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0. Introduction

One of the well-known methods to construct a new 4-manifold from an old one is
the Gluck surgery along an embedded 2-sphere with trivial normal bundle, which
is defined as follows (see [G]). Léf be a smooth 4-manifold ankl a smoothly
embedded 2-sphere M. We suppose that the tubular neighborh@é@) of K

in M is diffeomorphic tas? x D?. Lett be the self-diffeomorphism & x S =

(8% x D?) defined byz(z,a) = (az, ), where we identifys* with the unit
circle of C and S? with the Riemann spher€ = C U {oo}. Then consider the
4-manifold obtained frond/ — Int N(K) by regluingS? x D? along the bound-

ary usingr. We say that the resulting 4-manifold, denotedXyK ), is obtained
from M by theGluck surgeryalongK (see [G] or [Kir2, p. 16]).

When the ambient 4-manifold is the 4-sph&fe we call a smoothly embedded
2-sphereK in $* a 24not. In this case, the resulting 4-manifolft K ) is always a
homotopy 4-sphere. It has been known that, for certain 2-kkip’8(K) is again
diffeomorphic toS* (see e.g. [Gom1; Gor; HMY; Mo; PI]). It has not been known
if the Gluck surgery along a 2-knd in S* produces a 4-manifol® (K') not dif-
feomorphic toS* for somek (see [Kirl, 4.11, 4.24, 4.45] and [Gom2]). On the
other hand, for 2-spheres embedded in 4-maniféfdsot necessarily diffeomor-
phic toS4, Akbulut [AkL; Ak2] constructed an example of an embedded 2-sphere
K in such anM such that: (K) is homeomaorphic but is not diffeomorphic a.

For Gluck surgeries, see also [Ak3; AK; AR; Gom1; Gom2].

Price [P] considered a similar construction using embedded projective planesin
S4. Let P be a smoothly embedded projective plan§fnin the following, we fix
an orientation fols4. Then it is known that the tubular neighborhaidP) of P is
always diffeomorphic to the nonorientaldl#-bundle oveR P? with Euler num-
ber+2 (see [M1; M2]), which we denote by, with ¢ = +2 the Euler number.
Note thatanN, is diffeomorphic to the quaternion spa¢e whose fundamental
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group is isomorphic to the quaternion group of order 8. Then consider the closed
orientable 4-manifold1(P), obtained fromS4 — Int N(P) by regluingN, along
the boundary using a self-diffeomorphignof Q. Then we say théll (P),, is ob-
tained fromS* by aPrice surgeryalong P with respect tap. In fact, Price [P]
showed that there are exactly six isotopy classes of orientation-preserving self-
diffeomorphisms ofp—thus we have essentially six choices §grand that ex-
actly four of them produce homotopy 4-spheres by a Price surgery. Furthermore,
he has also shown that there are at most two diffeomorphism types among the
four homotopy 4-spheres thus constructed, one of which is the standard 4-sphere.
In the following, IT1(P) will denote the unique homotopy 4-sphere obtained by
the Price surgery along with respect to a nontrivial self-diffeomorphism ¢f,
which may not be diffeomorphic to the 4-sphere.

Obviously we can generalize this definition of Price surgeries to those along pro-
jective planes embedded in arbitrary 4-manifolds with normal Euler nusaBer

Let Py be a standardly embedded projective plangrwhose normal Euler
number is either 2 o2 (see e.g. [Lal; La2; PR; Y1]). One of our main results
of the present paper is the following theorem concerning the relationship between
Gluck surgeries and Price surgeries.

THeEOREM 0.1. Let K be a2-knot inS*. Then the homotopg-sphereX (K) ob-
tained by the Gluck surgery along is diffeomorphic to the homotoplsphere
[1(Po g K) obtained by the Price surgery along the projective pl#y¢ K, where
ft denotes the connected sum.

In fact, this theorem is a direct consequence of a more general result as follows.
In the following, for a projective plang smoothly embedded i§i*, we denote by
N(P) andE(P) its tubular neighborhood if* andS* — Int N(P), respectively;

we call E(P) theexteriorof P.

TueEorREM 0.2. LetK and K’ be an arbitrary pair of 2-knots inS“. Then there
exist four self-diffeomorphismg (j = 1, 2, 3, 4) of Q such that the closed ori-
ented4-manifold E(Po £ K) U, —E(Po K'), obtained by gluingz(Po # K) and
—E(Po K') along their boundaries using;, is orientation-preservingly diffeo-
morphic toS4, ©(K), Z(K'!), and Z(K) 4 X (K'!) for j = 1, 2, 3, and 4 (re-
spectively, where— E(Py  K') denotesE(Po ff K') with the reversed orientation
and K’! denotes the mirror image df’.

In this theorem, ifK’ is unknotted therE(Py) = E(Pott K') is diffeomorphic

to No, (see [Lal; La2; M2; P; PR; Y1]) an&(K") is diffeomorphic toS4.
Thus, Theorem 0.1 follows from Theorem 0.2. Note that, in Theorem 0.2, the fact
that E(Poft K) Uy, —E(Po i K') is diffeomorphic toS4 for somegp; has already
been obtained by the fourth author [Y3] wh&nand K’ are 2-twist spun 2-knots
(se€[Z]).

Using our Theorem 0.1, we will show that the Gluck surgery along a smoothly
embedded 2-sphei in an arbitrary 4-manifold is always realized by a Price
surgery along the connected sutyg K of K and a standardly embedded projec-
tive planePy contained in a 4-disk i
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The paper is organized as follows. In Section 1, we study the decomposition
S§4 = N(Pg) U E(Po) and show that, for every pair of 2-knaksandK ' in §4, the
4-sphereS* decomposes aB(Pyft K) U —E(Pytt K'). In Section 2, we review
the result of Price [P] concerning the mapping class grdtigQ) of the quater-
nion spaceQ. Recall thatQ admits a structure of a Seifert fibered space difer
with three singular fibers (see [Y1]). We will identif1(Q) with the symmet-
ric group on three letters, where to a self-diffeomorphisof Q corresponds the
bijection on the set of the singular fibers associated with a fiber-preserving diffeo-
morphism isotopic t@. In Section 3, we will prove Theorem 0.2. In Section 4,
we show that every Gluck surgery in an arbitrary 4-manifold is realized by a Price
surgery. In the Appendix, we will introduce a method to describe the homotopy
4-sphereX (K ) obtained by the Gluck surgery along a 2-ki#btin S* by using
a framed link inS3. This result will be used in the proof of Theorem 0.2 in Sec-
tion 3. In fact, the result itself seems to be folklore; however, we have included
it because (to the authors’ knowledge) there has been nothing explicitly written in
the literature.

Throughout the paper, all manifolds and maps are of @ldssinless otherwise
indicated. The symbolZ=" denotes a (orientation-preserving) diffeomorphism
between (oriented) manifolds or an appropriate isomorphism between algebraic
objects.
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They would also like to express their sincere gratitude to the referee for helpful
comments and suggestions. The second author would like to express his thanks to
the people at the University of Liverpool for their hospitality during the prepara-
tion of the manuscript.

1. Decompositions of the 4-Sphere

In this section, we study decompositions of the 4-splsérimto the union of the
exteriors of two embedded projective planesih

Let P, (resp.P_) denote the standardly embedded projective plasé imhose
normal Euler number is equal to 2 (resg?) (see e.g. [Lal; La2; PR; Y1]). First
we review the decomposition 6f into the union of a tubular neighborhodt P, )
(= No) of P, in $* and its exterioE(P;) (see [Y1]). Itis well known thaE(P,)
is diffeomorphic to—N, (= N_,) [Lal; La2; M2; P; PR; Y1], where-N, de-
notesN, with the reversed orientation. Hence we have the decomposifics
— Ny Uy No, whereU,; means that we glue N, and N, along their boundaries.

In[Y1], the fourth author gave a handlebody decompositiaN0dnd described
it by a framed link. Here we describE&(P,) = —N, by the framed link as in
Figure 1. We denote by N, = H° U H' U H? the handlebody decomposition
corresponding to the left-hand side framed link of Figure 1, wh#fedenotes a
handle of index.

Using the handlebody decomposition efV, and the decompositio§* =
—N, Uy N,, we obtain the decomposition 6 as follows:
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S*=H°UH*UH?) UH?UHLUHY), 1)

whereH, denotes the-handle of£N,. In the following, the(4 — r)-handle dual
to ther-handleH . will be denoted by H')+. The attaching circle and the fram-
ing of (H?)*, which is attached té/° U H! U H?2, is studied in [Y1, Sec. 5].

In the theory of framed links, it is usual to omit drawing 3- and 4-handles (see
[LP]). In this sense, the decomposition$f in (1) gives a nontrivial handlebody
decomposition that is described by the framed link as in Figure 2 (see also [Y1,
Fig. 6]).

o

o -\
QD
)

Examining the framed link representation, we see easilyftfat H1 U (Hf)L
is diffeomorphic to the 4-disk*. In the following, we identifyH °U H* U(H2)*
with D*. Then we can summarize the decompositiors bas follows:

S*= —N,Uy N, 2
=HPUH'UH?)U(H2UHL UH?) (3)
=HPUH* UHDHU(HAPUHYUH?) (4)
= D*U, —D*. (5)

Intuitively, we can regard the decompositi§f = —N, U; N» shown in Fig-
ure 3(1) as follows (cf. [Y1, Fig. 3]). LeD{ (resp.D*) denote the upper (resp.
lower) hemisphere a$*, and letk = k. U k_ be the torus link of typ&4, 2) in
aD% = aD* = D% N D*, wherek .. are the components &f Sincek, (respk_)
is an unknotted circle iaD? (resp. indD?), it bounds a 2-diskD? (resp.D?)
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properly embedded iP? (resp. inD*) such that D}, D2) (resp.(D?, D?))is a
standard disk pair. L&t be a small tubular neighborhoodbﬁ in Di and letX ;.
denote the union of the closure bf} — 7. in D{ andT%.. Then the decomposition
(8% — N2, N,) is diffeomorphic to the decompositia®? UD*; X_, X.). Then,

by replacing the 2-disk®2 in D% with knotted 2-disks, we can construct new
decompositions of*. The idea of such a decomposition is seen in Figure 3(2).

X+ = D& -T+UT-
(<—> NZ)

(1) (2)

Figure 3

In the foregoing handlebody decomposititiv, = HO U H1 U H2, the union
of the 0-handle and the 1-handle is diffeomorphicstox D2, which is diffeo-
morphic to the exterior of an unknotted 2-spheréfn In other words H2 U H1
corresponds to the closurebft — 7. in D#. FurthermoreH 2 corresponds t@-.

For given 2-knotk andK " in 4, let us consider the operation of replacing
and D? with D2 ¢t K’ and D2 £ K, respectively. This corresponds to replacing
H® U H! with E(K) andH} U H? with E(K'!), respectively, in the decompo-
sition (3), whereK'! is the mirror image ofk’. We can regard the small tubular
neighborhoods ab? ¢ K'landD2 ¢ K in D% andD? (respectively) as 2-handles,
and we denote them using the same notaFKj;nas before. Then, since we have
E(K)UH? = E(Py¢K)andH? U E(K'l) = —E(P, 4 K'), it follows that

S*= (E(K)UH?) U (H?UEK")) (6)
= E(Py4K) Uy —E(PL £ K'). )
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Thus we have the following lemma.

Lemma 1.1. For every pair of 2-knotsk and K’ in S4, we can decompose the
standard4-sphereS* into the union ofE(P, # K) and—E(P, t K').

REMARK 1.2. This result has already been obtained by the fourth author [Y3] in
the case wher& andK’ are the 2-twist spun 2-knots (Sg#]).

Note that—using the notation to be introduced in the Appendix—we can represent
E(P;  K) by the framed link as in Figure 4(1).

532

G Y

(1) (2)

o

0

Figure 4

2. Mapping Class Group of the Quaternion Space

Let Q denote the quaternion space, which is identified With. We denote by
M(Q) the mapping class group @, which is (by definition) the group of iso-
topy classes of orientation-preserving self-diffeomorphismg oin [P], Price
investigated the self-diffeomorphisms of the quaternion sgaeed showed that
M(Q) is isomorphic taS3, the symmetric group on three letters. In this section,
we study the self-diffeomorphisms ¢f using a Seifert fibered structure gfand
define four self-diffeomorphismg; (i, j = 0,1) of Q.

Recall thatQ admits a Seifert fibered structure whose Seifert invariants in the
sense of [Or, Section 5.2] are given byl; (01,0); (2,1), (2,1), (2,1)}. Let K
be a 2-knot inS“. In the framed link representation &f( P, 1 K), the three sin-
gular fibersS_, So, S1 correspond to the circles iE(P+ £ K) = —Q, as in Fig-
ure 4(2). HereS_; is a co-core of the 2-handlg?, Sy is a meridional circle of
D? 4 K, and the third one i$;. For an element of S3, the symmetric group on
the three letterg—1, 0, 1}, there exists a self-diffeomorphisyy of Q which pre-
serves the Seifert fibered structure and which satigfjes;) = S,(). By using
a result of Price [P] together with a calculation of the automorphisms, @)
induced byf,, it is not difficult to show that every self-diffeomorphism ¢fis
isotopic tof,, for a uniquesr € Ss.

Now let K’ be another 2-knot ir§*. Then we can construct closed oriented
4-manifolds by gluinge (P, £ K) and—E(P, § K') along their boundaries. By
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the previous paragraph, we have at most six diffeomorphism types for the resulting
4-manifolds. Here we are interested only in homotopy 4-spheres. By an argument
using the Mayer-Vietoris sequence, we see easily that if the gluing map sends the
singular fiberS_; onto itself then the resulting 4-manifold has nontrivial first ho-
mology group. Thus we consider the following four self-diffeomorphisms that
sendS_; onto anS; (k # —1) as gluing maps. Lef;; (i, j = 0,1) denote the
self-diffeomorphism oD which preserves the Seifert fibered structure and which
satisfiesf;; (S_1) = S; andﬁ.]?l(S,l) = §;. In other words f;; = f, for

—1 . <
U=( . / Jv>€53,
i =1 i

where{—1,i,i} ={-1,j,j} ={-10,1}.

3. Proof of Theorem 0.2

Let K andK’ be 2-knots inS*. In this section, we study the homotopy 4-spheres
obtained by gluingE(Po g K) and— E(Po f K') along their boundaries.

Proof of Theorem 0.2We may assume thdy = P, . Let us begin with the de-
composition ofS* obtained in Section 1 as follows:

S*= E(Py#K)Uy —E(P, 2 K) (8)
= (E(K)UH?) U (H? U E(K")) (9)
= (E(K) U (H2)™) U ((H?)" U EK')). (10)

Note that, in (10)E(K) U (H2)* and(H?)* U E(K") are diffeomorphic taD*
and—D*, respectively. Let us denote lythe gluing map(—E(P,# K')) —
O0E(P, ¢ K) in the decomposition (8).

Let us verify that the gluing map is isotopic tofpo. As we have seen in Sec-
tion 1 (see Figure 2), the co-cofe; of Hf lying on a(Hf U E(K'!)) corresponds
by g to So lying on d(E(K) U H?). Thus we havg(S_1) = So. By a similar ar-
gument, we see that(S_;) = So. Thusg is isotopic to foo and hence we have
the first diffeomorphism of the theorem wigh = foo.

Next let us consider the following:

E(P,8K) Uy, —E(Py £ K)
= (E(K)U H?) Uy, (H2 U E(K'1)) (12)
= (E(K) Us; (H))M) U ((H?)*" Us, E(K'Y)), (12)
whereE(K)Us, (H2)* (resp(H2)"* Us, E(K'!)) denotes the compact 4-manifold
obtained fromE(K) (resp. fromE(K'!)) by attaching the 2—handteﬁljf)L (resp.
(H?)*) along the circleS; (resp.S;). By an argument similar to the foregoing,

we see that if = 0 thenE(K) Us, (H2)" is diffeomorphic toD* and that ifj =
0 then(H2)* U, E(K') is diffeomorphic to—D*.
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Let us show that if = 1thenE(K) Us, (H2)* is diffeomorphic toZ(K)°,
where X (K) is the homotopy 4-sphere obtained by the Gluck surgery along
(see Section 0) anB (K )° = =(K) — Int D*.

We shall prove this claim by using the framed link theory together with a method
to be explained in the Appendix. The 4-manifdidK) is represented by an un-
knotted circle with a dot together with the symii] and the attaching circle of
(Hfr)L coincides withS; as in Figure 4(2). Let us determine the framingf the
2-handle(H?)*. First note thab(E(K)U H? Ug, (H2)*) = dE(K'!) = §? x S
By Lemma A.3, we can represent this boundary by the framed link as in Figure 5.

Because the linking matrix
0 1 2
A= ( 1 n 1)
210

of the framed link is a presentation matrix@f(S? x S%; Z) = Z, its determinant
detA = 4 — 4n must vanish. Thus we have= +1. HenceE(K) Ug, (Hf)l is
described by the framed link/ (K, 1), as in Figure A2 (in the Appendix). There-
fore it is diffeomorphic tox (K)°, by Lemma A.2.

Figure 5

By the same argument, we can show tiat?)* Us, E(K'l) = Z(K'De.
Therefore, by (12), we see that

E(Py 4 K)Up, —E(PL8K') = D*UZ(K'",
E(P,#K) VU, —E(Py 8 K') = 2(K)° U —D*,
E(Pyt K)Up, —E(Py £K') = Z(K)° U (K1),

Thus we have the conclusion of Theorem 0.2 with=f10, 93 = fo1, andg, =
Jf11. This completes the proof. O

As a direct consequence of Theorem 0.2, we have the following.

COROLLARY 3.1. LetK be a2-knotinS*. Then there exist self-diffeomorphisms
¢ and ¢ of Q such that

E(Pot K)U, —E(Pott K) =S4,
E(PoK) Uy —E(Pot K) = S(K).
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In other words,S* and X (K) can be decomposed as twisted doubles of the exte-
rior of Pyt K.

For twisted double decompositions of the 4-sphere, see [Lal; Y1; Y2].
We now discuss further related results and problems concerning Theorems 0.1
and 0.2.

ReEMARK 3.2. Concerning surgeries along embedded tofi4na result similar
to Theorem 0.1 has been obtained by Iwase [I, Prop. 3.5].

CoroLLARY 3.3. LetK be a2-knotinS*such that the homotopysphereX (K )
obtained by the Gluck surgery aloigis diffeomorphic tas“. Then all the homo-
topy 4-spheres obtained by Price surgeries aloRgt K are also diffeomorphic
to S

COROLLARY 3.4. LetK and K’ be2-knots inS%. If E(Pyt K) is diffeomorphic
to E(Pot K'), thenX(K") is diffeomorphic tax (K).

Proof. By applying Theorem 0.2 t& and the trivial 2-knot, we see that the homo-
topy 4-sphere obtained by gluiny P £ K) and—E(Py) along their boundaries
is diffeomorphic toS* or £ (K). Similarly, the homotopy 4-sphere obtained by
gluing E(Po tt K') and—E(Py) is diffeomorphic taS* or X (K”). Thus, by our as-
sumption, we havés*, X (K)} = {S*, =(K')} as sets of diffeomorphism classes
of homotopy 4-spheres. B (K) = S*, then the number of elements of the set is
equal to 1 and hence we hagé = X (K’). If £(K) 2 S4, then the number of
elements of the set is equal to 2. THD§K') % S and, by the foregoing equal-
ity, we haveX (K') = X (K). This completes the proof. O

Viro showed that there exists a nontrivial 2-krfotin $4 such thatPo £ K is iso-
topic to Py ([V]; seealso [PR]). By Theorem 0.1 (or Corollary 3.4), for such a
2-knotK, 3 (K) is diffeomorphic to the 4-sphere.

As a generalization of Viro’s construction, let us consider a 2-#nat S* and
consider the local move as depicted in Figure 6. A disk and an annulus, which are
parts ofK, are properly embedded in a 4-bé@l* = D3 x [—1, 1] in S$*, and we
change those parts &f in the 4-ball (or, more precisely, iP3 x {0}), as in Fig-
ure 6, without changing the other parts. Then it is not difficult to show that if a
2-knot K is changed tX’ by a finite number of local changes of this type, then
the pairK and K’ satisfies the assumption of Corollary 3.4. Note that this type
of operation, which is a slight generalization of Viro’s example, does create many
pairs ofdistinct2-knots(K, K’) such thatk ¢ P, is isotopic toK’ f P...

Thus we have the following result, which purely concerns Gluck surgeries along
2-knots.

CorROLLARY 3.5. Let K and K’ be 2-knots inS*. If K is transformed tak’ by
a finite iteration of local changes of the type just described, fiék’) is diffeo-
morphic toX (K).
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I Local Move

B

Figure 6

Note that a more general version of this corollary has been obtained in [HMY] by
using a different method.

It has been known that, for certain 2-knotssSifi, the results of the Gluck sur-
geries along them are diffeomorphic$4 (see e.g. [Gom1; Gor; HMY; Mo; PI]).
Note that we do not know if the Gluck surgery along every 2-knot gives a homo-
topy 4-sphere diffeomorphic to the standard 4-sphere (see [Kirl, 4.11, 4.24, 4.45]).
The answer to this question will be affirmative if the following problem is nega-
tively solved.

ProBLEM 3.6. Does there exist a smoothly embedded projective phaimes*
such that the Price surgery aloiggives a homotopy 4-sphere that is not diffeo-
morphic tos*?

The following corollary is a direct consequence of our Theorem 0.1 and [AR,
Thm. 4.6].

COROLLARY 3.7. Let K be a2-knot inS* and letTT(Py ff K) be the homotopy
4-sphere obtained by the Price surgery aloRgt K. ThenTI(Po# K) CP? is
always diffeomorphic t€ P2.
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We do not know if this corollary holds for homotopy 4-spheres obtained by Price
surgeries along arbitrary projective planessth

REMARK 3.8. Here we note that all known examples of projective planes smoothly
embedded ir§* are isotopic to the connected sum of a standardly embedded pro-
jective plane and a 2-knot. In [Kal; Ka2; Kin; PR, Sec. V], some examples of such
knotted projective planes whose exteriors have fundamental groups not isomor-
phic toZ, have been constructed and studied. In fact,Kh@shita conjecture
posits that every smoothly embedded projective plang’iis isotopic to such a
connected sum. (Although this conjecture has not appeared in the literature, it has
been known to knot theorists in Japan for many years; see e.g. [Y0].) Ifthis conjec-
ture is true, then our Theorem 0.1 would imply that the homotopy 4-spheres pro-
duced by Price surgeries along embedded projective plangsane nothing but

the homotopy 4-spheres produced by Gluck surgeries along embedded 2-spheres
in S%.

REmMARK 3.9. It has been known that there exist inequivalent 2-knoss'iwith
diffeomorphic exteriors (see [CS]). We do not know if there exist inequivalent pro-
jective planes ins* with diffeomorphic exteriors. Note that, by [P], there are at
most two such projective planes with a fixed exterior. For example, for the 2-knots
K and K’ of [CS] with the properties just described, we do not knowPgft K
and Py it K’ also have the same property.

REMARK 3.10. In [Y3] it was shown that, for certain 2-knaksand K’ in S4,
there exists a self-diffeomorphisgof Q such thatE(P, 41 K) U, —E(PL 8 K")
is diffeomorphic toS*. Furthermore, in [KS] it was shown that, ¥ and P’ are
topologically locally flatly embedded projective planesSifiwith the same nor-
mal Euler number and such that eithfeior P’ is the connected sum @f; and a
locally flat topological 2-knot ir§ 4, then there exists a self-hnomeomorphigrof
Q such thatE(P) U, —E(P") is homeomorphic ts,

ReMark 3.11. Theorem 0.2 (or Lemmnial) showshat one can construct infi-
nitely many mutually nonisotopic smooth embeddings of the quaternion gpace
into 4. Conversely, leff : Q — S*be an arbitrary smooth embedding. In [KS] it
was shown that the closure of each connected componéiit-eff (Q) is homeo-
morphic to the exterior of some topologically locally flatly embedded projective
plane inS4.

4. Gluck Surgery in an Arbitrary 4-Manifold

Let M be a connected smooth 4-manifold akich smoothly embedded 2-sphere
in M with trivial normal bundle. Furthermore, lét be a smoothly embedded
projective plane inV such that (i) it is contained in a 4-digR* in M, (ii) it is
standard as an embedding if4, and (iii) it has normal Euler numbet2. Note
that Py is uniquely determined up to isotopyM is nonorientable and that there
are exactly two isotopy classes corresponding to the normal Euler nuniers
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if M is orientable. We denote b, # K the connected sum aty with K in M.
Note thatoN (P t K) is diffeomorphic toQ, whereN(Pq ff K) is a tubular neigh-
borhood of Pot K in M.

Our main result of this section is the following.

TueoreM 4.1. LetM, K, and Py be as before. Then there exists a self-diffeomor-
phismg of Q such that thel-manifold IT(Po # K),, obtained by the Price surgery
along Py K with respect tap is diffeomorphic to thd-manifold ¥ (K) obtained

by the Gluck surgery along.

Proof. We may assume thd, = P,. Let D§ be a smoothly embedded 4-disk in
M such that the following conditions hold:

(1) the 2-spher& anddD{ intersect transversely along a circle; and
(2) the pair(Dg, Dg N K) is a standard disk pair.

Let M, denote the closure o¥ff — Dg and letT; be a tubular neighborhood of
K N Mj in M;. Note that the closur&’(K) of My — Ty in M is diffeomorphic to
the exterior ofK in M and thafr’; is considered to be a 2-handle attacheB X ).

Let D’ be a properly embedded 2-diski which does not intersedt N aDg,
such that(D2, D") is a standard disk pair and the lialo’ U (K N aDg) isasin
the left-hand side of Figure 1, where the dotted circle correspondsnodDg.
Let 7’ denote a small tubular neighborhood Bf in D¢. Note that7’ is also
considered to be a 2-handle attached#p(see Figure 7) and th# (P, § K) =
E'(K)UT’'. We denote by the closure oD — T’ in D3. Then the operation
of a Price surgery along, ¢ K is to cut off Eq U T1 from M and then reglue it
using a self-diffeomorphism af.

KnM

T

E'K) =M -T)

Figure 7
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Then (by an argument similar to that in the proof of Theorem 0.2) we see that,
by a self-diffeomorphism of O = 9(EyU T1) corresponding tg, the 2-handle
T, is attached t&’(K) along a circle irﬁng E’(K) that corresponds to the circle
with framingn in Figure 5. By an argument similar to the proof of Theorem 0.2
and Lemma A.2, we see that the resulting 4-manifeldK) U T; is diffeomor-
phic to £ (K)° and that the union ofy and 7"’ is diffeomorphic toD*. Hence
the result of the Price surgery alo®g £ K with respect tap is diffeomorphic to
3 (K). This completes the proof. O

REMARK 4.2. Akbulut [Ak1; Ak2] constructed an example of an embedded 2-
spherek in a 4-manifoldM such thatz (K) is homeomorphic but is not diffeo-
morphic toM. Such an example, together with our Theorem 4.1, gives an example
of a smoothly embedded projective plane in a 4-manifold such that a Price surgery
gives an exotic 4-manifold.

Appendix: Framed Link Representation of X (K)

In this section we introduce a method to describe a 2-knot exterior by a framed
link in S2, and we also describe the homotopy 4-spher&) obtained by the
Gluck surgery along a 2-kndf in S* by using such framed links.

Let (D*, D?) be a standard disk pair; that iB3 is an unknotted 2-disk prop-
erly embedded in the 4-disR*. Let K be a 2-knot inS4. We considerk to be
embedded in the interior db* and letD3 # K denote the connected sum b
andKk in the interior of D*. Let N(D3 t K) be a tubular neighborhood &f2 £ K
in D*. Note that the closur€’(K) of D* — N(Dj # K) in D* is diffeomorphic to
the exteriorE(K) of K in S*.

DEerINITION A.1l.  We denote the compact 4-manifaid(K) by the framed link
consisting of an unknotted circle ¥ with a dot and with symbok attached to

it (see Figure Al). In the framed link representation, the exterior of the unknotted
circle in $® coincides withdD* N E’(K).

O

K

Figure A1

When the 2-knotk is unknotted,E’(K) is diffeomorphic toS* x D® and the
framed link representation df’(K) as in the preceding definition (but without
the symbolK) coincides with the usual framed link representation of a 1-handle
attached to a 0-handle (see e.g. [Kir2, |, Sec. 2]). In other words, Definition A.1
is a generalization of the framed link representation of a 1-handle.

Our main result of this appendix is the following.
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LemMA A.2. For an integern and a2-knot K in S*, consider the compact-
manifoldM (K, n) represented by the framed link as in Figure A2. In other words,
M (K, n) is obtained fromE’(K) by attaching a&2-handle along the undotted cir-
cle in3E'(K) as in Figure A2 with framing:. ThenM (K, n) is diffeomorphic

to D* if n is even and ta& (K)° if n is odd, wherex (K) denotes the homotopy
4-sphere obtained by the Gluck surgery alakigand = (K)° = X(K) — Int D%,

@n M(K,n)
K

Figure A2

This lemma may already be a “folklore” fact. However, we include a proof here
for completeness.

Proof of Lemma A.2. First we considek to be embedded if%. Take a small
4-disk D¢ in $* such that the following conditions hold:

(1) the 2-knotk andaDj intersect transversely along a circle; and
(2) the pair(Dg, Dg N K) is a standard disk pair.

Letthe closure 0§ % — D¢ be denoted by Thenlet; = D2 x D? (i = 0, 1)
be a tubular neighborhood @i N K in D} such thatfy N 9D = T1 N dDF =
ToN T is atubular neighborhood & N DG in dDg. Note thatToU Ty = S% x D?
is a tubular neighborhood d@f in S and that the closure dﬁf — Ty is diffeomor-
phicto E'(K).

Considerr, = ", wherer is the self-diffeomorphism 2 x S = C x Sl asin
Section 0. We identify the boundary 6§ U 71 with $2 x S* so thatToNd(ToU Ty)
(resp.TiN d(To U Ty)) corresponds td? x S* (resp.D? x S1), whereD? (resp.
D?) is the unit disk inC (resp. the complement of the open unit disKitogether
with {00}).

Then consider the surgery operation of cutting®ftJ 7, from $* = DU D}
and regluingTp U Ty = S? x D? by usingr,. By [G], the resulting 4-manifold
M is diffeomorphic toS* if » is even and t& (K) if n is odd. Since the diffeo-
morphismz,, preserves the decompositii x S* = (D2 x $1) U (D2 x §Y),
this 4-manifold decomposes &% U My, whereM; (i = 0, 1) is the 4-manifold
obtained by the surgery operation of cutting @fffrom D} and regluing?; =
D? x D? by usingr, restricted ta(7; N 3(To U Ty)).

Since(D§, D§N K) is a standard disk pair, it is easy to show thatis always
diffeomorphic to the 4-distd*. On the other hand, the closure bf — T; is dif-
feomorphic toE’(K) andT1 = D? x D? can be regarded as a 2-handle attached to
E’(K). The attaching circle of is isotopic to the undotted circle shown in Fig-
ure A2 indE’(K) and the framing is equal to, since we use,, for the attaching
map. Thus we have shown thi is diffeomorphic toM (K, n).
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Summarizing these observations, we have Mak, n) U D* is diffeomorphic
to $*if n is even and t& (K) if n is odd. Thus we have the conclusion, which
completes the proof of Lemma A.2. O

If a compact 4-manifoldV is represented by a framed link that has dotted circles
with a symbolK, then one can obtain a usual framed link representation of the
boundary 3-manifoldM by the following lemma.

LeEmMMA A.3. Suppose that a framed lirkk has an unknotted circlé with a dot
and with aK. Let L’ denote the framed link obtained frainby removing the dot
and the symbokK from the component and replacing them with 8 as a fram-
ing number. Then the boundaBymanifolds of thel-manifolds represented by
and L’ are diffeomorphic to each other.

Proof. We use the same notation as in the paragraph just before Definition A.1.
Letv: D2 x D? — N(DZ 4 K) be a diffeomorphism with(D? x {0}) = D3t K

such thatN(d) = v(dD? x D?) is a tubular neighborhood af in dD*, where

0 is the center of the disk?. Note that the framing number corresponding to
the diffeomorphisnv|,p2, p2 is equal to 0, sinced and the parallel circld’ =
v(dD? x {p}) bound disjoint disks irD*, wherep is a point ondD?.

Let W denote the 3-manifold represented by the framed link d, which
coincides with that represented By — d. Then we see that the boundary of the
4-manifold represented b is diffeomorphic to(W — N(d)) U v(D? x aD?).
Since the framing number corresponding to the diffeomorphisie, 2 is equal
to 0, we see that the boundary 3-manifold is also represented by the framed link
L’. This completes the proof. O
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