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1. Introduction

In this paper we introduce a generalization of the notions of shears and overshears
to arbitrary complex manifolds. The concept is very simple, but it is useful in the
study of complex manifolds having very large automorphism groups. We shall
explore some of the consequences of this concept in connection with the density
property, which we now recall.

In [V1] we introduced the notion of complex manifolds with thedensity prop-
erty. Recall that a complex manifoldM has the density property if the Lie subalge-
bra ofXO(M) generated by the complete vector fields onM is a dense subalgebra.
More generally, a Lie subalgebrag ⊂ XO(M) is said to have the density property
if the complete vector fields ing generate a dense subalgebra ofg. (SoM has the
density property if and only ifXO(M) has the density property.) Another impor-
tant case occurs whenM has a nonvanishing holomorphicn-form (n = dimCM),
that is, a holomorphic volume elementω. We say that(M,ω) has thevolume den-
sity propertyif the Lie algebraXO(M,ω) := {X ∈XO(M) | LXω = 0 } has the
density property. Andersén [A] proved that(Cn, dz1∧ · · · ∧ dzn) has the volume
density property, and then Andersén and Lempert [AL] proved thatCn has the den-
sity property. The author showed that for every complex Lie groupG, (G×C, ω)
has the volume density property, whereω is the unique (up to constant multiple)
left (or right) invariant holomorphic volume element onG×C, and that ifG is a
Stein Lie group, thenG × C has the density property. The author also produced
several examples of Lie algebras of vector fields with the density property.

In [V2] we used jets to explore the complex structure of (mostly Stein) complex
manifolds with the density property. It was shown, among other things, that Stein
manifolds with the density property admit open subsets biholomorphic toCn and
have interesting properties with respect to their embedded submanifolds. Some
of the results were known forCn through works of Buzzard, Fornæss, Forstnerič,
Globevnik, Rosay, Stensønes, and others.

With the usefulness of the density property already established in the literature,
some sort of classification or fine structure theorem is very desirable. Such a result
seems at the moment very far off, owing in part to the lack of examples. The main
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theorems of this paper, which we now state, give many new examples of the den-
sity property; more importantly, the proofs establish techniques that can be used
to construct other examples. We shall pursue this in future work.

Theorem 1. Let M 2 := C2\{xy = 1} and ω := (xy − 1)−1dx ∧ dy. Then
(M 2, ω) has the volume density property.

The study of the spaceM 2 was inspired by discussions with Rosay several years
ago. This space is important because it is another instance of the mysterious pre-
phenomenon (we say “pre” because there are no proofs that it exists) of a holo-
morphic volume element that is preserved by every holomorphic automorphism.

In the next result, we study a complex Lie group that is not of the formG×C.
There is, as of yet, no general theory here, so we focus on one example.

Theorem 2. The complex Lie groupSl(2,C) := { (a, b, c, d )∈C4 | ad− bc =
1} has the density and volume density property.

Next we introduce a new class of complex manifolds with holomorphic volume
element called EMV manifolds. These spaces are generalizations of complex Lie
groups, but also of certain complex homogeneous spaces. Roughly speaking, they
have the property that all holomorphic vector fields on them can be approximately
written as finite sums of the form

∑
fjXj, wherefj areany holomorphic func-

tions, andXj are divergence zero completely generated holomorphic vector fields
(see Section 2).

Theorem 3. Let (M,ω) be an EMV manifold. Then(M × C, ω ∧ dz) has the
volume density property. IfM is moreover an open subset of a Stein manifold,
thenM × C has the density property.

As already suggested, the key tool used in the proofs of these theorems is a gen-
eralization to arbitrary complex manifolds of the notion ofshearsandovershears.
This tool may have some independent interest as well. The idea is quite simple:
Given aC-complete holomorphic vector fieldX in a complex manifoldM, one
tries to produce new complete vector fields of the formf ·X,with f ∈O(M). We
establish necessary and sufficient conditions on suchf, and these conditions de-
fine in a natural way function spaces associated toX. We then prove theorems to
the effect that the structure of these function spaces depends on the intrinsic and
extrinsic geometry of the orbits ofX.

The organization of the paper is as follows. In Section 2 we briefly recall some
basic definitions in the theory of ordinary differential equations and volume geom-
etry, taking the opportunity to establish notation. In Section 3 we introduce and
develop general shears and overshears. In part, our results here explain why it was
easiest to prove the density property for spaces of the formG × C. In Section 4
we prove Theorem 1, and in Section 5 we prove Theorem 2; the proofs are rather
combinatorial in nature. In Section 6 we introduce EM and EMV spaces, and we
prove Theorem 3 as well as some related results. Finally, in Section 7 we state a
question which naturally arises in the course of the paper, giving an example of a
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complex manifold which may or may not have the (volume) density property but
for which the combinatorial methods of Sections 4 and 5 become too cumbersome
to carry out.

Acknowledgments. We wish to thank Marius Dabija, John Erik Fornæss, Mike
Roth, Berit Stensønes, and Arpad Toth for their interest in this work and for very
interesting and stimulating discussions.

2. Some Preliminaries

In this section we recall a few basic concepts and establish the notation used below.
A holomorphic vector fieldX is a holomorphic section ofT 1,0M, the holomor-

phic part of the complexified tangent bundle. Since there is a natural identification
of T 1,0M with the real tangent bundleTM, we can identifyX with a real vector
field, which we still denote byX. This vector field has a flowϕX, which is a map
defined on an open subset ofM × R containingM × {0} as follows: for(x, t) ∈
M ×R, ϕtX(x) is the pointc(t)∈M, wherec : I ⊂ R→ M is the maximal solu-
tion of the initial value problem

dc

dt
= X(c), c(0) = x.

Moreover,ϕtX is holomorphic for eacht. We denote the set of holomorphic vector
fields onM byXO(M).

A holomorphic vector fieldX is calledcompleteif ϕX is defined on all ofM × R.
In this case{ϕtX | t ∈R } is a 1-parameter group of automorphisms ofM.

A vector fieldX is calledC-completeif both X and iX are complete. Let
ψs+it(x) := ϕ sX B ϕtiX(x). One checks that, since [X, iX] = 0 for all holomorphic
vector fields,{ψζ | ζ ∈ C } defines a complex 1-parameter group of automor-
phisms which is holomorphic inζ, that is, a holomorphicC-action. In this paper
we shall use the termcompleteto meanC-complete.

The setXO(M) of all holomorphic vector fields onM is equipped with a bracket
(or commutator) operation, [X, Y ] = XY − YX, which makes it into a Lie alge-
bra. Given any Lie algebrag of holomorphic vector fields, we can consider the
Lie subalgebrag′ of g generated by the complete vector fields ing. Any X ∈ g′
is said to beg-completely generated.If g = XO(M), we omit reference to the
Lie algebra. Ifg = XO(M,ω) (see below), we say thatX ∈ g′ is divergence zero
completely generated.

Let us now suppose thatM admits a nowhere vanishing holomorphicn-formω,

wheren = dimCM. We call such a form aholomorphic volume element.Given a
holomorphic volume elementω,we can define a map divω : XO(M)→ O(M) by

divω(X) = LXω

ω
,

whereLX is the Lie derivative ofX:

LXα = d

dt

∣∣∣∣
t=0

(ϕtX)
∗α.
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SinceL[X,Y ] = LXLY − LYLX, one easily shows that

divω([X, Y ]) = X divω Y − Y divω X.

Another useful formula, due to H. Cartan, is

divω(X) = d(iXω)

ω
,

whereiX is contraction with respect toX.
Finally, we denote the kernel of divω by XO(M,ω) and callX ∈ XO(M,ω) a

divergence zerovector field.

3. General Shears and Overshears

Basic Propositions and the Definition

LetX ∈XO(M). We define

I j(X) = I jO(X) := { f ∈O(M) | Xjf = 0 }.
If f ∈ I1(X) (resp.I 2(X)), we sayf is a first (resp. second) integral ofX. The
following proposition is immediate.

Proposition 3.1. LetX be a holomorphic vector field with(local) flowgtX. Then
f ∈ I1(X) (resp.I 2(X)) if and only if (where defined)

f B gtX = f (resp.f B gtX = f + tXf ).
Although first integrals have been studied extensively in the past, second inte-
grals seem not to have been looked at. However, in the holomorphic category it
is natural to study first and second integrals because of the following fundamental
proposition.

Proposition 3.2. If X ∈XO(M) isC-complete andf ∈O(M), thenfX isC-
complete if and only iff ∈ I 2(X).

Proof. If X vanishes at somep ∈ M, then so doesfX, so the integral curve of
fX throughp is defined (and constant) for allt ∈ C. Suppose now thatX(p) 6=
0. Let hp : C→ Rp(X) be the integral curve ofX throughp. Here,Rp(X) is the
orbit ofX throughp. Then

h∗p(X)(t) = ∂t ,
andhp is a covering map. SincefX is tangent to the orbits ofX, h∗p(fX) is a
well-defined vector field onC. Precisely,

h∗p(fX)(t) = f B hp(t)∂t .
It follows that the integral curve offX throughp is defined for all time if and
only if f B hp(t) is an affine linear function oft. This holds for allp in M\
{X = 0} if and only if f ∈ I 2(X).
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Proposition 3.2 is a purely holomorphic result. Note that, in general, multiplying
a (real) vector field by any bounded function preserves completeness.

Example 3.3. LetCn = C × Cn−1 (n ≥ 2) have coordinatesz = (z1, z
′).

Consider the vector field∂z1 on Cn. Then f(z)∂z1 is complete if and only if
f(z) = g(z ′)+ h(z ′)z1. Vector fields of the formf(z ′)∂z1 are calledshear fields;
those of the formf(z ′)z1∂z1 are calledovershear fields.These vector fields have
played a fundamental role in the study of automorphisms ofCn, as the set of all
time-1maps of these vector fields generates a dense subgroup of Aut(Cn) [A; AL].

Definition 3.4. LetX be a complete holomorphic vector field on a complex
manifoldM. An X-shear(resp.X-overshear) field onM is a vector field of the
form f ·X, with f ∈ I1(X) (resp.I 2(X)).

Second Integrals

To find first integrals of a complete vector fieldX, it is well known that the orbits
ofX must have particularly nice behavior. SinceX mapsI 2(X) to I1(X), we can
expect that second integrals are somehow more rare than first integrals. We will
show that this is indeed the case.

One can phrase the problem of finding second integrals (i.e., solving the second-
order PDEX2f = 0) as an inhomogeneous first-order PDE with conditions on the
forcing term:

Xv = ϕ with ϕ ∈ I1(X).

The most optimistic situation occurs when we can solve the equationXu = 1. In
this case, we can writef ∈ I 2(X) as

f = uXf + (f − uXf ),
which shows thatI 2(X) = I1(X)+ uI1(X). We shall see, however, thatXu = 1
does not always have a solution.

To get a good idea of whenI 2(X) is “large”, it is convenient to use the lan-
guage of ideals. LetJX := X(I 2(X)) ⊂ I1(X). JX is an ideal inI1(X), since
ϕXf = X(ϕf ) ∈ JX for ϕ ∈ I1(X) andf ∈ I 2(X). Being able to solveXu = 1
is equivalent to saying thatJX = I1(X). HenceI 2(X) is “large” whenI1(X) is
large and the quotient ringI1(X)/JX is “small”—for example, finitely generated
or trivial.

It is interesting that the size of the quotientI1(X)/JX is intimately tied up with
the complex geometry of the orbit space ofX. Our first result is the following.

Theorem 3.5. Let X ∈ XO(M) be complete, letf ∈ I 2(X), and setN :=
M\{Xf = 0}. Then

(1) N/X is a complex manifold,
(2) π : N → N/X is a holomorphic submersion,
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(3) π × f : N → (N/X)× C is a biholomorphic map, and
(4)

(π × f )∗(fX)(Rp(X), λ) = ψ(Rp(X))λ∂λ
for someψ ∈O(N/X).

Proof. Let u := (1/Xf )f. ThenXu = 1, andu B gt(p) = u(p) + t. Note also
thatX|N is complete, since{Xf = 0} is a union of orbits.

(1) The manifoldN/X can be identified with the level setu−1(0) via the map

ξ : N/X→ u−1(0); Rp(X) 7→ Rp(X) ∩ u−1(0).

First, if p ∈ N theng−u(p)X (p) ∈ u−1(0), so that no orbit has empty intersection
with u−1(0). Henceξ is well-defined, at least as a set-valued function. Next, note
thatξ is single-valued. Indeed, ifRp(X) ∩ u−1(0) containsp1 andp2, thenp1=
g
t1
X(p) andp2 = gt2X (p). But sinceu(p1) = u(p2) andu B gt(p) = u(p)+ t, we

see thatt1 = t2 and hence thatp1 = p2. Next, ξ is 1–1 because orbits of vector
fields never intersect. Finally,ξ is clearly surjective. To finish (1), note that since
du(X) = 1, du never vanishes onN. Henceu−1(0) is a complex manifold, which
we henceforth identify withN/X via ξ.

(2) Observe that the canonical projectionπ : N → u−1(0) is given byπ(p) =
g
−u(p)
X (p). Note also thatπ|u−1(t) : u

−1(t) → u−1(0) is a biholomorphic map;
π|u−1(t) = g−tX . Henceπ is a submersion.

(3) Defineτ : N × C→ C andG : N × C→ N by

τ(p, λ) := λ− f(p)
Xf(p)

and G(p, λ) := gτ(p,λ)X (p).

Then, sincef ∈ I 2(X) (and henceXf ∈ I1(X)), Proposition 3.1 gives that
τ(gtX(p), λ) = τ(p, λ)− t and hence that

G(gtX(p), λ) = gτ(p,λ)−tX B gtX(p) = G(p, λ).
ThusG defines a holomorphic mapH : (N/X)× C→ N by

H(Rp(X), λ) := G(p, λ).
Now

π × f BH(Rp(X), λ) = π × f(gτ(p,λ)X (p)

= (Rp(X), f(p)+ τ(p, λ)Xf(p))
= (Rp(X), λ)

and

H B π × f(p) = H((Rp(X), f(p))
= gτ(p,f(p))X (p)

= p.
ThusH = (π × f )−1 and henceπ × f is a biholomorphic map.
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(4) We have

(π × f )∗(X) = d

dt

∣∣∣∣
t=0

π × f B gtX BH(Rp(X), λ)

= d

dt

∣∣∣∣
t=0

π × f B gtX B gτ(p,λ)X (p)

= d

dt

∣∣∣∣
t=0

(Rp(X), f(p)+ τ(p, λ)Xf(p)+ tXf(p))

= Xf(p)∂λ,
so now

((π × f )∗(fX))(Rp(X), λ) = (H ∗f )(Rp(X), λ) · (π × f )∗(X)(Rp(X), λ)
= λXf(x)∂λ.

Takingψ(Rp(X)) = Xf(p) finishes the proof.

As a corollary, we obtain the following proposition.

Proposition 3.6. LetX ∈XO(M) be complete, and define

6X,M :=
⋂

f∈I2(X)

{Xf = 0}, NX,M := M\6X,M.

(Note thatNX,M is an open subset ofM,which is either empty or dense.) Then for
eachp ∈NX,M, Rp(X) is biholomorphic toC. In particular, ifX has a nontrivial
second integral, then almost every orbit ofX is biholomorphic toC.

Suppose we can solveXv = ϕ ∈ I1(X). Then Theorem 3.5 tells us thatN/X is
a complex manifold, andN (= M\{ϕ = 0}) is biholomorphic toN/X × C. It
follows that ifM is Stein thenN/X is itself Stein (sinceN is Stein). In the case
whereϕ ≡ 1, the converse is also true.

Theorem 3.7. LetX ∈ XO(M) be a complete vector field whose orbits all are
biholomorphic toC. SupposeM/X is a complex manifold andπ : M → M/X is
a holomorphic map. IfM/X is Stein, thenXu = 1has a solution.

Proof. If M/X is a (differentiable) manifold andπ is smooth, thenπ is a submer-
sion and thus the bundleπ : M → M/X is locally trivial. Furthermore, it is pos-
sible to select local trivializations{ϕj : π−1(Uj ) → Uj × C} such that(ϕj )∗X =
∂λ for all j. Indeed, letσj be a local section ofπ : M → M/X overUj . For
eachx ∈ π−1(Uj ), defineλ = λ(x) to be the unique complex number for which
gλX(σj Bπ(x)) = x. The dependence ofλ onx is holomorphic because of the holo-
morphic dependence of the flow on initial conditions. Setϕj(x) := (π(x), λ(x)).
Note thatϕj B gsX(x) = (π(x), s + λ(x)) and so

(ϕj )∗X(x) = d

ds

∣∣∣∣
s=0

(π(x), s + λ(x)) = ∂λ.
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Now, since the fibers of our holomorphic bundle areC, the bundle must be an
affine bundle; hence the transition functionsϕjk(π(x))t := prλ B ϕj B ϕ−1

k (x, t)

(where prλ is the projection to the second factor) satisfy

ϕjk(π(x))t = fjk(π(x))t + gjk(π(x)).
Moreover, because of the way theϕj were chosen,fjk(π(x)) ≡ 1 for all j, k.
Indeed,

fjk(π(x)) = ∂

∂t
ϕjk(π(x))t = prλ∗(ϕj )∗(ϕ−1

k )∗∂λ ≡ 1.

Next, writing out the identity

ϕjk B ϕkl B ϕlj = id

shows that{gjk} is a 1-cocycle onM/X (i.e., Cousin-1 data). SinceM/X is Stein,
gjk = gj − gk. One checks easily that{gk} is a section ofπ : M → M/X. It fol-
lows thatπ : M → M/X is actually a line bundle, since we can use the section
{gk} as an origin for each fiber. Precisely, we can define the transition functions

Pjk(π(x))v := ϕjk(π(x))(v + gk(π(x)))− gj(π(x)).
Then

Pjk(π(x))v = fjk(π(x))(v)+ ϕjk(π(x))(gk(π(x)))− gj(π(x)) = fjk(π(x))(v)
so that, sincefjk ≡ 1, π : M → M/X is trivial. We now define (in the usual way)
the global trivializationF : M → (M/X)× C by F := π × ψ, where

ψ(x) = prλ B ϕj(x)− gj(π(x)) for x ∈π−1(Uj ).

The functionψ is well-defined, since forx ∈Uj ∩ Uk we have

prλ B ϕj(x)− gj(π(x)) = prλ B ϕj B ϕ−1
k (ϕk(x))− gj(π(x))

= ϕjk(π(ϕk(x))t − gj(π(x)) where t = prλ(ϕk(x))

= t + gjk(π(x))− gj(π(x))
= t − gk(π(x))
= prλ B ϕk(x)− gk(π(x)).

It follows that
F∗X = ∂λ.

Settingu(F−1(π(x), λ))= λ, we see thatXu=X(F ∗(F∗u))= (F∗X)(F∗u)=1,
as required.

Remarks. (1) A more careful look at the proof shows that one does not need
M/X to be Stein, but only thatH 1(M/X,O) = 0.

(2) Theorems 3.5 and 3.7 explain in part why it was so much easier to prove
density theorems for spaces of the formM × C.
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Example 3.8. Let

X(x) = a∂b + c∂d ∈XO(Sl(2,C)), x =
(
a b

c d

)
∈Sl(2,C).

Note thatX is a left invariant vector field on Sl(2,C) whose orbits are closed and
biholomorphic toC. Hence Sl(2,C)/X is a complex manifold. Nevertheless, the
equationXu = 1 has no global holomorphic solutions. Indeed, Sl(2,C) is homo-
topy equivalent (by the Gram-Schmidt algorithm) toSU(2) ∼= S3, which is a cell
complex of dimension 3. It follows that Sl(2,C) is not biholomorphic toB × C,
for thenB would be a Stein 2-fold with 3-dimensional cells, a contradiction. (It is
interesting to note, however, thatu = (āb+ c̄d )/(|a|2+ |c|2) is a real analytic so-
lution and that theC-fibration Sl(2,C)→ Sl(2,C)/X is real-analytically trivial.)

4. (M 2,ωωω)

Recall that we define

M 2 = C2\{xy = 1} and ω = 1

xy −1
dx ∧ dy.

In this section we prove Theorem 1.

Notation and Facts

It will be convenient to writez = xy − 1. As we mentioned before,M 2 admits
two everywhere independent complete vector fields,

X(x, y) := z∂y and Y(x, y) := z∂x.
Sincez does not vanish onM 2, it is clear that every holomorphic vector field on
M 2 is of the formfX + gY for somef, g ∈O(M 2). We note also that

H(x, y) = x∂x − y∂y
is a complete holomorphic vector field with zero divergence. One can integrate
X, Y, andH to see that every orbit ofX andY is biholomorphic toC∗ and that
this is also the case for every orbit ofH, except for its single fixed point at the ori-
gin ofC2. HenceX, Y, andH have no nontrivial second integrals. The following
facts are easily computed:

[H,X] = X, [H, Y ] = −Y, [X, Y ] = zH,
xY − yX = zH,

Xx = 0, Xy = z, Xz = xz,
Yx = z, Yy = 0, Yz = yz,
Hx = x, Hy = −y, Hz = 0.
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Lemma 4.1. Everyϕ ∈O(M 2) is of the form

ϕ(x, y) = f(x, y, z)
for somef ∈O(C2 × C∗).
Proof. The mappingj : (x, y) 7→ (x, y, z) gives a proper holomorphic embed-
ding ofM 2 into C2 × C∗. It is thus a standard fact (Theorem A) thatO(M 2) =
O(C2 × C∗)|M2.

Thus the Laurent polynomials∑
j,l≥0

cjlx
jz−l +

∑
k,l≥0

dkly
kz−l +

∑
l≥0

elz
−l +

∑
k,l≥0

fjkx
jy k

are dense inO(M 2). We shall call such Laurent polynomialsreduced.

The Key Lemmas

Lemma 4.2. Let j and k be nonnegative integers. Then, for some polynomial
p(x, y), there is a divergence zero completely generated vector field of the form

xjy kX + p(x, y)Y.
Proof. SinceXx = 0, xjX is complete, which proves the claim fork = 0. Note
next that, sinceYy = 0, y lY is complete, and hence (as a computation shows)

[y kY, xjX] = (j +1)xjy k+1X − jxj−1y kX + p1(x, y)Y

is divergence zero completely generated. The result follows by induction onk.

This lemma has a corollary which is of independent interest. Letg denote the Lie
algebra of all holomorphic vector fields ofC2 that vanish on{xy = 1} and have
ω-divergence zero.

Corollary 4.3. The Lie algebrag has the density property.

Proof. Note first that the set of divergence zero vector fields of the form
p(x, y)X + q(x, y)Y is dense ing for polynomialsp andq. Let V be one such
vector field. By Lemma 4.2 there exists another such vector fieldW,which is com-
pletely generated, such thatV −W = p1(x, y)Y. But since 0= div(V −W) =
Y(p1), V −W is complete. ThusV = W + (V −W) is completely generated, as
desired.

The following identities are obtained by simple computations, the last two most
easily proved using the commutation relations given above. We omit the details.

−z−lH = yz−lX + (∗)Y,
[z−lH, y kY ] = ly k+2z−(l+1)X + (∗)Y,
[xjX, z−lH ] = lxjz−(l+1)X + (l − j −1)xjz−lX + (∗)Y.
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Here and in what follows, the symbol(∗) means a polynomial inx, y, and 1/z.
Using the first identity, we have the following lemma.

Lemma 4.4. For eachl ≥ 1, there exists a complete divergence zero vector field
of the form

yz−lX + (∗)Y.
Using the second identity, we have the following.

Lemma 4.5. For eachl ≥ 2 andk ≥ 0, there exists a divergence zero completely
generated vector field of the form

y k+2z−lX + (∗)Y.
Using the third identity, by induction we have the following lemma.

Lemma 4.6. For eachl ≥ 2 and j ≥ 0, there exists a polynomialp(x) and a
divergence zero completely generated vector field of the form

yjz−lX + p(x)z−1X + (∗)Y.
Lemma 4.7. Suppose thatp and q are polynomials in one variable, thatg ∈
O(M 2), and that

V(x, y) = p(x)+ yq(y)
z

X + g(x, y)Y
is a divergence zero vector field. Thenp = 0 andq is constant.

Proof. The vanishing divergence ofV is equivalent to the closedness of the holo-
morphic 1 formθ = iV ω. An easy computation shows that

θ = −p(x)+ yq(y)
z

dx + g(x, y) dy.
It follows from Stokes’s theorem that, if� is a smooth 2-manifold with boundary,
then ∫

∂�

θ = 0.

Fory ∈C∗, let γy : [0,2π] → M 2 be defined by

γy(t) = ((eit +1)y, y−1).

Note that ∫
γy

θ =
∫ 2π

0

p((1+ eit )y)+ (1/y)q(1/y)
eit

iyeit dt

= 2πi(yp(y)+ q(1/y))
Fix y0 andy1 in C∗, and letβ : [0,1]→ C∗ be any smooth curve withβ(0) = y0

andβ(1) = y1. Then

�y0,y1 := { γβ(s)(t) | (t, s)∈ [0,1]× [0,2π] }
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is a smooth cylinder inM 2, and

∂� = γy0 ∪ γy1.

Sincey0, y1 were arbitrary, it follows that the Laurent polynomialyp(y)+ q(1/y)
is constant and hence thatp = 0 andq is constant. This completes the proof.

Proof of Theorem 2.LetV = fX+gY be a holomorphic vector field withf andg
reduced (see the remark following Lemma 4.1) Laurent polynomials. By Lemmas
4.2, 4.5, and 4.6, there exists a divergence zero completely generated vector field
W1 such thatV −W1= ((p(x)+ yq(y))/z)X+ (∗)Y. According to Lemma 4.7,
p = 0 andq is constant. Hence, by Lemma 4.4, there is a complete vector field
W2 such thatV −W1−W2 = h(x, y)Y for someh ∈ O(M 2). But sinceYh =
div(hY ) = 0, V −W1−W2 is complete. Hence

V = W1+W2 + (V −W1−W2)

is divergence zero completely generated, as desired.

As mentioned in Section 1, it is not known whether there exists a single automor-
phismf of M 2 such thatf ∗ω 6= ±ω. However, this difficulty is immediately
lifted by “stabilizing”M 2. Theorem 2 and the main result I.3 in [V1] imply the
following.

Corollary 4.8. M 2 × C has the density property.

5. Sl(2,CCC)

In this section we will prove Theorem 2.

Notation and Facts

The complex Lie group Sl(2,C) will be represented as the set of all 2× 2 ma-
trices with complex entries having determinant 1. We will write the members of
Sl(2,C) as

A =
(
a b

c d

)
with ad − bc = 1.

We shall usea, b, c, d as coordinates onC4, in which we will think of Sl(2,C) as
a submanifold. The canonical basis of left invariant vector fields will be employed
throughout. These are

X(a, b, c, d ) = a∂b + c∂d, Y(a, b, c, d ) = b∂a + d∂c,
H(a, b, c, d ) = a∂a − b∂b + c∂c − d∂d.

The relevant commutation relations are

[H,X] = 2X, [H, Y ] = −2Y, [X, Y ] = H.
Of course,X, Y, andH areC-complete, being left invariant.
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SinceX, Y, andH trivialize the tangent bundle of Sl(2,C), an arbitrary vector
field V ∈XO(Sl(2,C)) may be written as

V = VXX + VYY + VHH, VX, VY , VH ∈O(Sl(2,C)).

We then define
div(V ) := XVX + YVY +HVH .

The operator div :XO(Sl(2,C))→ O(Sl(2,C)) is, up to a constant, the usual di-
vergence operator associated to any left invariant holomorphic 3-form on Sl(2,C).
Consequently, for any holomorphic functionf and vector fieldsU andV, it satis-
fies:

(i) linearity;
(ii) div(fV ) = Vf + f divV ; and

(iii) div[ U,V ] = U divV − V divU.

We shall also have occasion to use the right invariant vector fields on Sl(2,C).
The canonical basis is

x = c∂a + d∂b, y = a∂c + b∂d,
h = a∂a + b∂b − c∂c − d∂d.

It is useful to note that

x = d2X − c2Y + cdH,
y = −b2X + a2Y − abH,
h = 2bdX − 2acY + (ad + bc)H.

Finally,

I1(X) = 〈a, c〉, I1(Y ) = 〈b, d〉,
I1(H ) = 〈ambkcnd l | m+ n− k − l = 0〉.

Every orbit ofH is biholomorphic toC∗, soI 2(H ) = I1(H ). ForX andY, the
relevant facts aboutI 2 are thatXb = a andXd = c and thatYa = b andYc =
d. We will not need anything about the second integrals of right invariant vector
fields, but we will use the facts thatI1(x) = 〈c, d〉, I1(y) = 〈a, b〉, andI1(h) =
〈ambkcnd l | m+ k − n− l = 0〉.

The Volume Density Property

The volume density property for Sl(2,C) follows immediately from the following
theorem.

Theorem 5.1. Every divergence zero polynomial vector field onSl(2,C) is di-
vergence zero completely generated.

We shall now prove this theorem. The proof involves many steps, and must be
broken up into cases. These cases are isolated according to certain values of an
index of monomials. We call this index theH -index, and define it as
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indH (a
mbkcnd l) := m− k + n− l.

Note thatH(ambkcnd l) = indH (ambkcnd l)ambkcnd l. A polynomial ina, b, c,
andd will be calledH -homogeneous of degreer if the H -index of each of its
monomials isr. We note thatH -homogeneous polynomials is a concept that de-
scends to Sl(2,C)—that is, when we identifyad − bc and 1. Let us further point
out that, whereas nonzero constants haveH -index 0, zero has every integer as its
H -index. Finally, note thatX raises theH -index of anH -homogeneous polyno-
mial by 2, and thatY lowers theH -index of anH -homogeneous polynomial by 2:

H(X(ambkcnd l)) = XH(ambkcnd l)+ [H,X](ambkcnd l)

= (indH (a
mbkcnd l)+ 2)X(ambkcnd l);

H(Y(ambkcnd l)) = YH(ambkcnd l)+ [H, Y ](ambkcnd l)

= (indH (a
mbkcnd l)− 2)Y(ambkcnd l).

Finally, we leave it to the reader to check that completeness holds where necessary.

Lemma 5.2. Let ambkcnd l be a monomial ofH -index different from−2. Then
there exists a completely generated polynomial vector field of the form

ambkcnd lX + p(a, b, c, d )H.
We shall simultaneously prove the next lemma.

Lemma 5.3. Let ambkcnd l be a monomial ofH -index different from2. Then
there exists a completely generated polynomial vector field of the form

ambkcnd lY + p(a, b, c, d )H.
Proof. We mark the end-of-proof of each case by the symbol�.

Case 1(X, indH ≥ 0): Let m1, m2, n1, n2 be nonnegative integers such that
m1− k + n1− l = 0, m1+m2 = m, andn1+ n2 = n. Then

[am1bkcn1d lH, am2cn2X] = (m2 + n2 + 2)ambkcnd lX + pH. �
Case 2(Y, indH ≤ 0): Let k1, k2, l1, l2 be nonnegative integers such that

m− k1+ n− l1= 0, k1+ k2 = k, andl1+ l2 = l. Then

[bk2d l2Y, ambk1cnd l1H ] = (k2 + l2 + 2)ambkcnd lY + pH. �
In the remaining cases, the following identities will be very useful:

[ambk1cnd l1H, [bk2d l2Y, aX]]

= [ambk1cnd l1H, bk2+1d l2X − a(k2ad + l2bc)bk2−1d l2−1Y + pH ]

= (1− k2 − l2)(ambk1+k2+1cnd l1+l2X

− a(k2ad + l2bc)ambk1+k2−1cnd l1+l2−1Y )

+ pH ; (1)

[amcnd l1H, [d l2Y, cX]] = [amcnd l1H, d l2+1X − l2c2d l2−1Y + pH ]

= (1− l2)(amcnd l1+l2+1X − l2amcn+2d l1+l2−1Y )

+ pH. (2)
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Case 3 (X, indH ≤ −4, k > 0): Let k1, k2, l1, l2 ≥ 0 be such that
m− k1+ n− l1 = 0, k = k1+ k2 + 1, andl = l1+ l2. Sincem − k + n − l ≤
−4, 1+m− (k1+ k2 − 1)+ n− (l1+ l2 − 1) ≤ 0. Thus, using identity (1), we
can (via case 2) eliminate theY component. �

Case 4(X, indH ≤ −4, k = 0): Let l1, l2 ≥ 0 be such thatm+ n− l1= 0 and
l = l1+ l2+ 1. Sincem+ n− l ≤ −4, we havem+ (n+ 2)− (l1+ l2−1) ≤ 0.
Thus, using identity (2), we can (again via case 2) eliminate theY component. �

Case 5(Y, indH ≥ 4): This case can be handled like cases 3 and 4, using appro-
priate modifications of the identities (1) and (2) and using case 1 instead of case 2.
Specifically, one interchanges the roles ofX andY, of a andd, of b andc, of m
andl, and ofn andk. The details are left to the interested reader. �

Case 6(X, indH = −1, k > 0): With k2 = l2 = 0, identity (1) takes the form

[ambk1cnd lH, [Y, aX]] = ambk1+1cnd lX + pH.
Lettingk = k1+1 finishes this case. �

Case 7(X, indH = −1, k = 0): With l2 = 0, identity (2) takes the form

[ambk1cnd lH, [Y, aX]] = ambkcnd l1+1X + pH.
Letting l = l1+1 finishes this case. �

Case 8(Y, indH = 1): Again, just use calculations analogous to those of cases
6 and 7. �

Case 9(X, indH = −3): Using identities (1) and (2) and case 8, we can
eliminate theY components, which haveH -index 1. Notice that, in this case,
1− k2 − l2 6= 0. �

Case 10(Y, indH = 3): This case is analogous to case 9. �

This completes the proof.

Lemmas 5.2 and 5.3 become false if the index conditions are removed. Fortu-
nately, this is not necessary in order to proceed.

Lemma 5.4. Letambkcnd l be an index-−2 monomial. Then there exists a com-
pletely generated divergence zero polynomial vector fieldV of the form

V = ambkcnd lX + (∗)Y + (∗)H.

Proof. First, let us call a monomialambkcnd l (a, d )-reducedif eitherm or l are
zero. Every polynomialp on Sl(2,C) can be written uniquely as a linear combi-
nation of(a, d )-reduced monomials. Furthermore,p is (a, d )-reduced if and only
if, for every left invariant vector fieldL, Lp is (a, d )-reduced.

Case 1(l > 0, m = 0): HereV = bkcnd lX+ (∗)Y + (∗)H. We thus need only
note that
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1

n+1
[bkd l−1Y, cn+1X] = bkcnd lX + (∗)Y + (∗)H.

This finishes case 1. �
Case 2(l = 0): We may assume thatV = ambkcnX−pY + (∗)H, wherep is

an(a, d )-reduced,H -homogeneous polynomial ofH -index 2. Now,

0= divV = kam+1bk−1cn − Yp,
and soYp = kam+1bk−1cn. Note that every(a, d )-reduced monomial component
of p must therefore be of the formam

′
bk
′
. It follows that n = 0 and thatp is

a monomial, which must beCam
′
bk
′
. The index conditions then becomem′ =

k ′ + 2 andm = k − 2. Next, comparing exponents ofYp andam+1bk−1, we see
thatm′ = m+ 2. Hence, if divV = 0 thenV is restricted to be of the form

V = (ab)mb2X − (ab)ma2Y + (∗)H.
It follows that

V + (ab)my = (∗)H,
soV is in fact complete modH. This finishes case 2 and thus also the proof of the
lemma.

Lemma 5.5. Let p be a nonzero,H -homogeneous polynomial ofH -index 2.
Then there is no divergence zero vector field of the formpY + qH.
Proof. SinceYp is ofH -index 0, so isHq. But sinceH preservesH -index,q is of
H -index 0. HenceHq = 0, so thatYp = 0. But every nonzero first integral ofY
has nonpositiveH -index. Sincep is ofH -index 2, it must vanish identically.

Proof of Theorem 5.1.Let V be a polynomial vector field of zero divergence. By
Lemmas 5.2, 5.3, and 5.4, there is a divergence zero completely generated vector
fieldW such thatV −W = pY +qH,wherep is anH -homogeneous polynomial
of H -index 2. By Lemma 5.5,p = 0. ThusHq = 0, and soqH is complete. We
see thatV = W + qH is divergence zero completely generated, as desired.

The Divergence Lemma

Lemma 5.6. Let V ∈ XO(Sl(2,C)) be a polynomial vector field. Then there
exists a completely generated polynomial vector fieldW ∈XO(Sl(2,C)) such that

divW = divV.

Proof. The image by div of the polynomial vector fields is spanned by the follow-
ing polynomials:

(i) div(ambkcnd lX) = amcnX(bkd l),
(ii) div(ambkcnd lY ) = bkc lY(amcn), and

(iii) div (ambkcnd lH ) = H(ambkcnd l).
Herem, k, n, andl range over all nonnegative integers. We need only show that
each of these polynomials is the image by div of a completely generated vector
field. To this end, observe that
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div

[
amcnX,

1

k + l (kab
k−1d l + lbkcd l−1)Y

]
= amcnX(bkd l)

and that

div

[
bkd lY,

1

m+ n(ma
m−1bcn + namcn−1d )X

]
= bkc lY(amcn).

This takes care of cases (i) and (ii). Case (iii) is only slightly more detailed. To
handle it, letj = m + n − k − l. If j = 0, thenH(ambkcnd l) = 0 and so there
is nothing to do. Suppose thatj > 0. Letm1, m2, n1, n2 be nonnegative integers
such that:

(a) m = m1+m2 andn = n1+ n2; and
(b) m1− k + n1− l = 0.

It follows thatm2 + n2 = j. Then

div

[
am1bkcn1d lH,

1

m2 + n2
(m2a

m2−1bcn2 + n2a
m2cn2−1d )X

]
= am1bkcn1d lH(am2cn2)

= H(ambkcnd l).
Finally, if j < 0, let k1, k2, l1, l2 be nonnegative integers such that:

(a) k = k1+ k2 andl = l1+ l2; and
(b) m− k1+ n− l1= 0.

Thenk2 + l2 = −j and we have

div

[
ambk1cnd l1H,

1

k2 + l2 (k2ab
k2−1d l2 + l2bk2cd l2−1)Y

]
= ambk1cnd l1H(bk2d l2)

= H(ambkcnd l).
The reader may confirm directly or via the ideas in Section 3 that all of the vector
fields used were complete where required. This completes the proof.

Proof of Theorem 2.Let U ∈ XO(Sl(2,C)) be a polynomial vector field. By
Lemma 5.6 there exists a completely generated vector fieldU ′ ∈ XO(Sl(2,C)),
which is polynomial, such that divU = divU ′. SinceV := U − U ′ is a polyno-
mial vector field with zero divergence, it is (by Theorem 5.1) completely generated.
HenceU = U ′ + V is completely generated, and Theorem 2 now follows from
the density of polynomial vector fields inXO(Sl(2,C)).

6. Elliptic Microspray Manifolds

In this section we explore more fully the density and volume density property on
spaces of the formM × C. The case in whichM is a complex Lie group was



550 Dror Varol in

already handled in our note [V1]. The proofs of the density theorems in this sec-
tion are very similar to those in the less general case [V1], and thus will be very
sketchy. The main point here is to broaden the class of such complex manifolds
M in hopes of giving insight into the density and volume density property.

Definitions and Examples

Definition 6.1. Anelliptic microspray(EM) manifold is a complex manifold
M with the property that—for anyV ∈ XO(M), compactK b M, andε > 0—
there exist functionsf1, . . . , fr ∈O(K) andC-completely generated vector fields
X1, . . . , Xr satisfying ∥∥∥V −∑ fjXj

∥∥∥
K
< ε.

It is also useful to consider slightly more restrictive structures.

Definition 6.2. AnEMV (V for volume)manifold is a pair(M,ω), whereM
is a complex manifold andω is a holomorphic volume element onM, with the
property that—for anyV ∈ XO(M), compactK b M, andε > 0—there exist
functionsf1, . . . , fr ∈ O(K) and divergence zero completely generated vector
fieldsX1, . . . , Xr satisfying ∥∥∥V −∑ fjXj

∥∥∥
K
< ε.

Of course, every EMV manifold is EM. The terminology we have chosen is in-
spired by that in [G].

Examples. (1) Every complex Lie groupG is EMV. Indeed, the left invariant
vector fields, which are all complete, parallelize the tangent bundle ofG, so every
vector field can be written in the form

∑
fjVj, wherefj ∈O(G) and{Vj } is any

fixed basis ofg = Lie(G). Moreover, div
∑
fjVj =

∑
Vjfj, so every left invari-

ant vector field has zero divergence.
(2) Every Stein complex homogeneous space is EMV. Indeed, letG be a com-

plex Lie group andH a closed complex subgroup such thatM = H \G = {Hg |
g ∈ G } is Stein. The left invariant vector fields onG will project toM, as will
the left invariantk-forms (k = dimCM). Let V be the vector space spanned by
the projection toM of the left invariant vector fields onG. All of these vector
fields have divergence zero with respect to any nonzero volume element coming
from a left invariantk-form onG. Our claim is then proved if we can show that
XO(M) = O(M) ⊗ V. To see the latter, consider the following short exact se-
quence of coherent sheaves onM:

0→ S → O ⊗ V → XO → 0.

HereO is the structure sheaf andXO is the tangent bundle sheaf. The sequence
gives rise to a long exact sequence in cohomology, a portion of which is

H 0(O ⊗ V,M)→ H 0(XO,M)→ H 1(S,M).
SinceM is Stein,H 1(S,M) = 0 and our claim follows.
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Density Theorems

Our first result is a stable volume density property theorem for EMV manifolds.

Theorem 6.3. If (M,ω) is an EMV manifold, then(M × C, ω ∧ dz) has the
volume density property.

Proof. First, forX ∈ XO(M), let V = znX + (∗)∂z be a divergence zero vector
field. We can assume (by approximation) thatX =∑ϕjYj, with Yj ∈XO(M,ω)
divergence zeroC-completely generated. Now

[1/(n+1)zn+1Yj, ϕj ∂z] = znϕjYj + (∗)∂z
is clearly divergence zeroC-completely generated; henceV is divergence zero
C-completely generated modulo∂z. That is, there exists a holomorphic vector
fieldW that is divergence zeroC-completely generated and has the property that
V −W = ψ(x, z)∂z. But then 0= div(V −W) = ∂zψ, so thatV −W is com-
plete. HenceV = W + (V − W) is divergence zeroC-completely generated.
Since every divergence zero vector field can be approximated by sums of vector
fields of the same form asV, we are done.

The next result is that EM manifolds with holomorphic volume elements are sta-
bly EMV.

Proposition 6.4. If M is an EM manifold andω is a nonvanishing holomorphic
volume element onM, then(M × C, ω ∧ dz) is EMV.

We shall need the following lemma.

Lemma 6.5. LetM andω be as in Proposition 6.4. IfX ∈XO(M) is (C-) com-
pletely generated, then there existsX̃ ∈XO(M ×C, ω∧ dz), which is divergence
zero completely generated, such that

X̃ −X = (∗)∂z.
Proof. First note that, ifX ∈ XO(M) is complete, then so isX − z(divω X)∂z.
Moreover, the latter has zero(ω ∧ dz)-divergence. Next notice that

X + (∗)∂z + Y + (∗)∂z = X + Y + (∗)∂z
and that

[X + (∗)∂z, Y + (∗)∂z] = [X, Y ] + (∗)∂z.
The lemma follows easily from these facts.

Proof of Proposition 6.4.Let X ∈ XO(M × C, ω ∧ dz) be written asX =∑
zjVj + (∗)∂z, whereVj ∈ XO(M). By approximation, we may assume that

the sum is finite. SinceM is EM, we may write (again, up to approximation)
Vj =

∑
k fjkSjk, where theSjk ∈ XO(M) areC-completely generated. Now,

for eachSjk, the lemma guarantees a divergence zero completely generatedS̃jk ∈
XO(M × C, ω ∧ dz) such thatSjk − S̃jk = (∗)∂z. It follows that (up to approx-
imation)
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X =
∑
jk

zjfjkS̃jk + (∗)∂z,

which is exactly what was needed.

Using main result I.3 in [V1], one immediately obtains the following.

Corollary 6.6. If M is a Stein EMV space, thenM × C has the density prop-
erty. IfM is a Stein EM space andM admits a holomorphic volume element, then
M × C2 has the density property.

7. A Question

The results in Section 6 suggest the following natural question:

Is there a difference between the volume density property and EMV?

To date, in all the examples for which we have been able to settle this question,
the answer is No. If this answer can be established in general, it would represent a
major breakthrough. However, it is by no means clear what the answer is. Again,
one needs candidates for testing. We propose one now. Let

63 := { (a, b, c, d )∈C4 | a2d − bc = 1};
63 is a smooth subvariety ofC4 and is also a branched double cover of Sl(2,C).
Moreover,63 admits some interesting complete vector fields:

X = a2∂b + c∂d, Y = b∂a + 2ad∂c,

H = a∂a − 2b∂b + 2c∂c − 2d∂d

correspond to the left invariant vector fields of Sl(2,C), and

ξ = a2∂c + b∂d, η = c∂a + 2ad∂b,

θ = a∂a + 2b∂b − 2c∂c − 2d∂d

correspond to the right invariant vector fields of Sl(2,C). Since63 is 3-dimen-
sional, we expect some relations between the left and right vector fields. A calcu-
lation shows that

ξ = −b2X + 1
2a

3Y − 1
2a

2bH, η = 2ad2X − c2Y + acdH,
θ = 4bdX − 2acY + (a2d + bc)H.

We define a volume element� on63 as follows. Set

�X = dδb − bδd, �Y = 1
2(aδc − 2cδa),

�H = 1
2(2adδa + cδb − bδc − a2δd),

and define� = �X ∧�Y ∧�H . Here,δa(∂x) = 0 if x = b, c, d and 1 ifx = a,
and similarly forδb, δc, andδd . One can easily compute the following:
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[H,X] = 4X, [H, Y ] = −3Y, [X, Y ] = aH,
div(X) = div(Y ) = 0.

It follows that div(aH ) = 0 and hence that div(H ) = 1. Thus, sinceaH van-
ishes whena = 0, we need more than justX, Y, andH to prove that63 is EMV.
However, this is indeed the case.

Proposition 7.1. 63 is EMV.

Proof. It suffices to show thatH can be written as a sum
∑
fjVj with theVj gen-

erated byX andY. To this end,

ad[X, Y ] + c[Y, [Y,X]] − 3acY = a2dH − c[Y, aH ] − 3acY

= a2dH − c((Ya)H − a[Y,H ])− 3acY

= (a2d − bc)H + 3acY − 3acY

= H.

Moreover, we have been able to prove (with considerable difficulty) that if63

has the volume density property, then it has the density property. Nevertheless,
the combinatorics arising in attempts to prove the volume density property by the
methods of Sections 4 and 5 become too cumbersome for us to handle.
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