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1. Introduction

In relativistic quantum mechanics, the problem of the unphysical negative-energy
solutions of the Dirac equation is solved by the conception that all negative-energy
states are occupied in the vacuum forming the so-called Dirac sea. In [1], the Dirac
sea was constructed for the Dirac equation with general interaction in terms of a
formal power series in the external potential. In the present paper, we turn our
attention to a single Feynman diagram of this perturbation expansion. More pre-
cisely, we will analyze the contribution to first order in the potential and derive
explicit formulas for the Dirac sea in position space. Since this analysis does not
require a detailed knowledge of the perturbation expansion for the Dirac sea, we
can make this paper self-consistent by giving a brief introduction to the mathe-
matical problem.

In the vacuum, the Dirac sea is characterized by the integral over the lower mass
shell

P(x, y) =
∫

d 4p

(2π)4
( 6p +m) δ(p2 −m2)2(−p0)e−ip(x−y) (1.1)

(2 is the Heavyside function,2(x) = 1 for x ≥ 0 and2(x) = 0 other-
wise); P(x, y) is a tempered distribution that solves the free Dirac equation
(i6 ∂x −m)P(x, y) = 0. In the case with interaction, the Dirac sea is accordingly
described by a tempered distributionP̃(x, y) being a solution of the Dirac equation

(i6 ∂x + B(x)−m)P̃(x, y) = 0, (1.2)

whereB is composed of the classical bosonic potentials. We assumeB to be a
4× 4 matrix potential satisfying the conditionγ 0B(x)†γ 0 = B(x) (“ †” denotes
the transposed, complex conjugated matrix). We can thus decompose it in the form

B = e6A+ eγ 56B +8+ iγ 54+ σjkHjk (1.3)

with the electromagnetic potentialAj, an axial potentialBj, scalar and pseudo-
scalar potentials8 and4, and a bilinear potentialHjk (see e.g. [7] for a discussion
of these potentials). In Appendix B, it is shown how the results can be extended
to an external gravitational field.
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The Dirac equation (1.2) can be solved by a perturbation expansion. To first
order inB, one has

P̃(x, y) = P(x, y)+1P(x, y)+O(B2),

where1P satisfies the inhomogeneous Dirac equation

(i6 ∂x −m)1P(x, y) = −B(x)P(x, y). (1.4)

The factor(i6 ∂x −m)can be inverted with a Green’s function: We choose as Green’s
function the sum of the retarded and advanced Green’s functions,

s(x, y) = 1

2
lim

0<ε→0

∑
±

∫
d 4p

(2π)4
6p +m

p2 −m2 ± iεp0
e−ip(x−y). (1.5)

According to its definition,s satisfies the equation

(i6 ∂x −m)s(x, y) = δ4(x − y). (1.6)

As a consequence, the integral

1P(x, y) := −
∫
d 4z(s(x, z)B(z)P(z, y)+ P(x, z)B(z)s(z, y)) (1.7)

is a solution of (1.4).
Clearly,(1.7) is not theonly solution of the inhomogeneous Dirac equation (1.4).

For example, we could have worked with the advanced or retarded Green’s func-
tion instead of (1.5) or could have omitted the second summand in(1.7). The spe-
cial form of our solution follows from the causality principle for the Dirac sea,
which was introduced and discussed in [1]. We will not repeat these considera-
tions here, and simply take(1.7) as an ad hocformula for the perturbation of the
Dirac sea. The reader who feels uncomfortable with this procedure is either re-
ferred to [1] or can, in a simplified argument, explain the special form(1.7) from
the “Hermiticity condition”

1P(x, y)† = γ 01P(y, x)γ 0,

which seems quite natural to impose.
In the language of Feynman diagrams,(1.7) is afirst-order tree diagram. In

comparison to diagrams of higher order or to loop diagrams, this is a very simple
diagram, and it might seem unnecessary to study the diagram further. Unfortu-
nately, (1.7) gives noinformation on what1P explicitly looks like in position
space. We are especially interested in the behavior of1P(x, y) in a neighbor-
hood of the light cone(y − x)2 ≡ (y − x)j(y − x)j = 0.

Definition 1.1. A tempered distributionA(x, y) is of the orderO((y − x)2p),
p ∈Z, if the product

(y − x)−2pA(x, y)

is a regular distribution (i.e., a locally integrable function). It has thelight-cone
expansion
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A(x, y) =
∞∑
j=g

A[j ](x, y) (1.8)

if the distributionsA[j ](x, y) are of the orderO((y − x)2j ) and ifA is approxi-
mated by the partial sums in the way that

A(x, y)−
p∑
j=g

A[j ](x, y) is of the orderO((y − x)2p+2) (1.9)

for all p ≥ g.
The first summandA[g](x, y) gives the leading order ofA(x, y) on the light cone.
If A is singular on the light cone,g will be negative. Notice that theA[j ] are deter-
mined only up to contributions of higher orderO((y − x)2j+2), but this will not
lead to any problems in the following.

We point out that we do not study the convergence of the sum (1.8); we only make
a statement on the approximation ofA by the finite partial sums. The reason why
questions of convergence are excluded is that the distributionsA[j ] will typically
involve partial derivatives of order 2j of the potentialB, and we can thus expect
convergence only ifB is analytic (for nonanalytic functions, the partial derivatives
may increase arbitrarily fast in the order of the derivative, which makes conver-
gence impossible). Analyticity of the potential, however, is too strong a condition
for physical applications; we can assume only thatB is smooth (the reason why
analytic functions are too restrictive is that they are completely determined from
their behavior in a small open set, which contradicts causality). Thus, the infinite
sum in (1.8) is merely a convenient notation for the approximation by the partial
sums (1.9). Despite this formal character of the sum, the light-cone expansion
completely describes the behavior ofA(x, y) near the light cone. This situation
can be seen in analogy to writing down the Taylor expansion for a smooth, non-
analytic function. Although the Taylor series does not converge in general, the
Taylor polynomials give local approximations of the function.

Our aim is to derive explicit formulas for the light-cone expansion of1P(x, y).

2. Discussion of the Method

Before performing the light-cone expansion, we briefly discuss the basic problem
and describe the possible methods for calculating1P(x, y).

At first sight, our problem seems quite complicated because of the Dirac ma-
trices ins, in P, and in the potential (1.3). Actually, this is not the difficult point;
we can reduce to a scalar problem by pulling all Dirac matrices out of the integral
(1.7) asfollows. We have

P(x, y) = (i6 ∂x +m)Tm2(x, y) = (−i6 ∂y +m)Tm2(x, y),

s(x, y) = (i6 ∂x +m)Sm2(x, y) = (−i6 ∂y +m)Sm2(x, y),
(2.1)

whereTm2 andSm2 denote the negative-energy eigenspace and the Green’s func-
tion of the Klein–Gordon operator, respectively:
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Tm2(x, y) =
∫

d 4p

(2π)4
δ(p2 −m2)2(−p0)e−ip(x−y), (2.2)

Sm2(x, y)
1

2
lim

0<ε→0

∑
±

∫
d 4p

(2π)4
1

p2 −m2 ± iεp0
e−ip(x−y). (2.3)

Using the short notation(γ a)a=1,. . .,16 for the bases1, iγ 5, γ j , γ 5γ j , σ jk of the
Dirac matrices, we can thus rewrite(1.7) in theform

1P(x, y) =
16∑
a=1

(i6 ∂x +m)γ a(−i6 ∂y +m)1Tm2 [Ba](x, y) (2.4)

with

1Tm2 [V ](x, y)

= −
∫
d 4z(Sm2(x, z)V(z)Tm2(z, y)+ Tm2(x, z)V(z)Sm2(z, y)). (2.5)

The scalar distribution1Tm2 [V ](x, y) is a solution of the inhomogeneous Klein–
Gordon equation

(−�x −m2)1Tm2(x, y) = −V(x)Tm2(x, y), (2.6)

as is immediately verified. Once we have derived the light-cone expansion for
1Tm2(x, y), the corresponding formula for1P(x, y) is obtained by calculating
the partial derivatives and using the commutation rules of the Dirac matrices in
(2.4), which will be a (lengthy but) straightforward computation.

We conclude that the main problem is to calculate the solution (2.5) of the Klein–
Gordon equation (2.6). The simplest method is to analyze the partial differential
equation (2.6). This hyperbolic equation is closely related to the wave equation,
and the behavior near the light cone can be studied like the wave propagation of
singularities (this method is sometimes called “integration along characteristics”;
see e.g. [5]). In order to give an idea of the technique, we look at the simplified
equation

(−�−m2)f(x) = g(x) (2.7)

and choose light-cone coordinates(u= 1
2(t+r), v = 1

2(t−r), ϑ, ϕ)around the ori-
gin (r, ϑ, ϕ are polar coordinates inR3). Then the�-operator takes the form

� = ∂u∂v − 1

r
(∂u − ∂v)− 1

r 2
1S2,

where1S2 = ∂2
ϑ + cotϑ ∂ϑ + sin−2 ϑ ∂2

ϕ is the spherical Laplace operator. The
important point is that the�-operator contains only first derivatives in bothu and
v. This allows us to express the normal derivative off on the light cone as a line
integral overf and its tangential derivatives. Thus, we rewrite (2.7) on the upper
light coneu = t = r, v = 0, in the form

∂u(u ∂vf(u, 0, ϑ, ϕ)) =
(
∂u − um2 + 1

u
1S2

)
f(u, 0, ϑ, ϕ)− ug(u,0, ϑ, ϕ).
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This equation can be integrated along the light cone as

u1∂vf(u1,0, ϑ, ϕ)

=
∫ u1

0
∂u(u ∂vf(u, 0, ϑ, ϕ)) du

=
∫ u1

0

((
∂u − um2 + 1

u
1S2

)
f(u, 0, ϑ, ϕ)− ug(u,0, ϑ, ϕ)

)
du

= f(u1,0, ϑ, ϕ)− f(0,0, ϑ, ϕ)

+
∫ u1

0

((
−um2 + 1

u
1S2

)
f(u, 0, ϑ, ϕ)− ug(u,0, ϑ, ϕ)

)
du. (2.8)

By iterating this method, it is possible to calculate the higher derivatives in a similar
way. We conclude that knowingf on the light cone determines all its derivatives
on the light cone. This makes it possible to perform the light-cone expansion. We
remark that complications arise whenf has singularities on the light cone. The
main disadvantage of this method is that the special form of the solution (2.5) does
not enter. This means, in our example, that additional input is needed to com-
pletely determinef on the light cone.

Because of these problems, it is preferable to use a different method and to
directly evaluate the integral (2.5). One substitutes explicit formulas for the dis-
tributionsS andT in position space and studies the asymptotic behavior of the
integral for(y − x)2 → 0. This method is presented in detail in [4]. Because it
is carried out purely in position space, it gives a good intuition for the behavior
of 1P near the light cone. Unfortunately, this method is rather lengthy. Further-
more, the calculation of the operator products in (2.5) and of the partial derivatives
in (2.4) lead to subtle analytical difficulties.

In this paper, we use a combination of calculations in position and in momen-
tum space, which gives a shorter and more systematic approach. It has the dis-
advantage that working with infinite sums in momentum space is more abstract
than studying the behavior of distributions in position space. Therefore the reader
may find it instructive to compare the technique of this paper with the calculations
in [4].

3. The Formal Light-Cone Expansion of111Tm2

In this section, we will perform the light-cone expansion for1Tm2(x, y) on a for-
mal level. The analytic justification for the expansion is postponed to the next
section. We assume thatm 6= 0 and seta = m2.

Since we want to derive formulas in position space, it is useful first to consider
explicitly whatTm2 looks like. Calculating the Fourier transform of the lower mass
shell (2.2) yields an expression containing the Bessel functionsJ1, Y1, andK1.

The most convenient form for our purpose is to work with the power series for
these Bessel functions, which gives
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Ta(x, y) = − 1

8π3
lim

0<ε→0

1

ξ2 − iεξ0

+ a

32π3
lim

0<ε→0
(log(aξ2 − iεξ0)+ iπ + c)

∞∑
l=0

(−1)l

l! (l +1)!

(aξ2)l

4l

− a

32π3

∞∑
l=0

(−1)l

l! (l +1)!

(aξ2)l

4l
(8(l +1)+8(l)) (3.1)

with ξ = (y − x), c = 2C − log 2 with Euler’s constantC, and the function

8(0) = 0, 8(n) =
n∑
k=1

1

k
for n ≥ 1.

The logarithm is understood in the complex plane, which is cut along the positive
real axis (so that lim0<ε→0 log(x+iε) = log|x| is real forx > 0). It can be verified
explicitly thatTa is a solution of the Klein–Gordon equation(−�x−a)Ta(x, y) =
0. Furthermore, one can calculate the Fourier transformTa(p) with contour in-
tegrals. Forp0 > 0, the ξ0-integral can be closed in the lower complex plane,
which gives zero. In this way, one immediately verifies thatTa is formed only of
negative-energy states.

This formula forTa looks quite complicated, and we do not need the details in
this section. It suffices to observe thatTa has singularities on the light cone of the
form of a pole and aδ-distribution,

lim
0<ε→0

1

ξ2 − iεξ0
= PP

ξ2
+ iπδ(ξ2)ε(ξ0),

where PP denotes the principal value. Furthermore, there are logarithmic and2-
like contributions, since

lim
0<ε→0

log(aξ2 − iεξ0)+ iπ = log(|aξ2|)+ iπ2(ξ2)ε(ξ0),

whereε is the step functionε(x) = 1 for x ≥ 0 andε(x) = −1 otherwise. The
important point for the following is the qualitative observation that the contribu-
tions of higher order ina contain more factorsξ2 and are thus of higher order on
the light cone. This yields the possibility of performing the light-cone expansion
by expressing1Ta in terms of thea-derivatives ofTa. In the following lemma, we
combine this idea with the fact that line integrals over the potential should occur
according to (2.8). The lemma gives an explicit solution of the inhomogeneous
Klein–Gordon equation (2.6) and is the key for the light-cone expansion. We use
the notation

T (n)a =
(
d

da

)n
Ta.

Lemma 3.1. The formal series

A(x, y) = −
∞∑
n=0

1

n!

∫ 1

0
(α − α2)n(�nV )|αy+(1−α)x dα T (n+1)

a (x, y) (3.2)
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satisfies the equation

(−�x − a)A(x, y) = −V(x)Ta(x, y). (3.3)

Proof. In momentum space,Ta has the form

Ta(p) = δ(p2 − a)2(−p0).

Sincea > 0, the mass shell does not intersect the hyperplanep0 = 0, and we can
thus calculate the distributional derivative to

∂

∂pj
(δ(n)(p2 − a)2(−p0))

= 2pjδ
(n+1)(p2 − a)2(−p0)− δ(n)(p2 − a)δ0

j δ(p
0)

= 2pjδ
(n+1)(p2 − a)2(−p0).

Hence, for the calculation of derivatives we can viewTa as a function of(p2−a);
that is,

∂

∂pj
T (n)a (p) = −2pjT

(n+1)
a (p). (3.4)

This relation can also be used to calculate the derivatives ofT (n)a in position space,

∂

∂xj
T (n)a (x, y) =

∫
d 4p

(2π)4
T (n)a (p)(−ipj )e−ip(x−y)

= i

2

∫
d 4p

(2π)4
∂

∂pj
T (n−1)
a (p)e−ip(x−y)

= − i
2

∫
d 4p

(2π)4
T (n−1)
a (p)

∂

∂pj
e−ip(x−y)

= 1

2
(y − x)jT (n−1)

a (x, y). (3.5)

Using thatTa is a solution of the Klein–Gordon equation, we also have

0=
(
d

da

)n
(p2 − a)Ta(p) = (p2 − a)T (n)a (p)− nT (n−1)

a (p)

and thus

(−�x − a)T (n)a (x, y) = nT (n−1)
a (x, y). (3.6)

With the help of (3.5) and (3.6), we can calculate the derivatives of the individual
summands in (3.2) as follows:



384 F el ix F inster

(−�x − a)
∫ 1

0
(α − α2)n(�nV )|αy+(1−α)x dα T (n+1)

a (x, y)

= −
∫ 1

0
(1− α)2(α − α2)n(�n+1V )|αy+(1−α)x dα T (n+1)

a (x, y)

−
∫ 1

0
(1− α)(α − α2)n(∂j�nV )|αy+(1−α)x dα(y − x)jT (n)a (x, y)

+ (n+1)
∫ 1

0
(α − α2)n(�nV )|αy+(1−α)x dα T (n)a (x, y).

In the second summand, we rewrite the partial derivative as a derivative with re-
spect toα,

(y − x)j ∂j�nV |αy+(1−α)x = d

dα
�nV |αy+(1−α)x,

and then integrate by parts. This gives

(−�x − a)
∫ 1

0
(α − α2)n(�nV )|αy+(1−α)x dα T (n+1)

a (x, y)

= δn,0V(x)Ta(x, y)

+ n
∫ 1

0
(1− α)2(α − α2)n−1(�nV )|αy+(1−α)x dα T (n)a (x, y)

−
∫ 1

0
(1− α)2(α − α2)n(�n+1V )|αy+(1−α)x dα T (n+1)

a (x, y).

After dividing by n! and summing overn, the last two summands are telescopic
and vanish. This yields (3.3).

It would be nice if the solution of the inhomogeneous Klein–Gordon equation con-
structed in the previous lemma coincided with1Ta(x, y). This is really the case,
although it is not obvious. In the remainder of this section, we will prove it. The
technique is to expand (2.5) in momentum space and to show that the resulting
expression is the Fourier transform of (3.2).

Since (2.5) is linear inV, we can assume thatV has the form of a plane wave,

V(x) = e−iqx . (3.7)

Transforming1Ta(x, y) to momentum space gives the formula∫
d 4x

∫
d 4y 1Ta(x, y)e

ip2y−ip1x

= −
(

PP

p2
2 − a

Ta(p1)+ Ta(p2)
PP

p2
1 − a

)
δ4(q − p2 + p1), (3.8)

wherep1, p2 are the in- and outgoing momenta and where PP denotes the princi-
pal value,
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PP

p2 − a =
1

2
lim

0<ε→0

∑
±

1

p2 − a ± iεp0
.

The factorδ4(q −p2+p1) in (3.8) describes the conservation of energy momen-
tum. In order to simplify the notation, we leave out thisδ4-factor and view1Ta
as a function of only one free variablep = (p1+ p2)/2,

1Ta

(
p + q

2
, p − q

2

)
:= − PP

(p + q

2)
2 − a Ta

(
p − q

2

)
− Ta

(
p + q

2

)
PP

(p − q

2)
2 − a . (3.9)

The transformation to position space is then given by a single integral,

1Ta(x, y) =
∫

d 4p

(2π)4
1Ta

(
p + q

2
, p − q

2

)
e−ip(x−y)e−i(q/2)(x+y); (3.10)

the inverse transformation to momentum space takes the form

1Ta

(
p + q

2
, p − q

2

)
=
∫
d 4y 1Ta(x, y)e

ip(x−y)ei(q/2)(x+y). (3.11)

The first step for the light-cone expansion in momentum space is to rewrite (3.9)
in the form

1Ta

(
p + q

2
, p − q

2

)
= − PP

[(p − q

2)
2 − a] + 2pq

Ta

(
p − q

2

)
− Ta

(
p + q

2

)
PP

[(p + q

2)
2 − a] − 2pq

and to use that the expressions within brackets [· · ·] vanish as the arguments of the
δ-distributions inTa(p ± q/2),

1Ta

(
p + q

2
, p − q

2

)
= PP

2pq

(
Ta

(
p + q

2

)
− Ta

(
p − q

2

))
.

Now we expandTa in a Taylor series inq,

1Ta

(
p + q

2
, p − q

2

)
= PP

2pq
2
∞∑
k=0

1

(2k +1)!

∂2k+1

∂pi1 · · · ∂pi2k+1
Ta(p)

qi1

2
· · · q

i2k+1

2
. (3.12)

We want to rewrite thep-derivatives as derivatives with respect toa. This can
be done by iteratively carrying out thep-derivatives with the differentiation rule
(3.4). One must keep in mind that thep-derivatives act either onTa or on the fac-
torspj that were previously generated by (3.4), for example,

∂2

∂pj∂pk
Ta(p)

qj

2

qk

2
= − ∂

∂pj
((pq)T (1)a (p))

qj

2
= (pq)2T (2)a (p)− q

2

2
T (1)a (p).
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In this way, carrying out thep-derivatives in (3.12) gives a sum of many terms.
The combinatorics may be described as follows. Each factorpj that is generated
by (3.4) and differentiated thereafter gives a pairing between two of the derivatives
∂i1, . . . , ∂i2k+1—namely, between the derivative by which it was created and the
derivative by which it was subsequently annihilated. The individual expressions
obtained after carrying out all the derivatives correspond to the possible configu-
rations of the pairings among the∂i1 · · · ∂i2k+1. They depend only on the number of
pairs and not on their specific configuration. More precisely, every pair increases
the degree of the derivative ofT (·)a by one and gives a factorq2/2, whereas the
unpaired derivatives also increase the degree ofT (·)a and give a factorpq.

It remains to count how many configurations of suchn pairs exist. We use the
notation

[ m
n

]
for the number of possibilities to choosen pairs from a set ofm ≥

2n points. The combinatorics becomes clearer if one first selects 2n out of them
points and then counts the number of possible pairings among these 2n points to
(2n−1)!! . This explains the formula[

m

n

]
=
(
m

2n

)
(2n−1)!! = m!

(m− 2n)!

1

2nn!
. (3.13)

We conclude that

∂2k+1

∂pi1 · · · ∂pi2k+1
Ta(p)

qi1

2
· · · q

i2k+1

2

=
k∑
n=0

(−1)1+n
(2k +1)!

(2k +1− 2n)!

1

2nn!
T (2k+1−n)
a (p)

(
q2

2

)n
(pq)2k+1−2n.

After substituting into (3.12) and reordering the sums, we obtain

1Ta

(
p + q

2
, p − q

2

)
= −PP

pq

∞∑
n=0

(−1)n

n!

(
q2

4

)n ∞∑
k=0

(pq)2k+1

(2k +1)!
T (2k+1+n)
a (p). (3.14)

Finally, we pull one factorpq out of the sum, which cancels the principal value,

1Ta

(
p+ q

2
, p− q

2

)
= −

∞∑
n=0

(−1)n

n!

(
q2

4

)n ∞∑
k=0

(pq)2k

(2k +1)!
T (2k+1+n)
a (p). (3.15)

This is the formula for the light-cone expansion in momentum space.
It remains to show that the Fourier transform (3.10) of (3.15) coincides with

(3.2). In order to see a first similarity between these formulas, we substitute the
plane-wave ansatz (3.7) into (3.2):

A(x, y) = −
∞∑
n=0

(−q2)n

n!

∫ 1/2

−1/2

(
1

4
− τ 2

)n
e−iτq(y−x) dτ T (n+1)

a (x, y)e−i(q/2)(x+y).

(3.16)
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The last exponential factor also occurs in (3.10). Furthermore, it is encourag-
ing that both (3.15) and (3.16) contain a power series inq2. The main difference
between the formulas is related to the factor exp(−iτq(y − x)) in (3.16): expand-
ing this exponential yields a power series inq(y − x). In momentum space, this
corresponds to a power series inqj∂pj (because differentiating the exponential in
(3.10) with respect top gives a factori(y − x)). The expansion (3.15), however,
contains a power series inpq, not in qj∂pj . The following lemma allows us to
transform these expansions into each other.

Lemma 3.2. For all r ≥ 0,(
qj

2

∂

∂pj

)2k

T (r)a (p) =
k∑
l=0

(−1)l
[

2k
l

](
q2

2

)l
(pq)2k−2lT (r+2k−l )

a (p), (3.17)

(pq)2kT (r+2k)
a (p) =

k∑
l=0

[
2k
l

](
q2

2

)l(
qj

2

∂

∂pj

)2k−2l

T (r+l )a (p). (3.18)

Proof. On the left side of (3.17), we calculate the derivatives inductively using
the differentiation rule (3.4). The derivatives either act onT (·)a , which increases
the order of the derivative ofT (·)a and generates a factorpq, or they act on previ-
ously generated factorspq, which reduces the number of factorspq by one and
produces a factorq2/2. This can also be written in the inductive form(

qj

2

∂

∂pj

)l
T (s)a (p)

= −pq
(
qj

2

∂

∂pj

)l−1

T (s+1)
a (p)− (l −1)

q2

2

(
qj

2

∂

∂pj

)l−2

T (s+1)
a (p).

The combinatorics is described by counting the number of possibilities in forming
l pairs among the 2k derivatives.

Equation (3.18) follows in the same way from the relation

(pq)lT (s+l )a (p)

= −
(
qj

2

∂

∂pj

)
(pq)l−1T (s+l−1)

a (p)− (l −1)
q2

2
(pq)l−2T (s+l−1)(p).

After these preparations, we can prove the main result of this section.

Theorem 3.3 (formal light-cone expansion of1Tm2). For m 6= 0, the distribu-
tion1Tm2(x, y) of (2.5)has a representation as the formal series

1Tm2(x, y) = −
∞∑
n=0

1

n!

∫ 1

0
(α − α2)n(�nV )|αy+(1−α)x dα T (n+1)

m2 (x, y). (3.19)

Proof. We expand the factor( 1
4 − τ 2)n and the exponential exp(−iτq(y − x)) in

(3.16) and so have
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A(x, y) = −
∞∑
n=0

(−q2)n

n!

∫ 1/2

−1/2

n∑
l=0

(
n

l

)
(−τ 2)l

(
1

4

)n−l
× e−iτq(y−x) dτ T (n+1)

a (x, y)e−i(q/2)(x+y)

= −
∞∑
n=0

(−q2)n

n!

∞∑
k=0

(−iq(y − x))k
k!

n∑
l=0

(−1)l
(
n

l

)(
1

4

)n−l

×
∫ 1/2

−1/2
τ k+2l dτ T (n+1)

a (x, y)e−i(q/2(x+y). (3.20)

Next we carry out theτ -integration. This gives a contribution only fork even,

= −
∞∑
n=0

(−q2)n

n!

∞∑
k=0

(−iq(y − x))2k
(2k)!

n∑
l=0

(−1)l
(
n

l

)(
1

4

)n−l
× T (n+1)

a (x, y)

(2k + 2l +1)4k+l
e−i(q/2)(x+y)

= −
∞∑
n=0

(−1)n

n!

(
q2

4

)n ∞∑
k=0

(−iq(y − x))2k
4k(2k)!

n∑
l=0

(−1)l

2k + 2l +1

×
(
n

l

)
T (n+1)
a (x, y)e−i(q/2)(x+y).

Now we transform to momentum space by substituting into (3.11). The factors
−iq(y − x)/2 can be rewritten as derivatives(qj/2)∂pj acting on the plane wave
eip(x−y). Integrating thesep-derivatives by parts gives

A

(
p + q

2
, p − q

2

)
= −

∞∑
n=0

(−1)n

n!

(
q2

4

)n ∞∑
k=0

1

(2k)!

n∑
l=0

(−1)l

2k + 2l +1

×
(
n

l

)(
qj

2

∂

∂pj

)2k

T (n+1)
a (p).

We shift the indicesn andk according ton− l→ n andk+ l→ k. This changes
the range of thel-summation tol = 0, . . . , k. We thus obtain

1Ta

(
p + q

2
, p − q

2

)

= −
∞∑
n=0

(−1)n

n!

(
q2

4

)n ∞∑
k=0

1

2k +1

k∑
l=0

1

(2k − 2l )! l!

×
(
q2

4

)l(
qj

2

∂

∂pj

)2k−2l

T (n+1+l )
a (p)
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= −
∞∑
n=0

(−1)n

n!

(
q2

4

)n ∞∑
k=0

1

(2k +1)!

k∑
l=0

[
2k
l

]

×
(
q2

2

)l(
qj

2

∂

∂pj

)2k−2l

T (n+1+l )
a (p). (3.21)

In this way, we have transformed the line integrals in (3.16) to momentum space.
We remark that we did not use the special form ofTa in the calculation from (3.20)
to (3.21); for the computation so far, we could replaceTa by any other function.

In the last step, we apply Lemma 3.2: substituting (3.18) into the light-cone ex-
pansion (3.15) for1Ta also yields the expression (3.21). ThusA coincides with
1Ta, which concludes the proof.

4. Resummation of the Noncausal Contribution

In this section, we will put the previous formal calculations on a rigorous basis.
The interesting part is to recover the noncausal structure of1Tm2(x, y) by resum-
ming the formal light-cone expansion. We begin with specifying the conditions
on the potentialV in (2.5).

Lemma 4.1. LetV ∈ L1(R4) be a potential which decays so fast at infinity that
the functionsxiV(x) are alsoL1. Then1Tm2(x, y) of (2.5) is a well-defined tem-
pered distribution onR4× R4.

Proof. It is easier to proceed in momentum space and to show that

1Tm2(p2, p1)

= −Sm2(p2)Ṽ (p2 − p1)Tm2(p1)− Tm2(p2)Ṽ (p2 − p1)Sm2(p1) (4.1)

is a well-defined tempered distribution, whereṼ is the Fourier transform ofV.
The assumption then follows by Fourier transformation.

In momentum space, the conditions on the potential giveṼ ∈C1(R4)∩L∞(R4).

We choose two test functionsf, g ∈ S(R4). Then the functionṼ (p2 − ·)f(·) is
C1 and has rapid decay at infinity. Thus the integral over the lower mass shell

I(p2) :=
∫

d 4p1

(2π)4
Ṽ (p2 − p1)Tm2(p1)f(p1)

is finite and depends differentiably onp2. Consequently, the productgI is in C1

and has rapid decay, and we can calculate the principal value by

1

2
lim

0<ε→0

∑
±

∫
d 4p2

(2π)4
1

p2
2 −m2 ± iεp0

2

g(p2)I(p2),

which gives a finite number. This shows that the first summand

Sm2(p2)Ṽ (p2 − p1)Tm2(p1)
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in (4.1) is a well-defined linear functional onS(R4) × S(R4). This functional is
bounded in the Schwartz norms‖ · ‖0,0, ‖ · ‖4,0, ‖ · ‖0,1, and‖ · ‖4,1 of f, g, which
gives continuity.

For the second summand in (4.1), one can argue in the same way after exchang-
ing p1 andp2.

For the light-cone expansion, we clearly need a smooth potential. Therefore, we
will assume in the following thatV ∈C∞ ∩ L1 andxiV(x)∈L1.

We come to the mathematical analysis of the light-cone expansion. We again
assume thatm 6= 0; the casem = 0 will be obtained at the end of this section in the
limit m→ 0. In the first step, we disregard the convergence of the infinite sums
and check that all the performed operations make sense and that all expressions
are well-defined. We start with the end formula (3.19) of the light-cone expan-
sion. The line integrals over the potentials areC∞-functions inx, y. The factors
T
(n)

m2 (x, y) are tempered distributions, as one sees after differentiating the explicit
formula (3.1) with respect toa. Thus (3.19) makes mathematical sense. The cal-
culations leading to this result are not problematic except for the handling of the
principal value following (3.9). The easiest method for studying this more rigor-
ously is to regularize the principal value in (3.9) with the replacement

PP

x
−→ 1

2

∑
±

1

x ± iε =
x

x2 + ε2
.

Then all the subsequent transformations are well-defined, and the critical opera-
tion is the cancellation of the principal value against one factorpq before (3.15).
In order to justify this operation, we use in (3.14) the exact formula

pq

(pq)2 + ε2
(pq)2k+1

= ((pq)2 + ε2)− ε2

(pq)2 + ε2
(pq)2k =

(
1− ε2

(pq)2 + ε2

)
(pq)2k

= · · · = (pq)2k − ε2(pq)2k−2 + · · · + (−1)kε2k + (−1)k+1 ε2k+2

(pq)2 + ε2
.

The first summand gives (3.15); the following summands(−1)lε2l(pq)2k−2l con-
tain no principal value and vanish in the limitε→ 0. Thus it remains to consider
the last summand forε→ 0,

lim
ε→0

ε2k+2

(pq)2 + ε2

(
q2

4

)n
T
(2k+1+n)
m2 (p). (4.2)

We use that the support ofTm2(p) is on the mass shellp2 = m2 and apply the
relation limε→0 ε/(x

2 + ε2) = πδ(x),

lim
ε→0

ε

(pq)2 + ε2
T (2k+1+n)
a (p) =

(
d

da

)2k+1+n
lim
ε→0

ε

(pq)2 + ε2
Ta(p)

=
(
d

da

)2k+1+n(
π√
a
δ

(
q
p

|p|
)
Ta(p)

)
.
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This expression is well-defined form 6= 0. The limit (4.2) contains an additional
factorε2k+1(q2/4)n and thus vanishes.

We conclude that the light-cone expansion is mathematically rigorous except
for the formal character of the infinite sums. In the remainder of this section, we
will carefully analyze the infinite sum in (3.19). More precisely, we will do the
following. As explained in the introduction, the infinite sum in (1.8) is only a no-
tation for the approximation (1.9) of the partial sums. Following this definition,
we need only show that the light-cone expansion is well-defined to any order on
the light cone; we need not study the convergence of the sum over the order on
the light cone. According to the explicit formula (3.1), each factorT

(n+1)
m2 in (3.19)

consists of an infinite number of terms of different order on the light cone (we will
see this in more detail in a moment). In order to bring (3.19) into the required form
(1.8), we must collect all contributions to a given order on the light cone and form
their sum. This procedure is calledresummationof the light-cone expansion. If
the sum over all contributions to a given order on the light cone were finite, this
resummation would be trivial; it would just correspond to a rearrangement of the
summands. It will turn out, however, that these sums are infinite, and we must
find a way to carry them out.

In order to see the basic problem in more detail, we consider the explicit for-
mula (3.1) forTa. We start with the last summand

Ta(x, y) � − a

32π3

∞∑
l=0

(−1)l

l! (l +1)!

(aξ2)l

4l
(8(l +1)+8(l)) (4.3)

(the notation “�” means that we consider only a certain contribution toTa). This
is a power series ina, and we can calculate its derivatives to

T (n)a (x, y) � 1

16π3

∞∑
l=n−1

(−1)l

l! (l +1− n)!
al+1−nξ2(l+n−1)

4l

× (8(l +1)+8(l)), n ≥ 1. (4.4)

For increasingn, the derivatives are of higher order on the light cone; more pre-
cisely, the contribution (4.4) is of the orderO((y − x)2(n−1)). Thus, the contribu-
tion of (4.3) to the formal light-cone expansion (3.19) consists, to any order on the
light cone, of only a finite number of terms. Thus the resummation is trivial. Of
course, we could rearrange the sum by collecting all the summands in (4.3) and
(4.4) of a given degree inξ2 and writing them together, but this is only a matter of
taste and is not really needed.

For the second summand in (3.1),

Ta(x, y) � a

16π3
(log(ξ2 − i0ξ0)+ iπ + c)

∞∑
l=0

(−1)l

l! (l +1)!

(aξ2)l

4l
(4.5)

+ a

16π3
loga

∞∑
l=0

(−1)l

l! (l +1)!

(aξ2)l

4l
, (4.6)
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the situation is more complicated: the contribution (4.5) is a power series ina and
can be discussed exactly as (4.3). The only difference (apart from the missing fac-
tors8) is the prefactor(log(ξ2 − i0ξ0)+ iπ + c), which has a logarithmic pole
on the light cone. The contribution (4.6), however, contains a factor loga and is
not a power series ina. As a consequence, the highera-derivatives of (4.6) are
not of higher order on the light cone. For example, the contribution to the order
O((y − x)2) has the form

Ta(x, y) � 1

16π3
a loga +O((y − x)2)

T (1)a (x, y) �
1

16π3
(1+ loga)+O((y − x)2)

T (n)a (x, y) � (−1)n

16π3
(n− 2)!

1

an−1
+O((y − x)2), n ≥ 2.

This means that we must resum an infinite number of terms; more precisely,

1T [0]
a (x, y) � − 1

16π3

∫ 1

0
V |αy+(1−α)x dα(1+ loga)

+ 1

16π3

∞∑
n=1

1

n

∫ 1

0
(α − α2)n(�nV )|αy+(1−α)x dα (−1)n

an

+ · · · +O((y − x)2). (4.7)

This is a serious problem. Namely, we can expect the series in (4.7) to converge
only if the derivatives�nV do not grow too fast in the order 2n of the derivative.
It turns out that analyticity ofV is necessary for convergence, which is too restric-
tive.

On a technical level, this convergence problem of the contributions to1Tm2 to
a given order on the light cone is a consequence of the factor loga in (4.6); we call
it the logarithmic mass problem.Because1Tm2(x, y) is well-defined by (2.4), it
is not a problem of the perturbation expansion but rather shows that the light-cone
expansion was not performed properly. The deeper reason for the convergence
problem is that we expressed1Tm2(x, y) only in terms of the potential and its
derivatives along the line segmentxy. However, the perturbation1Tm2(x, y) is
not causal in this sense; it depends onV in the whole Minkowski space (this be-
comes clear in (2.4) from the fact that the support ofTm2(x, ·) isR4). In a formal
expansion, we can express1Tm2(x, y) in terms of�nV |λy+(1−λ)x, 0 ≤ λ ≤ 1, but
we cannot expect this expansion to converge. The simplest 1-dimensional analog
of this situation is the formal Taylor series

f(x) =
∞∑
n=0

1

n!
f (n)(0)xn

of a smooth function. The right side cannot in general converge, because it is not
possible to expressf(x), x 6= 0, in terms off (n)(0).
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The solution to the logarithmic mass problem is to reformulate the problematic
contribution of (4.6) to the light-cone expansion (3.19) as a noncausal term that
is obviously finite. In some sense, we will simply reverse our former construc-
tion of the light-cone expansion. Yet this is not trivial, because the differentiation
rule (3.4), which was crucial for rewriting the Taylor expansion (3.12) as an ex-
pansion in the mass parametera, is not valid for (4.6). In the end, we want to
write the light-cone expansion in a way which shows that part of the behavior of
1Tm2(x, y) can be described with line integrals of the form (3.19) whereas other
contributions are noncausal in a specific way.

We work in momentum space. The Fourier transform of the problematic series
(4.6) is

Ja(p) =
∫
d 4x eipx

1

16π3

∞∑
l=0

(−1)l

l! (l +1)!

aξ2

4l

= π
∞∑
l=0

al

4l l! (l +1)!
� lδ4(p). (4.8)

Notice that this expression is highly singular atp = 0; especially, it is not a dis-
tribution. However, it is well-defined as a distribution on analytic functions inp.

This comprises all functions with compact support in position space, which is a
sufficiently large function space for the following. Furthermore, we introduce the
series

La(p) = π
∞∑
l=0

al

4l(l!)2
� lδ4(p) (4.9)

and set

J (n)a =
(
d

da

)n
Ja, L(n)a =

(
d

da

)n
La.

Lemma 4.2. The series(4.8)and (4.9)satisfy the relations

Ja(p) =
∫ 1

0
Lτa(p) dτ, (4.10)

∂

∂pj
L(n)a (p) = −2pjL

(n+1)
a (p). (4.11)

Proof. Equation (4.10) is verified by integrating the power series (4.9) and com-
paring with (4.8). The distributionpjδ4(p) vanishes identically. Since the deriva-
tives of distributions are defined in the weak sense, it follows that

0= �n+1(pj δ
4(p)) = pj�n+1δ4(p)+ 2(n+1)

∂

∂pj
�nδ4(p)

and thus
∂

∂pj
�nδ4(p) = − 1

4(n+1)
(�n+1δ4(p))2pj .

Applying this relation to every term of the series (4.9) yields that
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∂pj La = −2pjL
(1)
a ,

and (4.11) follows by differentiating with respect toa.

The functionLa is useful because (4.11) coincides with the differentiation rule
(3.4) forTa. This implies that all the formulas forTa, especially the manipulations
of Lemma 3.2, are also valid forLa.

The following technical lemma is the key for handling the logarithmic mass
problem.

Lemma 4.3 (resummation of the noncausal contribution).If V is the plane wave
(3.7),then

−
∞∑
n=0

1

n!

∫ 1

0
(α− α2)n(�nV )|αy+(1−α)x dα

(
d

da

)n+1

(a log(a)Ja(p)) (4.12)

= −1

2

d

da

∫ 1

−1
dµ

(
(a + b) log(a + b)

×
∫ 1

0
Lτa+(τ−1)b−µpq(p) dτ

)∣∣∣∣
a=m2−q2/4, b=µ2q2/4

. (4.13)

Proof. The series (4.12) is obtained from the formula (3.2) forA(x, y) by the re-
placementTa → a log(a)Ja. As remarked in the proof of Theorem 3.3, all the
transformations from (3.20) to (3.21) are also valid if we replaceTa by any other
function. Therefore,

(4.12)= −
∞∑
n=0

(−1)n

n!

(
q2

4

)n ∞∑
k=0

1

(2k +1)!

k∑
l=0

[
2k
l

](
q2

2

)l

×
(
qj

2

∂

∂pj

)2k−2l(
d

da

)n+1+l
(a log(a)Ja(p)).

We carry out the sum overn by redefininga asa = m2 − q2/4 and substitute
(4.10) as follows:

(4.12)= −
∞∑
k=0

1

(2k +1)!

k∑
l=0

[
2k
l

](
q2

2

)l

×
(
qj

2

∂

∂pj

)2k−2l(
d

da

)1+l(
a log(a)

∫ 1

0
Lτa(p) dτ

)
.

Using thatLa(p) andTa(p) obey the same differentiation rules (4.11) and (3.4),
respectively, we can apply relation (3.17) withT (r)a replaced byL(r)a to obtain

(4.12)= −
∞∑
k=0

1

(2k +1)!

k∑
l=0

[
2k
l

] k−l∑
s=0

(−1)s
[

2k − 2l
s

](
q2

2

)l+s

× (pq)2k−2l−2s

(
d

da

)1+l(
a log(a)

∫ 1

0
L(2k−2l−s)
τa (p) dτ

)
.
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We introduce the indexr = l + s, replaces by r − l, and substitute the combina-
torial formula (3.13):

(4.12)= −
∞∑
k=0

(−1)r

2k +1

k∑
r=0

1

r! (2k − 2r)!

(
q2

4

)r
(pq)2k−2r

×
r∑
l=0

(−1)l
(
r

l

)(
d

da

)1+l(
a log(a)

∫ 1

0
L(2k−2r+(r−l ))
τa (p) dτ

)
.

The last sum can be eliminated using the combinatorics of the product rule,
r∑
l=0

(−1)l
(
r

l

)(
d

da

)l(
a log(a)L(2k−2r+(r−l ))

τa (p)
)

= (−1)r
(
d

db

)r(
(a + b) log(a + b)L(2k−2r)

τ (a+b)−b(p)
)∣∣
b=0.

Furthermore, we shift the indexk according tok − r → k, yielding

(4.12)= −
∞∑
k=0

1

2k + 2r +1

(pq)2k

(2k)!

∞∑
r=0

1

r!

(
q2

4

)r

×
(
d

da

)(
d

db

)r(
(a + b) log(a + b)

∫ 1

0
L
(2k)
τa+(τ−1)b(p) dτ

)∣∣∣∣
b=0

.

Without the factor(2k+2r+1)−1,we had two separate Taylor series which could
easily be carried out explicitly. The coupling of the two series by this factor can
be described with an additional line integral,

(4.12)= −1

2

d

da

∫ 1

−1
dµ

∞∑
r=0

1

r!

(
q2

4

)r
µ2r

×
(
d

db

)r(
(a + b) log(a + b)

∫ 1

0
Lτa+(τ−1)b+µpq(p) dτ

)∣∣∣∣
b=0

.

We finally carry out the remaining Taylor sum.

The result of this lemma is quite complicated. The important point is that the con-
vergence problems of the infinite series (4.12) have disappeared in (4.13), which
is obviously finite. Namely, thea-derivative of the integrand in (4.13) has at most
logarithmic singularities. These singularities are integrable and disappear when
theµ-integration is carried out.

After these preparations, we can state the main theorem. Since the resulting ex-
pansion is regular in the limitm→ 0, it is also valid form = 0.

Theorem 4.4 (light-cone expansion of1Tm2). The distribution1Tm2 of (2.5)
has the representation

1Tm2(x, y) = −
∞∑
n=0

1

n!

∫ 1

0
(α − α2)n(�nV )|αy+(1−α)x dα T reg(n+1)

m2 (x, y) (4.14)

+Nm2(x, y), (4.15)
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with

T reg
a = Ta − a log(a)Ja, T reg(n)

a =
(
d

da

)
T reg
a ,

and the Bessel functionJa of (4.8). The series(4.14) is well-defined in the sense
of Definition1.1. ThecontributionNm2(x, y) is a smooth function inx, y and has
a representation as the Fourier integral

Nm2(x, y) =
∫

d 4p

(2π)4

∫
d 4q

(2π)4
Ṽ (q)Nm2(p, q)e−ip(x−y)e−i(q/2)(x+y) (4.16)

with

Na(p, q) = −1

2

d

da

∫ 1

−1
dµ log

(
a− (1−µ2)

q2

4

)
βJβ(p)

∣∣β=a−q2/4+µpq
β=−µ2q2/4+µpq. (4.17)

Proof. By definition,T reg
a differs fromTa by the contribution (4.6). Thus, an ex-

plicit formula forT reg
a is obtained from (3.1) if we replace the factor log(aξ2−iεξ0)

in the second line by log(ξ2 − iεξ0). As a consequence,T reg
a is a power series in

a, and the higher-order contributions ina are of higher order on the light cone.
This justifies the infinite sum in (4.14) in the sense of Definition1.1. Furthermore,
the difference between the formal light-cone expansions (3.19) and (4.14) coin-
cides with the contribution (4.12), which was resummed in Lemma 4.3. We carry
out theτ -integration in (4.13) using the series expansions (4.8) and (4.8), which
gives (4.17).

Theq-integral in (4.16) is well-defined sincẽV(q) isC1 and decays sufficiently
fast at infinity. Finally, thep-integration can be carried out with theδ4-distributions
in (4.8), which gives a smooth functionNm2(x, y).

We call (4.14) and (4.15) thecausalandnoncausal contributions,respectively.
We could proceed by studying the noncausal contribution more explicitly in po-

sition space. For the purpose of this paper, however, it is sufficient to notice that
N(x, y) is smooth on the light cone.

5. The Light-Cone Expansion of the Dirac Sea

Having performed the light-cone expansion for1Tm2, we now return to the study
of the Dirac sea(1.7). From the theoretical point of view, the light-cone expansion
for 1Pm2 is an immediate consequence of Theorem 4.4 and formula (2.4): we
substitute the light-cone expansion (4.14)–(4.15) into (2.4). Calculating the par-
tial derivatives∂x and∂y of the causal contribution (4.14) gives expressions of the
form

1Pm2(x, y) �
∫ 1

0
P(α)Da�bV |λy+(1−λ)x dα DcT

reg(n+1)
m2 (x, y), (5.1)

which are again causal in the sense that they depend on the potential and its par-
tial derivatives only along the line segmentxy (hereP(α) denotes a polynomial
in α; Da stands for any partial derivatives of the ordera). Since (5.1) contains
distributional derivatives ofT reg(n+1)

m2 , it is in general more singular on the light
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cone than the corresponding contribution to1Tm2. On the other hand, the partial
derivatives of the noncausal contributionNm2(x, y) can be calculated with (4.17)
and yield smooth functions inx, y. We conclude that the qualitative picture of
Theorem 4.4, especially the splitting into a causal and a noncausal contributions,
is also valid for the Dirac sea.

The situation becomes more complicated if one wants to go beyond this quali-
tative picture and is interested in explicit formulas for the Dirac sea. The problem
is to find an effective and reliable method for calculating the partial derivatives
and for handling the combinatorics of the Dirac matrices. Before entering these
computational details, we explain how the qualitative picture of the light-cone ex-
pansion can be understood directly from the integral formula(1.7). The tempered
distributionss(x, y) andP(x, y) are regular functions for(y − x)2 6= 0 and are
singular on the light cone (this can be seen explicitly from e.g. (2.1) and (3.1)).
Integrals of the form∫

P(x, z)f(z) d 4z or
∫
s(x, z)f(z) d 4z

with a smooth functionf (which decays sufficiently fast at infinity) give smooth
functions inx. The integral in(1.7) ismore complicated because it contains two
distributional factors,s andP. This causes complications only if the singularities
of s andP meet—that is, ifz lies on the intersectionLx ∩ Ly of the light cones
aroundx, y, where

Lx = {y ∈R4, (y − x)2 = 0}.
If y−x is timelike or spacelike thenLx∩Ly is a 2-sphere or a hyperboloid (respec-
tively), either of which depends smoothly onx, y. As a consequence, the integral
over these singularities can be carried out in(1.7) and gives asmooth function. On
the light cone(y− x)2 = 0, however,Lx ∩Ly does not depend smoothly onx, y.
More precisely, in the limit 0< (y − x)2→ 0, the 2-sphereLx ∩Ly degenerates
to the line segment{λy + (1− λx), 0 ≤ λ ≤ 1}. The limit 0> (y − x)2→ 0, on
the other hand, gives the degenerated hyperboloid{λy + (1− λx), λ ≤ 0 orλ ≥
1}. This simple consideration explains why the singularities of1P(x, y) occur on
the light cone and makes it plausible that the behavior of the singularities is char-
acterized by the potential and its derivatives along the linexy = {λy + (1− λ)x,
λ ∈ R}. Clearly,V(z) also enters into1Pm2(x, y) for z /∈ xy, but this noncausal
contribution is not related to the discontinuity ofLx ∩ Ly on the light cone and is
therefore smooth. The special form of the singularities,

1P(x, y) ∼ Da log((y − x)2 − i0(y − x)0)(y − x)2n, (5.2)

is less obvious. That the potential enters only along the line segmentxy can be
understood only from the special form of(1.7); it is a consequence of the causal-
ity principle for the Dirac sea that was introduced in [1]. In fact, it gives an easy
way to understand the meaning of “causality” of the perturbation expansion for
the Dirac sea.

We finally describe our method for explicitly calculating1P(x, y). As in The-
orem 4.4, we will not study the noncausal contribution; we are content with the
fact that it is bounded and smooth. In other words, we consider only the singular
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contribution (5.1) to the Dirac sea. Since the difference betweenT
(n)

m2 andT reg(n)
m2

is smooth, we can just as well consider the formal light-cone expansion (3.19) and
calculate modulo smooth terms on the light cone. This has the advantage that we
can work with the useful differentiation rule (3.5). The calculation can be split
into several steps, which may be listed as follows.

(1) Calculation of the partial derivativeswith the product rule and the differen-
tiation formulas

∂

∂xj
T
(n)

m2 (x, y) = −
∂

∂y j
T
(n)

m2 (x, y)
(3.5)= 1

2
(y − x)jT (n−1)

m2 (x, y), (5.3)

∂

∂y j

∫ 1

0
P(α)Da�bV |αy+(1−α)x =

∫ 1

0
αP(α) ∂j Da�bV |αy+(1−α)x, (5.4)

∂

∂xj

∫ 1

0
P(α)Da�bV |αy+(1−α)x

=
∫ 1

0
(1− α)P(α) ∂j Da�bV |αy+(1−α)x, (5.5)

∂

∂xj
(y − x)k = − ∂

∂y j
(y − x)k = −gjk. (5.6)

(2) Simplification of the Dirac matriceswith the anti-commutation relations
{γ j , γ k} = 2gjk. This leads to a contraction of tensor indices. The generated fac-
tors(y − x)2 and(y − x)j ∂jV are simplified in the calculation steps (3) and (4).

(3) Absorption of the factors(y − x)2. We calculate the Laplacian by iterating
(5.3),

�xT (n+2)
m2 (x, y) = −2T (n+1)

m2 (x, y)+ 1
4(y − x)2T (n)m2 (x, y),

and then combine it with (3.6), which gives the rule

(y − x)2T (n)
m2 (x, y) = −4nT (n+1)

m2 (x, y)− 4m2T
(n+2)
m2 (x, y). (5.7)

(4) Partial integration of the tangential derivatives,∫ 1

0
P(α)(y − x)j ∂j Da�bV |αy+(1−α)x

=
∫ 1

0
P(α) d

dα
Da�bV |αy+(1−α)x

= P(α)Da�bV |αy+(1−α)x
∣∣α=1
α=0 −

∫ 1

0
P ′(α)Da�bV |αy+(1−α)x. (5.8)

After these steps,1Pm2(x, y) consists of many terms of the form

1Pm2(x, y) � (causal expression inDa�bV )× T (n)
m2 (x, y), n ≥ −1.

It remains to insert the series representations forT
(n)

m2 (x, y). It is useful first to in-
troduce the short notationzn = ξ2n (n ≥ 0) and
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z−2 := 1

2
lim

0<ε→0

∑
±

1

(ξ2 − iεξ0)2
,

z−1 := 1

2
lim

0<ε→0

∑
±

1

ξ2 − iεξ0
,

logz := 1

2
lim

0<ε→0

∑
±

log(ξ2 − iεξ0).

(5) Substitution of the explicit formulas

T
(−1)
m2 (x, y) � − 1

2π3
z−2 − m2

8π3
z−1

− 1

8π3

∞∑
l=0

(−1)l+1

4l+1

m2l+4

l! (l + 2)!
zl logz, (5.9)

Tm2(x, y) � − 1

8π3
z−1− 1

8π3

∞∑
l=0

(−1)l+1

4l+1

m2l+2

l! (l +1)!
zl logz, (5.10)

T
(n)

m2 (x, y) � −
1

8π3

∞∑
l=n−1

(−1)l+1

4l+1

m2l+2−2n

l! (l +1− n)! z
l logz (n ≥ 1), (5.11)

where again we have used the notation of (3.1) (we take only the singular contri-
bution on the light cone;T (−1)

m2 is defined via (5.3)).
In this way, the calculation of the causal contribution is reduced to a small num-

ber of symbolic computation rules (5.3)–(5.11), which can be applied mechani-
cally. This makes it possible to use a computer program for the calculation. The
C++ program “classcommute” was designed for this task (commented source
code available from the author on request). It computes the causal contribution
for a general perturbation (1.3) to any order on the light cone. The formulas to the
orderO((y − x)0) modulo the noncausal contribution are listed in the appendix.

6. Outlook

In this paper, the light-cone expansion was performed for the Dirac sea to first
order in the external potential. The presented method can be generalized in sev-
eral directions and applied to related problems, which we now briefly outline.

First of all, the method is not restricted to the Dirac and Klein–Gordon equations;
it can also be used for the analysis of other scalar and matrix hyperbolic equations
(in any space–time dimension). The consideration (2.8), which gives the basic ex-
planation for the line integrals in the light-cone expansion, can be applied to any
hyperbolic equation (in curved space–time, the line integrals must be replaced by
integrals along null geodesics; see e.g. [5]). Thus, the behavior of the solution near
the light cone is again described by an infinite series of line integrals. The line
integrals might be unbounded, however, which leads to additional convergence
problems (e.g., one can replace the integrals in (3.2) by1

2

∫ ∞
−∞ ε(α) dα · · ·, which

gives a different formal solution of (3.3)).
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Furthermore, the light-cone expansion can be generalized to symmetric eigen-
solutions and the fundamental solutions. The formal light-cone expansion of Sec-
tion 3 applies in the same way to any Lorentzian invariant familyTm2 of solutions
of the Klein–Gordon equation, that is, to a linear combination of

Tm2(p) = δ(p2 −m2) and (6.12)

Tm2(p) = δ(p2 −m2)ε(p0). (6.13)

The second case (6.13) allows us to generalize the light-cone expansion to the
Green’s function. The advanced Green’s functionS∨

m2 of the Klein–Gordon oper-
ator, for example, can be derived fromTm2 of (6.13) by

S∨
m2(x, y) = 2πiTm2(x, y)2(y0 − x0).

This relation even remains valid in the perturbation expansion—for example, to
first order,

1S∨
m2(x, y) = 2πi1Tm2(x, y)2(y0 − x0) (6.14)

(for a derivation of this formula in the context of the Dirac equation, see [1]). Thus
the light-cone expansion for1Tm2 immediately yields corresponding formulas for
the Green’s function.

In contrast to the formal light-cone expansion of Section 2, the resummation
of the noncausal contribution depends much on the particular problem. An anal-
ysis in position space according to [4] might be helpful for the understanding of
the noncausality. ForTm2 according to (6.13), for example, there is no noncausal
contribution at all, which also simplifies the analysis of the Green’s functions.

By iteration, the method can also be applied to higher-order Feynman diagrams
and even makes it possible to sum up certain classes of Feynman diagrams explic-
itly. For the Dirac Green’s function and the Dirac sea, this is explained in detail
in [3].

A. Some Formulas of the Light-Cone Expansion

The following formulas give1P(x, y) to first order in the external potential (1.3)
up to contributions of the orderO((y − x)0) on the light cone. For the causal line
integrals, we use the short notation∫ y

x

f · · · :=
∫ 1

0
f |αy+(1−α)x · · · dα.

A.1. Electromagnetic Potential

1P(x, y) = − e

4π3

∫ y

x

Aj ξ
j6 ξz−2

− e

16π3

∫ y

x

(α2 − α)6 ξξkjkz−1

+ e

16π3

∫ y

x

(2α −1)ξjγ kFkj z
−1
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+ ie

32π3

∫ y

x

εijklFij ξkγ
5γlz

−1

− e

128π3

∫ y

x

(α4 − 2α3+ α2)6 ξξk�jk logz

+ e

128π3

∫ y

x

(4α3− 6α2 + 2α)ξjγ k(�Fkj ) logz

+ ie

128π3

∫ y

x

(α2 − α)εijkl(�Fij )ξkγ 5γl logz

+ e

16π3

∫ y

x

(α2 − α)γ kjk logz

+ ie

8π3
m

∫ y

x

Aj ξ
jz−1

− e

64π3
m

∫ y

x

Fijσ
ij logz

− ie

32π3
m

∫ y

x

(α2 − α)jk ξ k logz

− e

16π3
m2
∫ y

x

Aj ξ
j6 ξz−1

− e

64π3
m2
∫ y

x

(2α −1)γ iFij ξ
j logz

− ie

128π3
m2
∫ y

x

εijklFij ξkγ
5γl logz

+ e

64π3
m2
∫ y

x

(α2 − α)jk ξ k6 ξ logz

− ie

32π3
m3
∫ y

x

Aj ξ
j logz

+ e

128π3
m4
∫ y

x

Aj ξ
j6 ξ logz

+ (noncausal contributions)+O(ξ2),

with the electromagnetic field tensorFjk = ∂jAk − ∂kAj and the electromagnetic
currentjk = ∂lF kl.

A.2. Axial Potential

1P(x, y) = e

4π3

∫ y

x

Bj ξ
jγ 56 ξz−2

+ e

16π3

∫ y

x

(α2 − α)γ 56 ξξkjkz−1
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− e

16π3

∫ y

x

(2α −1)ξjγ 5γ kFkj z
−1

− ie

32π3

∫ y

x

εijklFij ξkγ lz
−1

+ e

128π3

∫ y

x

(α4 − 2α3+ α2)γ 56 ξξk�jk logz

− e

128π3

∫ y

x

(4α3− 6α2 + 2α)ξjγ 5γ k(�Fkj ) logz

− ie

128π3

∫ y

x

(α2 − α)εijkl(�Fij )ξkγ l logz

− e

16π3

∫ y

x

(α2 − α)γ 5γ kjk logz

− ie

8π3
m

∫ y

x

γ 5 1

2
[6 ξ, 6B]z−1

− e

64π3
m

∫ y

x

(2α −1)Fjkγ
5σ jk logz

+ ie

32π3
m

∫ y

x

∂jB
jγ 5 logz

+ e

32π3
m

∫ y

x

(α2 − α)�Bjξkγ 5σ jk logz

+ e

16π3
m2
∫ y

x

Bj ξ
jγ 56 ξz−1

− e

16π3
m2
∫ y

x

γ 56B logz

+ e

64π3
m2
∫ y

x

(2α −1)Fjk ξ
kγ 5γ j logz

+ ie

128π3
m2
∫ y

x

εijklFij ξkγ l logz

− e

64π3
m2
∫ y

x

(α2 − α)jk ξ kγ 56 ξ logz

+ ie

32π3
m3
∫ y

x

γ 5 1

2
[6 ξ, 6B] log z

− e

128π3
m4
∫ y

x

Aj ξ
jγ 56 ξ logz

+ (noncausal contributions)+O(ξ2),

with the axial field tensorFjk = ∂jBk − ∂kBj and the axial currentjk = ∂lF kl.
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A.3. Scalar Potential

1P(x, y) = 1

16π3
(8(y)+8(x))z−1

+ i

16π3

∫ y

x

(∂j8)ξkσ
jkz−1

+ i

64π3

∫ y

x

(α2 − α)(∂j�8)ξkσ jk logz

− 1

64π3

∫ y

x

�8 logz

+ i

8π3
m

∫ y

x

86 ξz−1

+ i

32π3
m

∫ y

x

(2α −1)(6 ∂8) logz

+ i

32π3
m

∫ y

x

(α2 − α)(�8)6 ξ logz

− 1

64π3
m2(8(y)+8(x)) logz

− 1

16π3
m2
∫ y

x

8 logz

− i

64π3
m2
∫ y

x

(∂j8)ξkσ
jk logz

− i

32π3
m3
∫ y

x

86 ξ logz

+ (noncausal contributions)+O(ξ2).

A.4. Pseudoscalar Potential

1P(x, y) = − i

16π3
(4(y)+4(x))γ 5z−1

+ 1

16π3

∫ y

x

(∂j4)ξkγ
5σ jkz−1

+ 1

64π3

∫ y

x

(α2 − α)(∂j�4)ξkγ 5σ jk logz

+ i

64π3

∫ y

x

�4γ 5 logz

− 1

32π3
mγ 5

∫ y

x

(6 ∂4) logz
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+ i

64π3
m2(4(y)+4(x))γ 5 logz

− 1

64π3
m2
∫ y

x

(∂j4)ξkγ
5σ jk logz

+ (noncausal contributions)+O(ξ2).

A.5. Bilinear Potential

1P(x, y) = − 1

2π3

∫ y

x

Hij ξ
iξkσ

jkz−2

+ 1

16π3
(Hjk(y)+Hjk(x))σ jkz−1

− 1

4π3

∫ y

x

Hjkσ
jkz−1

+ i

8π3

∫ y

x

ξjH
jk

,k z
−1

+ 1

8π3

∫ y

x

(2α −1)(ξ kHjk,i + ξiH k
jk,)σ

ijz−1

+ 1

8π3

∫ y

x

(α2 − α)(�Hij )ξ
iξkσ

jkz−1

− 1

16π3

∫ y

x

εijklHij,k ξlγ
5z−1

+ 1

8π3

∫ y

x

(α2 − α)∂jH l
kl,σ

jk logz

− 1

16π3

∫ y

x

(α2 − α + 1
4)(�Hjk)σ

jk logz

− 1

64π3

∫ y

x

(α2 − α)εijkl(�Hij,k)ξlγ
5 logz

+ i

32π3

∫ y

x

(α2 − α)ξj(�H k
jk,) logz

+ 1

64π3

∫ y

x

(α2 − α)2(�2Hjk)ξ
jξlσ

kl logz

+ 1

32π3

∫ y

x

(2α3− 3α2 + α)(ξk�Hjk,i + ξi�H k
jk,)σ

ij logz

+ i

8π3
m

∫ y

x

εijklHij ξkγ
5γlz

−1

− 1

16π3
m

∫ y

x

H k
jk,γ

j logz
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+ i

32π3
m

∫ y

x

(2α −1)εijklHij,kγ
5γl logz

+ i

32π3
m

∫ y

x

(α2 − α)εijkl(�Hij )ξkγ
5γl logz

− 1

8π3
m2
∫ y

x

Hij ξ
iξkσ

jkz−1

− 1

64π3
m2(Hjk(y)+Hjk(x))σ jk logz

− i

32π3
m2
∫ y

x

ξjH
jk

,k logz

− 1

32π3
m2
∫ y

x

(2α −1)(ξ kHjk,i + ξiH k
jk,)σ

ij logz

− 1

32π3
m2
∫ y

x

(α2 − α)(�Hij )ξ
iξkσ

jk logz

+ 1

64π3
m2
∫ y

x

εijklHij,k ξlγ
5 logz

− i

32π3
m3
∫ y

x

εijklHij ξkγ
5γl logz

+ 1

64π3
m4
∫ y

x

εijklHij ξ
iξkσ

jk logz

+ (noncausal contributions)+O(ξ2).

B. Perturbation by a Gravitational Field

In this appendix, we outline how the light-cone expansion can be extended to a
perturbation by a gravitational field. For the metric, we consider a perturbation
hjk of the Minkowski metricηjk = diag(1,−1,−1,−1),

gjk(x) = ηjk + hjk(x).
We describe gravitation with the linearized Einstein equations (see e.g. [6]). Ac-
cording to the usual formalism, we raise and lower tensor indices with respect to
the Minkowski metric. Using the transformation ofhjk under infinitesimal coor-
dinate transformations, we can assume [6, Par. 105] that

∂khjk = 1

2
∂jh with h := hkk.

In the so-called symmetric gauge, the Dirac operator takes the form

i6 ∂x − i

2
γ jhjkη

kl ∂

∂x l
+ i

8
(6 ∂h)

(see [2]). In contrast to (1.2), the perturbation is now itself a differential operator.
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One complication arises from the fact that the integration measure in curved
space is

√|g| d 4x = (1+h/2) d 4x,whereas the formula(1.7) for theperturbation
of the Dirac sea is valid only if one has the integration measured 4x of Minkowski
space. Therefore we first transform the system such that the integration measure
becomesd 4x, then apply(1.7), and finally transform back to the original integra-
tion measure

√|g| d 4x. Since the scalar product∫
9̄8

√
|g| d 4x =

∫
(|g|1/49)(|g|1/48) d 4x

is coordinate-invariant, the transformation to the measured 4x is accomplished by

9(x)→ 9̂(x) = |g|1/4(x)9(x);

i6 ∂x − i

2
γ jhkj ∂k +

i

8
(6 ∂h)→|g|1/4

(
i6 ∂x − i

2
γ jhkj ∂k +

i

8
(6 ∂h)

)
|g|−1/4

= i6 ∂x − i

2
γ jhkj ∂k −

i

8
(6 ∂h).

The perturbation1P (d
4x) of the transformed system is given by(1.7),

1P (d
4x)(x, y) = −

∫
d 4z

(
s(x, z)

(
i

2
γ jhkj

∂

∂zk
− i

8
(6 ∂h)(z)

)
P(z, y)

+ P(x, z)
(
i

2
γ jhkj

∂

∂zk
− i

8
(6 ∂h)(z)

)
s(z, y)

)
. (B.1)

The formula for the transformation of the Dirac sea to the original integration mea-
sure
√|g|d 4x is

P(x, y)+1P(x, y) = |g|−1/4(x)|g|−1/4(y)(P(x, y)+1P (d 4x)(x, y)).

Thus
1P(x, y) = 1P (d 4x)(x, y)− 1

4(h(x)+ h(y))P(x, y).
The factorsP(z, y) ands(z, y) in (B.1) depend only on(z− y), that is,

∂

∂zk
P(z, y) = − ∂

∂yk
P(z, y),

∂

∂zk
s(z, y) = − ∂

∂yk
s(z, y),

so we may rewrite thez-derivatives asy-derivatives, which can be pulled out of
the integral. Furthermore, the relations∫

d 4z P(x, z)(i6 ∂zh(z))s(z, y) =
∫
d 4z P(x, z)[(i6 ∂z −m), h(z)]s(z, y)

= −P(x, y)h(y)
and ∫

d 4z s(x, z)(i6 ∂zh(z))P(z, y) = h(x)P(x, y)
allow us to simplify the factors(6 ∂h) in the integral. In the resulting formula for
1P(x, y), one recovers the perturbation by an electromagnetic potential. More
precisely,
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1P(x, y) =
(
−1

8
h(x)− 3

8
h(y)

)
P(x, y)− i ∂

∂yk
1P [γ jhkj ](x, y), (B.2)

where1P [γ jhkj ](x, y) is the perturbation(1.7) of theDirac sea corresponding to
the electromagnetic potentialB = γ jhkj . The light-cone expansion of1P(x, y)
is obtained by substituting the light-cone expansion of1P [γ jhkj ](x, y) into (B.2)
and calculating they-derivatives. To the orderO((y− x)0) on the light cone, this
gives the following formula for the light-cone expansion of the Dirac sea in the
gravitational field:

1P(x, y) = − i

8π3

(∫ y

x

hkj

)
ξj

∂

∂yk
6 ξz−2

− i

16π3

(∫ y

x

(2α −1)γ iξjξ k(hjk,i − hik,j )
)
z−2

− 1

32π3

(∫ y

x

εij lm(hjk,i − hik,j )ξ kξlργm
)
z−2

+ i

16π3

(∫ y

x

(α2 − α)ξjξ kRjk
)
6 ξz−2

− i

128π3

(∫ y

x

(α4 − 2α3+ α2)6 ξξjξ k�Rjk
)
z−1

+ i

128π3

(∫ y

x

(6α2 − 6α +1)6 ξR
)
z−1

− i

128π3

(∫ y

x

(4α3− 6α2 + 2α)ξjξ kγ lRj [k,l]

)
z−1

− 1

64π3

(∫ y

x

(α2 − α)εijlmRki,j ξ kξlργm
)
z−1

+ i

32π3

(∫ y

x

(α2 − α)ξjγ kGjk
)
z−1

+ i

32π3
m

(∫ y

x

hki,j

)
ξkσ ijz−1

+ 1

32π3
m

∫ y

x

(α2 − α)Rjk ξjξ kz−1

− i

64π3
m2
∫ y

x

(2α −1)(hjk,i − hik,j )γ iξjξ kz−1

+ 1

64π3
m2
∫ y

x

εij lmhjk,iξ
kξlργmz

−1

+ i

64π3
m2
∫ y

x

(α2 − α)Rjk ξjξ k6 ξz−1+O(ξ0),
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whereRjk andR are the (linearized) Ricci tensor and scalar curvature, respectively.
A general difference to the formulas of Appendix A is that1P(x, y) now has a
stronger singularity on the light cone. This is a consequence of they-derivative in
(B.2). The leading singularity of1P(x, y) can be understood as describing the
“deformation” of the light cone by the gravitational field in linear approximation.

We finally remark that this method works also for the higher-order perturba-
tion theory as developed in [3]. It can likewise be used to perform the light-cone
expansion of higher-order Feynman diagrams in the presence of a gravitational
field.
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