\left(s_{0}^{-1} s\right)^{a_{k} / a_{1}} z_{1}, \ldots,\left(s_{0}^{-1} s\right)^{a_{k} /\left(a_{k-1}\right)} z_{k-1}, s,\left(s_{0}^{-1} s\right)^{a_{k} /\left(a_{k+1}\right)} z_{k+1}, \ldots,\left(s_{0}^{-1} s\right)^{a_{k} / a_{n}} z_{n}\right)
\end{aligned}
$$

maps the product $U \times p^{-1}\left(s_{0}\right)$ diffeomorphically onto $p^{-1}(U)$. Therefore, $p: L \rightarrow$ \mathbf{C}^{*} is a locally trivial fiber bundle over \mathbf{C}^{*}.

Proof of Theorem 1.1. We look at the fiber homotopy exact sequence (in integer coefficients) for $p: L \rightarrow \mathbf{C}^{*}$ in Lemma 2.4:

$$
\begin{aligned}
\cdots & \rightarrow \pi_{n-1}\left(\mathbf{C}^{*}\right) \rightarrow \pi_{n-2}\left(\Xi_{\hat{\mathbf{a}}_{k}}(-1)\right) \rightarrow \pi_{n-2}(L) \rightarrow \pi_{n-2}\left(\mathbf{C}^{*}\right) \rightarrow \cdots \rightarrow \pi_{2}\left(\mathbf{C}^{*}\right) \\
& \rightarrow \pi_{1}\left(\Xi_{\hat{\mathbf{a}}_{k}}(-1)\right) \rightarrow \pi_{1}(L) \rightarrow \pi_{1}\left(\mathbf{C}^{*}\right) \rightarrow \pi_{0}\left(\Xi_{\hat{\mathbf{a}}_{k}}(-1)\right) \rightarrow \pi_{0}(L) \rightarrow \pi_{0}\left(\mathbf{C}^{*}\right)
\end{aligned}
$$

Note that S^{1} and \mathbf{C}^{*} have the same homotopy type, and $\Xi_{\hat{\mathbf{a}}_{k}}(-1)$ is diffeomorphic to $\Xi_{\hat{\mathbf{a}}_{k}}$. By Lemmas 2.1 and 2.2 and the Hurewicz theorem, we obtain from the above exact sequence that

$$
\begin{gathered}
\pi_{1}(L) \cong \pi_{1}\left(\mathbf{C}^{*}\right) \cong \mathbf{Z} \\
\pi_{n-2}(L) \cong \pi_{n-2}\left(\Xi_{\hat{\mathbf{a}}_{k}}(-1)\right) \cong H_{n-2}\left(\Xi_{\hat{\mathbf{a}}_{k}}(-1)\right) \cong J_{\hat{\mathbf{a}}_{k}} / I_{\hat{\mathbf{a}}_{k}} \nsubseteq 0,
\end{gathered}
$$

and $\pi_{i}(L) \cong \pi_{i}\left(\Xi_{\hat{\mathbf{a}}_{k}}(-1)\right) \cong 0$ when i is less than $n-2$ and $i \neq 1$. Moreover, by Lemma 2.3 we have that $\pi_{i}\left(\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}\right) \cong 0$ when i is less than $n-2$ and $i \neq 1$, and

$$
\pi_{1}\left(\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}\right) \cong \mathbf{Z}, \quad \pi_{n-2}\left(\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}\right) \cong J_{\hat{\mathbf{a}}_{k}} / I_{\hat{\mathbf{a}}_{k}} \nsubseteq 0
$$

This implies that $\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{k}}$ is not homotopy equivalent to S^{1}.

3. Brieskorn's Work and Proofs of Theorems 1.2 and 1.3

Following the notation of Brieskorn [1], for $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ let $G_{\mathbf{a}}=G\left(a_{1}, \ldots, a_{n}\right)$ be the graph with n vertices having weights a_{1}, \ldots, a_{n} and with edges defined as follows. Two vertices with weights a_{i}, a_{j} in $G_{\mathbf{a}}$ are connected by an edge if $\operatorname{gcd}\left(a_{i}, a_{j}\right)>1$. The vertex with weight a_{i} is an isolated point of $G_{\mathbf{a}}$ if $\left(a_{i}, a_{j}\right)=1$ for all $a_{j} \neq a_{i}$ in $G_{\mathbf{a}}$. Brieskorn proved the following.

Proposition 3.1. Let n be an integer greater than 3 , and let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ be an n-tuple of integers greater than 1 . Then $\Sigma_{\mathbf{a}}$ is a topological sphere if and only if the graph $G_{\mathbf{a}}$ satisfies one of the following two conditions:
(i) G_{a} has at least two isolated points;
(ii) $G_{\mathbf{a}}$ has one isolated point and one component K consisting of an odd number of vertices, each with even weight, and with $\left(a_{i}, a_{j}\right)=2$ for $i \neq j$ in K.

Now it is very easy to show Theorem 1.2.

Proof of Theorem 1.2. It is obvious that $(m, 2 m-1)=1,(m, 2 m+1)=1$, and $(2 m-1,2 m+1)=1$; thus the vertices with weights $2 m-1$ and $2 m+1$ are two isolated points in the graph $G(\underbrace{2, \ldots, 2}_{n-3}, 2 m-1,2 m+1, m)$. Hence it follows from
Proposition 3.1(i) that
$\Sigma_{\mathbf{a}}=\Sigma(\underbrace{2, \ldots, 2}_{n-3}, 2 m-1,2 m+1, m) \quad$ and $\quad \Sigma_{\hat{\mathbf{a}}_{n}}=\Sigma(\underbrace{2, \ldots, 2}_{n-3}, 2 m-1,2 m+1)$
are topological spheres. As stated in Section 1, in a natural way $\Sigma_{\mathbf{a}}$ admits a periodic diffeomorphism of period m defined by

$$
\left(z_{1}, \ldots, z_{n-1}, z_{n}\right) \longrightarrow\left(z_{1}, \ldots, z_{n-1}, \omega z_{n}\right)
$$

such that the fixed point set is exactly $\Sigma_{\hat{\mathbf{a}}_{n}}$, where ω is a primitive m th root of unity. By Theorem 1.1, $\Sigma_{\mathbf{a}}-\Sigma_{\hat{\mathbf{a}}_{n}}$ does not have the same homotopy type as S^{1}. This means that the complement does not meet the unknotting criterion (see [4; 6]) and hence $\Sigma_{\hat{\mathbf{a}}_{n}}$ must be knotted in $\Sigma_{\mathbf{a}}$. This completes the proof.

Next we review the methods given by Brieskorn for determining whether a topological sphere $\Sigma_{\mathbf{a}}$ is an exotic sphere or a standard sphere.

Let $b P_{2 k}$ denote the group (under the connected sum operation) of all $(2 k-1)$ dimensional homotopy spheres, each of which bounds a parallelizable manifold. Using the Arf invariant and the signature, Kervaire and Milnor [7] showed that for odd $k, b P_{2 k} \cong 0$ or \mathbf{Z}_{2}; for even $k=2 l \neq 2, b P_{4 l}$ is a cyclic group of order $\sigma_{l} / 8$, where σ_{l} is the number stated in Section 1. Now let $M_{\mathbf{a}}(t)$ denote the intersection of $\Xi_{\mathbf{a}}(t)$ with a small ball

$$
D_{\varepsilon}=\left\{\left.\mathbf{z} \in \mathbf{C}^{n}| | z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2} \leq \varepsilon^{2}\right\}
$$

and $M_{\mathbf{a}}(1)=M_{\mathbf{a}}$. Then $M_{\mathbf{a}}$ is a parallelizable manifold with boundary $\partial M_{\mathbf{a}}$ diffeomorphic to $\Sigma_{\mathbf{a}}$ (see [1, Lemma 7]). When $\Sigma_{\mathbf{a}}\left(a_{1}, \ldots, a_{n}\right)$ is a topological sphere, Brieskorn calculated the Arf invariant $c\left(M_{\mathbf{a}}\right)$ and the signature $\sigma\left(M_{\mathbf{a}}\right)$ of $M_{\mathbf{a}}$, thus showing that each element of $b P_{2 k}$ is represented by some $\Sigma_{\mathbf{a}}$. Brieskorn's results are stated as follows.

Proposition 3.2. Let $\Sigma_{\mathbf{a}}=\Sigma\left(a_{1}, \ldots, a_{n}\right)$ be a topological sphere with $n>3$.
(i) When n is even, $c\left(M_{\mathrm{a}}\right) \equiv 1(\bmod 2)$ if and only if the graph G_{a} has only one isolated point with weight $a_{k} \equiv \pm 3(\bmod 8)$ and only one component K consisting of an odd number of vertices, each with even weight, and with $\left(a_{i}, a_{j}\right)=2$ for $i \neq j$ in K.
(ii) When n is odd, $\sigma\left(M_{\mathbf{a}}\right)=\sigma_{\mathbf{a}}^{+}-\sigma_{\mathbf{a}}^{-}$. Here $\sigma_{\mathbf{a}}^{+}$denotes the number of all $n-$ tuples $\left(j_{1}, \ldots, j_{n}\right)$ with $0<\dot{j}_{k}<a_{k}$ and $0<\sum_{k=1}^{n}\left(j_{k} / a_{k}\right)<1(\bmod 2) ; \sigma_{\mathbf{a}}^{-}$ denotes the number of all n-tuples $\left(j_{1}, \ldots, j_{n}\right)$ with $0<j_{k}<a_{k}$ and $-1<$ $\sum_{k=1}^{n}\left(j_{k} / a_{k}\right)<0(\bmod 2)$.

Remark. It should be pointed out that, for even n, if $c\left(M_{\mathbf{a}}\right) \equiv 0(\bmod 2)$ then $\Sigma_{\mathbf{a}}$ is diffeomorphic to the standard sphere (see [7]), and Levine [8] obtained that $c\left(M_{\mathbf{a}}\right) \equiv 0(\bmod 2)$ if and only if $\Delta_{\mathbf{a}}(-1) \equiv \pm 1(\bmod 8)$ and that
$c\left(M_{\mathbf{a}}\right) \equiv 1(\bmod 2)$ if and only if $\Delta_{\mathbf{a}}(-1) \equiv \pm 3(\bmod 8)$, where $\Delta_{\mathbf{a}}(t)=$ $\prod_{0<l_{k}<a_{k}}\left(t-\omega_{1}^{l_{1}} \cdots \omega_{n}^{l_{n}}\right)$ with $\omega_{k}=\exp \left(2 \pi \mathbf{i} / a_{k}\right)$. For odd $n=2 l+1$, if $\sigma\left(M_{\mathbf{a}}\right) \equiv$ $0\left(\bmod \sigma_{l}\right)$ then $\Sigma_{\mathbf{a}}$ is diffeomorphic to the standard sphere (see [7]).

Now let us discuss counterexamples of the generalized Smith conjecture for a knotted standard sphere in a standard sphere. To prove Theorem 1.3, we need the following results.

Let a, b, c be positive integers greater than 1 . Ву $\Gamma(a, b, c)$ we denote the number of all (x, y, z) with $1 \leq x \leq a-1,1 \leq y \leq b-1,1 \leq z \leq c-1$, and $0<x / a+y / b+z / c<1$. From $0<x / a+y / b+z / c<1$ we have $0<$ $b c x+a c y+a b z<a b c$. Furthermore,

$$
1 \leq x<\frac{a b c-a c y-a b z}{b c}=a\left(1-\frac{y}{b}-\frac{z}{c}\right)
$$

Again from $1-y / b-z / c>0$, it follows that $1 \leq y<b(1-z / c)$. Therefore we have the following lemma.

Lemma 3.3. $\quad \Gamma(a, b, c)=\sum_{1 \leq z \leq c-1} \sum_{1 \leq y \leq[b(1-z / c)]}[a(1-y / b-z / c)]$.
Hirzebruch and Mayer [5, p. 108, Proposition] gave a computation method of $\sigma\left(M_{\mathbf{a}}\right)$ for $\mathbf{a}=(\underbrace{2, \ldots, 2}_{2 l-1}, a, b)$ with the positive odd numbers $a, b>1$ and $(a, b)=1$. For our purposes we give a computation formula of $\sigma\left(M_{\mathbf{a}}\right)$ for $\mathbf{a}=$ $(\underbrace{2, \ldots, 2}_{2 l-2}, a, b, c)$ such that the positive integer numbers $a, b, c>1$ are relatively prime.

Proposition 3.4. Let $\mathbf{a}=(\underbrace{2, \ldots, 2}_{2 l-2}, a, b, c)$ such that the positive integer numbers $a, b, c>1$ are relatively prime. Then

$$
\sigma\left(M_{\mathbf{a}}\right)=(-1)^{l-1}\{4 \Gamma(a, b, c)-(a-1)(b-1)(c-1)\} .
$$

Proof. By the definitions of $\sigma_{\mathbf{a}}^{+}$and $\sigma_{\mathbf{a}}^{-}$in Proposition 3.2, it is easy to see that $\sigma\left(M_{\mathbf{a}}\right)=(-1)^{l-1} \sigma\left(M_{\mathbf{a}^{\prime}}\right)$ where $\mathbf{a}^{\prime}=(a, b, c)$. Now we need only consider $\sigma\left(M_{\mathbf{a}^{\prime}}\right)$. Since the equations

$$
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1 \text { or } 2
$$

have no solutions in $\{(x, y, z) \mid 1 \leq x \leq a-1,1 \leq y \leq b-1,1 \leq z \leq c-1\}$, we have

$$
\sigma_{\mathbf{a}^{\prime}}^{+}+\sigma_{\mathbf{a}^{\prime}}^{-}=(a-1)(b-1)(c-1)
$$

Using the mapping defined by $(x, y, z) \rightarrow(a-x, b-y, c-z)$, we conclude that the two sets
$\left\{(x, y, z) \left\lvert\, 0<\frac{x}{a}+\frac{y}{b}+\frac{z}{c}<1\right.,1 \leq x \leq a-1,1 \leq y \leq b-1,1 \leq z \leq c-1\right\}$
and

$$
\left\{(x, y, z) \left\lvert\, 2<\frac{x}{a}+\frac{y}{b}+\frac{z}{c}<3\right.,1 \leq x \leq a-1,1 \leq y \leq b-1,1 \leq z \leq c-1\right\}
$$

have the same number of elements. By Lemma 3.3, it follows that

$$
\sigma_{\mathbf{a}^{\prime}}^{+}=2 \Gamma(a, b, c)
$$

and thus

$$
\begin{aligned}
\sigma\left(M_{\mathbf{a}}\right) & =(-1)^{l-1} \sigma\left(M_{\mathbf{a}^{\prime}}\right) \\
& =(-1)^{l-1}\left(\sigma_{\mathbf{a}^{\prime}}^{+}-\sigma_{\mathbf{a}^{\prime}}^{-}\right) \\
& =(-1)^{l-1}\{4 \Gamma(a, b, c)-(a-1)(b-1)(c-1)\}
\end{aligned}
$$

Corollary 3.5. Let $\mathbf{a}=(\underbrace{2, \ldots, 2}_{2 l-2}, 2 u v+1,2 u v-1, u)$ with integers $u \geq 2$
and $v \geq 1$. Then

$$
\sigma\left(M_{\mathbf{a}}\right)=(-1)^{l} \frac{4}{3} u\left(u^{2}-1\right) v^{2}
$$

Proof. By Proposition 3.4, we need only compute $\Gamma(2 u v+1,2 u v-1, u)$. Hence, by Lemma 3.3 we have

$$
\begin{aligned}
\Gamma(2 u v & +1,2 u v-1, u) \\
& =\sum_{1 \leq z \leq u-1} \sum_{1 \leq y \leq[(2 u v-1)(1-z / u)]}\left[(2 u v+1)\left(1-\frac{y}{2 u v-1}-\frac{z}{u}\right)\right] \\
& =\sum_{1 \leq z \leq u-1} \sum_{1 \leq y \leq 2 u v-2 v z-1}\left[2 u v+1-2 v z-y-\left(\frac{2 y}{2 u v-1}+\frac{z}{u}\right)\right] .
\end{aligned}
$$

By direct calculations, we see that $1 \leq y \leq u v-v z-1$ implies $0<\frac{2 y}{2 u v-1}+\frac{z}{u}<1$ and that $u v-v z \leq y \leq 2 u v-2 v z-1$ implies $1<\frac{2 y}{2 u v-1}+\frac{z}{u}<2$. Therefore,

$$
\begin{aligned}
\Gamma(2 u v+1,2 u v-1, u)= & \sum_{1 \leq z \leq u-1}\left\{\sum_{1 \leq y \leq u v-v z-1}(2 u v-2 v z-y)\right. \\
& \left.+\sum_{u v-v z \leq y \leq 2 u v-2 v z-1}(2 u v-2 v z-y-1)\right\} \\
= & 2 v \sum_{1 \leq z \leq u-1}(u-z)(u v-v z-1) \\
= & \frac{v^{2} u(u-1)(2 u-1)}{3}-v u(u-1) .
\end{aligned}
$$

Furthermore, we have

$$
\begin{aligned}
\sigma\left(M_{\mathbf{a}}\right) & =(-1)^{l-1}\{4 \Gamma(2 u v+1,2 u v-1, u)-4 u v(u v-1)(u-1)\} \\
& =(-1)^{l-1} 4 u v(u-1)\left\{\frac{v(2 u-1)}{3}-1-(u v-1)\right\} \\
& =(-1)^{l} \frac{4}{3} u\left(u^{2}-1\right) v^{2}
\end{aligned}
$$

Proof of Theorem 1.3(i). By Proposition 3.1(i), $\Sigma_{\mathbf{a}}$ and $\Sigma_{\hat{\mathbf{a}}_{2 l+2}}$ are topological spheres because the vertices with weights $2 m \sigma_{l}+1$ and $2 m \sigma_{l}-1$ are two isolated points in the graph

$$
G(\underbrace{2, \ldots, 2}_{2 l-1}, 2 m \sigma_{l}+1,2 m \sigma_{l}-1, m) .
$$

It follows from Proposition $3.2(\mathrm{i})$ that $c\left(M_{\mathbf{a}}\right) \equiv 0(\bmod 2)$ and thus $\Sigma_{\mathbf{a}}$ is a $(4 l+1)$-dimensional standard sphere. Now we prove that $\Sigma_{\hat{\mathbf{a}}_{2 l+2}}$ is a standard sphere, too. Choose $u=2$ and $v=m \sigma_{l} / 2$ in Corollary 3.5 (note that σ_{l} is even); we have

$$
\sigma\left(M_{\hat{\mathbf{a}}_{2 l+2}}\right)=(-1)^{l} 2 m^{2} \sigma_{l}^{2} \equiv 0\left(\bmod \sigma_{l}\right)
$$

and thus $\Sigma_{\hat{\mathbf{a}}_{2 l+2}}$ is a standard sphere. Finally, as in the proof of Theorem 1.2, by Theorem 1.1 we conclude that $\Sigma_{\mathbf{a}}$ admits a periodic diffeomorphism of period m with differentiably knotted $\Sigma_{\hat{\mathbf{a}}_{2 l+2}}$ in $\Sigma_{\mathbf{a}}$ as fixed point set.

Proof of Theorem 1.3(ii). Similarly to the proof of Theorem 1.3(i), we need merely to show that $\Sigma_{\mathbf{a}}$ and $\Sigma_{\hat{\mathbf{a}}_{2 l+1}}$ are standard spheres for $\mathbf{a}=(\underbrace{2, \ldots, 2}_{2 l-2}, 2 m \sigma_{l}+1$,
$\left.2 m \sigma_{l}-1, m\right)$. First, it is easy to see from Propositions 3.1(i) and 3.2(i) that $\Sigma_{\mathbf{a}}$ and $\Sigma_{\hat{\mathbf{a}}_{2 l+1}}$ are topological spheres; in particular, $\Sigma_{\hat{\mathbf{a}}_{2 l+1}}$ is a $(4 l-3)$-dimensional standard sphere. Taking $u=m$ and $v=\sigma_{l}$ in Corollary 3.6, it follows that

$$
\sigma\left(M_{\mathbf{a}}\right)=(-1)^{l} \frac{4}{3} m\left(m^{2}-1\right) \sigma_{l}^{2} \equiv 0\left(\bmod \sigma_{l}\right)
$$

and thus $\Sigma_{\mathbf{a}}$ is a standard sphere. This completes the proof.
Acknowledgment. I would like to express my gratitude to Professors T. Tsuboi, Zhende Wu, and Zhongze Liu, from whom I learned algebraic topology, and especially to Professor Tsuboi for his guidance and encouragement in this work. I also express my thanks to Professor M. Masuda for his comments and suggestions.

References

[1] E. Brieskorn, Beispiele zur Differentialtopogie von Singularitäten, Invent. Math. 2 (1966), 1-14.
[2] M. W. Davis, A survey of results in higher dimensions, Pure Appl. Math., 112, pp. 227-240, Academic Press, Orlando, FL, 1984.
[3] C. H. Giffen, The generalized Smith conjecture, Amer. J. Math. 88 (1966), 187198.
[4] C. M. Gordon, On the higher-dimensional Smith conjecture, Proc. London Math. Soc. (3) 29 (1974), 98-110.
[5] F. Hirzebruch and K. H. Mayer, $O(n)$-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Math., 57, Springer-Verlag, Berlin, 1968.
[6] W. Y. Hsiang, On the unknottedness of the fixed point set of differentiable circle group actions on spheres-P. A. Smith conjecture, Bull. Amer. Math. Soc. 70 (1964), 678-680.
[7] M. A. Kervaire and J. W. Milnor, Groups of homotopy spheres, I, Ann. of Math. (2) 77 (1963), 504-537.
[8] J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537-554.
[9] J. W. Milnor, Singular points of complex hypersurface, Ann. of Math. Stud., 61, Princeton Univ. Press, Princeton, NJ, 1968.
[10] J. W. Morgan and H. Bass (eds.), The Smith conjecture, Pure Appl. Math., 112, Academic Press, Orlando, FL, 1984.
[11] F. Pham, Formules de Picard-Lefschetz généralisées et ramification des intégrales, Bull. Soc. Math. France 93 (1965), 333-367.
[12] D. W. Sumners, Smooth \mathbf{Z}_{p}-actions on spheres which leave knots pointwise fixed, Trans. Amer. Math. Soc. 205 (1975), 193-203.

Graduate School of Mathematical Sciences
University of Tokyo
3-8-1 Komaba
Tokyo 153-8914
Japan
zlu@ms.u-tokyo.ac.jp

[^0]: Received October 5, 1999. Revision received April 14, 2000.
 This work is supported by the Japanese Government Scholarship.

