Light-Cone Expansion of the Dirac Sea
to First Order in the External Potential

FEL1X FINSTER

1. Introduction

In relativistic quantum mechanics, the problem of the unphysical negative-energy
solutions of the Dirac equation is solved by the conception that all negative-energy
states are occupied in the vacuum forming the so-called Dirac sea. In[1], the Dirac
sea was constructed for the Dirac equation with general interaction in terms of a
formal power series in the external potential. In the present paper, we turn our
attention to a single Feynman diagram of this perturbation expansion. More pre-
cisely, we will analyze the contribution to first order in the potential and derive
explicit formulas for the Dirac sea in position space. Since this analysis does not
require a detailed knowledge of the perturbation expansion for the Dirac sea, we
can make this paper self-consistent by giving a brief introduction to the mathe-
matical problem.

In the vacuum, the Dirac sea is characterized by the integral over the lower mass
shell

d* o
P(x,y) = / #(Wrmw(pz—m2)®(—p°)e"”(""‘) (11)

(® is the Heavyside function@(x) = 1 for x > 0 and®(x) = 0 other-
wise); P(x,y) is a tempered distribution that solves the free Dirac equation
(ig, —m)P(x, y) = 0. In the case with interaction, the Dirac sea is accordingly
described by a tempered distributifiix, y) being a solution of the Dirac equation

(i + B(x) —m)P(x, y) =0, 12

where5 is composed of the classical bosonic potentials. We asdimaebe a
4 x 4 matrix potential satisfying the conditigrPB(x)Ty°® = B(x) (*1” denotes
the transposed, complex conjugated matrix). We can thus decompose itin the form

B=eA+ey°B+®+iy°E + oy HX (1.3)

with the electromagnetic potentidl;, an axial potentiaB;, scalar and pseudo-
scalar potential® and2, and a bilinear potentiai//* (see e.qg. [7] for a discussion

of these potentials). In Appendix B, it is shown how the results can be extended
to an external gravitational field.
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The Dirac equation (1.2) can be solved by a perturbation expansion. To first
order inB, one has
P(x,y) = P(x,y) + AP(x, y) + O(B?),
whereA P satisfies the inhomogeneous Dirac equation
(igy —m)AP(x,y) = =B(x)P(x, ). (1.4)

Thefactorig, — m) canbeinverted with a Green’s function: We choose as Green’s
function the sum of the retarded and advanced Green'’s functions,

1 . d*p P+m .
,y) == lim —ip(x=y), 1.5
S0 ) 2 O<s—>ozi:/ 2m)* p2 —m2+ ispoe (L.5)

According to its definitions satisfies the equation
(ifx —m)s(x, y) = 8%x — ). (1.6)

As a consequence, the integral
AP(x,y) = —/ d*z(s(x,2)B()P(z.y) + P(x,2)B(2)s(z,y))  (L7)

is a solution of (1.4).

Clearly,(1.7) is not theonly solution of the inhomogeneous Dirac equation (1.4).
For example, we could have worked with the advanced or retarded Green'’s func-
tion instead of (1.5) or could have omitted the second summa(id/in The spe-
cial form of our solution follows from the causality principle for the Dirac sea,
which was introduced and discussed in [1]. We will not repeat these considera-
tions here, and simply tak@.7) as an ad hoformula for the perturbation of the
Dirac sea. The reader who feels uncomfortable with this procedure is either re-
ferred to [1] or can, in a simplified argument, explain the special f(rif) from
the “Hermiticity condition”

AP(x, )T =y °AP(y, x)¥°,

which seems quite natural to impose.

In the language of Feynman diagraniky) is afirst-order tree diagram. In
comparison to diagrams of higher order or to loop diagrams, this is a very simple
diagram, and it might seem unnecessary to study the diagram further. Unfortu-
nately, (1.7) gives nainformation on whatA P explicitly looks like in position
space. We are especially interested in the behaviak Bfx, y) in a neighbor-
hood of the light conéy — x)> = (y — x);(y —x)/ = 0.

DeriNITION 1.1, Atempered distributiom(x, y) is of the orderO((y — x)??),
p € Z, if the product

(y — x)2PA(x, y)

is a regular distribution (i.e., a locally integrable function). It haslitjet-cone
expansion



Light-Cone Expansion of the Dirac Sea 379

A, y) =) AV(x, y) (1.8)
i=g

if the distributionsAl/l(x, y) are of the orde®((y — x)%) and if A is approxi-
mated by the partial sums in the way that

)4
A(x,y) =Y AUl(x,y) is of the orderO((y — x)**?) (1.9)
j=g
forall p > g.

The first summand!¢l (x, y) gives the leading order of(x, y) on the light cone.
If Ais singular on the light cong,will be negative. Notice that thél/] are deter-
mined only up to contributions of higher ordé((y — x)%+?2), but this will not
lead to any problems in the following.

We point out that we do not study the convergence of the sum (1.8); we only make
a statement on the approximationAby the finite partial sums. The reason why
questions of convergence are excluded is that the distributibhsvill typically
involve partial derivatives of order;j2of the potential3, and we can thus expect
convergence only i is analytic (for nonanalytic functions, the partial derivatives
may increase arbitrarily fast in the order of the derivative, which makes conver-
gence impossible). Analyticity of the potential, however, is too strong a condition
for physical applications; we can assume only thas smooth (the reason why
analytic functions are too restrictive is that they are completely determined from
their behavior in a small open set, which contradicts causality). Thus, the infinite
sum in (1.8) is merely a convenient notation for the approximation by the partial
sums (1.9). Despite this formal character of the sum, the light-cone expansion
completely describes the behavior &fx, y) near the light cone. This situation
can be seen in analogy to writing down the Taylor expansion for a smooth, non-
analytic function. Although the Taylor series does not converge in general, the
Taylor polynomials give local approximations of the function.

Our aim is to derive explicit formulas for the light-cone expansion &f(x, y).

2. Discussion of the Method

Before performing the light-cone expansion, we briefly discuss the basic problem
and describe the possible methods for calculatii®y x, y).

At first sight, our problem seems quite complicated because of the Dirac ma-
trices ins, in P, and in the potential (1.3). Actually, this is not the difficult point;
we can reduce to a scalar problem by pulling all Dirac matrices out of the integral
(1.7) asfollows. We have

P(xv y) = (lﬂx +m)Tmz(-x’ )’) = (_lﬁy +m)Tm2(xa )’),

S(.X, )’) = (lﬁk +m)Sm2(-x7 y) = (_lﬂv +m)Sm2('xv y)v

whereT,,2 andsS,,. denote the negative-energy eigenspace and the Green’s func-
tion of the Klein—Gordon operator, respectively:

2.1)
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d4
Tmz<x,y>=f(2 3807 =m0 (e, (2.2)

2 —ip(x—y)
(x, y) Z / i m2 el . (2.3)

Using the short notationy),—1 .16 for the based, iy®, y/, y°y/, o/* of the
Dirac matrices, we can thus rewrite7) in theform

AP(x,y) = Z(lﬂerm)y( iy +m)AT,2[Ba] (x, y) (2.4)
with
AT,2[V1(x, y)

/d 2(Sp2(x, V() T,2(2, y) + T2(x, 2)V(2) ,2(2, ). (2.5)

The scalar distributiolv7,,2[ V] (x, y) is a solution of the inhomogeneous Klein—
Gordon equation

(=0 —m?)AT,2(x, y) = =V(x)T,2(x, y), (2.6)

as is immediately verified. Once we have derived the light-cone expansion for
AT,2(x, y), the corresponding formula fak P(x, y) is obtained by calculating

the partial derivatives and using the commutation rules of the Dirac matrices in
(2.4), which will be a (lengthy but) straightforward computation.

We conclude that the main problem is to calculate the solution (2.5) of the Klein—
Gordon equation (2.6). The simplest method is to analyze the partial differential
equation (2.6). This hyperbolic equation is closely related to the wave equation,
and the behavior near the light cone can be studied like the wave propagation of
singularities (this method is sometimes called “integration along characteristics”;
see e.g. [5]). In order to give an idea of the technique, we look at the simplified
equation

(—O0—m?) f(x) = g(x) 27)

and choose light-cone coordinates= %(t+r), v= %(t—r), ¥, @) around the ori-
gin (r, 9, ¢ are polar coordinates iR®). Then theZJ-operator takes the form

1 1
0= 8u8v - _(au - av) - _ZASZa
r r

whereAg. = 92 + cotd 9, + sin2 9 35 is the spherical Laplace operator. The
important point is that thEl-operator contains only first derivatives in batland

v. This allows us to express the normal derivativefadn the light cone as a line
integral overf and its tangential derivatives. Thus, we rewrite (2.7) on the upper
light coneu =t =r, v =0, in the form

1
8, d, f(u, 0,9, ) = (au —um?®+ —Asz)f(u, 0,9, ¢) —ug(u, 0,9, ¢).
u
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This equation can be integrated along the light cone as

udy f (u1, 0, 9, 9)

ug
zf 0 (udy f(u, 0,9, 9)) du
0

uy 1
:/ ((au _um2+_AS2)f(u,0, Y, ) —ug(u, 0,9, (,0)) du
0 u

= f(uls 0’ 191 (P) - f(o’ 07 19’ (ﬂ)

+ /”1<<_um2 + EAS2> fu,0,9,¢) —ugu,0,v, <p)> du. (2.8)
0 u

By iterating this method, itis possible to calculate the higher derivatives in a similar
way. We conclude that knowing on the light cone determines all its derivatives

on the light cone. This makes it possible to perform the light-cone expansion. We
remark that complications arise whe¢hhas singularities on the light cone. The
main disadvantage of this method is that the special form of the solution (2.5) does
not enter. This means, in our example, that additional input is needed to com-
pletely determinef on the light cone.

Because of these problems, it is preferable to use a different method and to
directly evaluate the integral (2.5). One substitutes explicit formulas for the dis-
tributions S and T in position space and studies the asymptotic behavior of the
integral for(y — x)2 — 0. This method is presented in detail in [4]. Because it
is carried out purely in position space, it gives a good intuition for the behavior
of AP near the light cone. Unfortunately, this method is rather lengthy. Further-
more, the calculation of the operator products in (2.5) and of the partial derivatives
in (2.4) lead to subtle analytical difficulties.

In this paper, we use a combination of calculations in position and in momen-
tum space, which gives a shorter and more systematic approach. It has the dis-
advantage that working with infinite sums in momentum space is more abstract
than studying the behavior of distributions in position space. Therefore the reader
may find it instructive to compare the technique of this paper with the calculations
in [4].

3. The Formal Light-Cone Expansion ofAT,,

In this section, we will perform the light-cone expansion &¥,,2(x, y) on a for-
mal level. The analytic justification for the expansion is postponed to the next
section. We assume that=£ 0 and set: = m?.

Since we want to derive formulas in position space, it is useful first to consider
explicitly whatT,,2 looks like. Calculating the Fourier transform of the lower mass
shell (2.2) yields an expression containing the Bessel functign¥;, and K.

The most convenient form for our purpose is to work with the power series for
these Bessel functions, which gives
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Ta(r ) = =53 M 77—z
) (-1 (ag?!
+ 353 oIm (l0g(at” w$>+m+c)zu<z+1>' 4l
a S (=) (ag?)!
_32713;1!0“)! a7 (@U+D+ o) 3D

with &€ = (y — x), ¢ = 2C — log 2 with Euler’s constant, and the function
1
®(0) =0, ®(n) = - forn>=1
() (n) ; p
The logarithm is understood in the complex plane, which is cut along the positive
real axis (sothatlirg. ..o log(x+ie) = log|x| isreal forx > 0). It can be verified
explicitly thatT, is a solution of the Klein—Gordon equation], —a)T,(x, y) =
0. Furthermore, one can calculate the Fourier transfdytp) with contour in-
tegrals. Forp® > 0, the £%integral can be closed in the lower complex plane,
which gives zero. In this way, one immediately verifies thais formed only of
negative-energy states.
This formula forT, looks quite complicated, and we do not need the details in
this section. It suffices to observe thgthas singularities on the light cone of the
form of a pole and &-distribution,

lim L Y S

oMM §Z g0 — g2 T mOEDEE
where PP denotes the principal value. Furthermore, there are logarithm@@-and
like contributions, since

,Jim 0|09(a§2 — ie&%) + im = log(|ag?|) + in® (£%)e(£°),

wheres is the step functiom(x) = 1 forx > 0 ande(x) = —1 otherwise. The
important point for the following is the qualitative observation that the contribu-
tions of higher order i contain more factors? and are thus of higher order on
the light cone. This yields the possibility of performing the light-cone expansion
by expressing\T, in terms of the:-derivatives of7,. In the following lemma, we
combine this idea with the fact that line integrals over the potential should occur
according to (2.8). The lemma gives an explicit solution of the inhomogeneous
Klein—Gordon equation (2.6) and is the key for the light-cone expansion. We use

the notation .,
d
"W = —) T..
“ da “

LeMmMma 3.1. The formal series

[ele] 1 1
A, y) == — /0 (@ —a®)"(@"V)layra-anx da TP 0x,y) - (3.2)
n=0""
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satisfies the equation
(s —a)Ax, y) = =V()Tu(x, y). (3.3)
Proof. In momentum spacdy, has the form

T.(p) = 8(p? — a)O(=p°).

Sincea > 0, the mass shell does not intersect the hyperpjhe 0, and we can
thus calculate the distributional derivative to

0
Faw —a)®(-p°)
= 2p;8" P (p® — a)O(—p°) — 8™ (p® — a)8P8(p°)
= 2p;8"V(p? — a)O(—p?).

Hence, for the calculation of derivatives we can viEwas a function of p? — a);
that is,

0
g7 1o (P) = =2n, T V(). (3.4)

This relation can also be used to calculate the derivativé$din position space,

0 d*p .
) _ D (Y (—ip:)e—PE—)
oi Lo (X y)—/(2 )4Ta (p)(—ipj)e

i de P

=5 ) Grpgpila e
i d —1 xX—
=__/(2 1;4 TP (p ) P
= 5<y —x); T P (x, ). (3.5)

Using thatT, is a solution of the Klein—Gordon equation, we also have

d\"
0= <E> (p2 — a)Ta(P) = (pz _ a)Ta(n)(p) _ nTa(n_l)(p)

and thus
(=0, —a)T " (x, y) = nT " (x, y). (3.6)

With the help of (3.5) and (3.6), we can calculate the derivatives of the individual
summands in (3.2) as follows:
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1
(-0, —a) / (@ — a®"(O"V) |y +a-ayx do T (x, y)

0

1

- / (1= @)(a — &) (O™ )y 1aye d T, y)

0

l .
- f L —a) (e —a®)"(@0"V) |ay+a—we da(y — x) T (x, y)

0

1
+(n+ 1)/ (@ = a®)"(O"V)ayta-ax da TV (x, y).
0

In the second summand, we rewrite the partial derivative as a derivative with re-
spect tow,
d

- ja‘DnV ay+(l—a)x =
(y —x)’ 9 lory+a-a)s Ta

atv |ozy+(l—a)x s

and then integrate by parts. This gives

1
(-0 - a)f (@ = a®)"(O"V)ayta-apx do TP (x, )
0

= 0,0V () Ta(x,y)

1
+n f (1= )@ — a®" OV oy s 0 e da T (x, )
0

1
— f A— (@ — &)@ V) ayraayx da T, (x, y).
0

After dividing by n! and summing ovesr, the last two summands are telescopic
and vanish. This yields (3.3). O

It would be nice if the solution of the inhomogeneous Klein—Gordon equation con-
structed in the previous lemma coincided Wit (x, y). This is really the case,
although it is not obvious. In the remainder of this section, we will prove it. The
technique is to expand (2.5) in momentum space and to show that the resulting
expression is the Fourier transform of (3.2).

Since (2.5) is linear irV, we can assume th&t has the form of a plane wave,

V(x) =e ', 3.7)

TransformingAT, (x, y) to momentum space gives the formula

/d4x/d4y ATAx,y)e”’zy—iplx

PP PP
= —(Z—Tu<p1) + Tu(p2)— )8“<q —p2+p), (38)
p5—a py—a

whereps, p, are the in- and outgoing momenta and where PP denotes the princi-
pal value,
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PP 1 1
ol
pl—a 2 0240 p2—a+iepd

The factors*(q — p» + p1) in (3.8) describes the conservation of energy momen-
tum. In order to simplify the notation, we leave out thfsfactor and viewAT,
as a function of only one free variabte= (p1+ p2)/2,

q q
ATa a0 Y
(r+5r-1)

— PP (p-1)- 4y__ PP
= —grpr=ar=3) 5 D)o €9

The transformation to position space is then given by a single integral,

d* . . _
AT, (x,y) = / #AT(,@ + %, p- %)e’f“ﬂ’)e“q/a()‘“’; (3.10)

the inverse transformation to momentum space takes the form

2 2

The first step for the light-cone expansion in momentum space is to rewrite (3.9)
in the form

AT(er‘—] p—z>=— PP T(p—g)
¢ 2’ 2 [(p—%?—al+2pg * 2

( 4 ) PP
P [((p+$)?—a] —2pq

and to use that the expressions within bracketg {anish as the arguments of the
8-distributions inT,(p & ¢/2),

q q PP q q
AT, I rp-Z)=—I|T1, V-—1lp-2)).
(“2 P 2) 2pq< <p+2) <” 2))

Now we expand/, in a Taylor series iy,

ATa(p + 4 p- 2)

ATa(p + 2, p— 6_1) = /d4y AT, (x, y)ei17(x—y)ei(q/2>(x+_v). (3.11)

2 2
82k+l qil qi2k+1
(L ...

_ PP Z 1
B 2pq =0 2k + 1! gpr. - - gpiart 2 2

(3.12)

We want to rewrite they-derivatives as derivatives with respectdaoThis can
be done by iteratively carrying out the derivatives with the differentiation rule
(3.4). One must keep in mind that tpederivatives act either ofy, or on the fac-
tors p; that were previously generated by (3.4), for example,

? q* 9 ® q’ 272 @
—— Lu(p ) Z—W((pq)Ta (P = (p)"1,"(p) = T (p).

op’op 2
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In this way, carrying out the-derivatives in (3.12) gives a sum of many terms.
The combinatorics may be described as follows. Each fagttiat is generated
by (3.4) and differentiated thereafter gives a pairing between two of the derivatives
iy - - -5 0ip,—namely, between the derivative by which it was created and the
derivative by which it was subsequently annihilated. The individual expressions
obtained after carrying out all the derivatives correspond to the possible configu-
rations of the pairings among thig - - - 9;,,,,. They depend only on the number of
pairs and not on their specific configuration. More precisely, every pair increases
the degree of the derivative Gf) by one and gives a factgr?/2, whereas the
unpaired derivatives also increase the degreE‘dfand give a factopq.

It remains to count how many configurations of sugbairs exist. We use the
notation[':] for the number of possibilities to choosepairs from a set ofz >
2n points. The combinatorics becomes clearer if one first selectaiof them
points and then counts the number of possible pairings among thgsairzs to
(2n — D!, This explains the formula

m m m! 1

We conclude that
82k+l i1 qizk+1

q
apil . e api2k+1 Ta(p)? o 2

= Xk:(_l)l+” (Zk + 1) 1 (2k+l n)(p)( ) (pq)2k+172n.
n=0

2k £ 1= 2n)1 21 L@

After substituting into (3.12) and reordering the sums, we obtain

q q
AT, 5 P—5
(r+ 50 2)

_ PP (D" "o (P9) T@ktLen) a1
- pafzon < );(Zk—l-l)' a (p). (314)

Finally, we pull one factopg out of the sum, which cancels the principal value,

q q\ _ o (—D)" 6]2 R (PCI)z T @k+14n)
AT"(”E’ ”‘E)__; nl (7) §(2k+1>' T B9

This is the formula for the light-cone expansion in momentum space.

It remains to show that the Fourier transform (3.10) of (3.15) coincides with
(3.2). In order to see a first similarity between these formulas, we substitute the
plane-wave ansatz (3.7) into (3.2):

Ax.y) = _i (—gH" [Y? 1 . nefirq(yfx) dt T (x| y)e i@/264y)
V)= I’l' -1/2 4 4 -y )
n=0 (3.16)
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The last exponential factor also occurs in (3.10). Furthermore, it is encourag-
ing that both (3.15) and (3.16) contain a power serieg’inThe main difference
between the formulas is related to the factor@xjyg (v — x)) in (3.16): expand-

ing this exponential yields a power seriesji(y — x). In momentum space, this
corresponds to a power serieSqi-mp ; (because differentiating the exponential in
(3.10) with respect tg gives a factoi(y — x)). The expansion (3.15), however,
contains a power series sy, not in¢’d,;. The following lemma allows us to
transform these expansions into each other.

Lemma 3.2. Forall» > 0,

g/ 9 \* k 2k (4*\
<7$> ch”<p>=Z<—1>l[ ! }<3> (P> AT 2D (), (3.17)
=0

k 2N/ gi g \%2
(P)* T, (p) = Z[zﬂ (%) (% 31)—,) T, (p). (3.18)

=0

Proof. On the left side of (3.17), we calculate the derivatives inductively using
the differentiation rule (3.4). The derivatives either actZj, which increases
the order of the derivative df” and generates a factpy, or they act on previ-
ously generated factogsg, which reduces the number of factgrg by one and
produces a factay?/2. This can also be written in the inductive form

g’ 3\ ()
<73p—j> T,”(p)

¢ 8\ (s+1) () 8 \7° (s+D
=-pg|l=—) T° —-(l-)=(==) TV )
pq( > 3p1> o P =U=D5\ 5 o a (p)

The combinatorics is described by counting the number of possibilities in forming

[ pairs among the Rderivatives.
Equation (3.18) follows in the same way from the relation

(P)' T+ (p)
2
= —(—i)(pq>f—1T;‘¥+l—1><p) — (- 1>%<pq>l—2T<"“—”<p>. O
D

After these preparations, we can prove the main result of this section.

THeoreM 3.3 (formal light-cone expansion &T7,,2). For m # 0, the distribu-
tion AT,2(x, y) of (2.5)has a representation as the formal series

[e%e) 1 1 0
ATe(x,y) = =) — / (@ — )" (O"V)|ayra-an do T3 (x, ). (3.19)
n=0"'" 970

Proof. We expand the factc(rj—‘1 — 72)" and the exponential exp-itg(y — x)) in
(3.16) and so have
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_ o) (_qZ)n 1/2 n n ~ 1 n—l
sen =35 20 (3)

NS Ta("Jrl)(x, y)efi(q/2)(x4ry)

X ,2yn X n—I
:_Z( zl) Z( 14()’ x)) Z( l)( )( )

n=0 ) k=0
12 .
y / T2 gy T (x| y) i/ 20), (3.20)
—12

Next we carry out the-integration. This gives a contribution only foreven,

o (24" o (g (y =) § "
B S S B Dl( )( >

n=0 ' k=0

T(n+l)(x y)
X2k + 21 + 1Ak

_ (-1)" q (—lq(y—x))Zk n (_1)1
__; ! <7> L g Lzsaii

x (n)T(VH-l)(x y)e—i(q/z)(x-h\')
)¢ ’ )

i@/ 2+y)

Now we transform to momentum space by substituting into (3.11). The factors
—ig(y — x)/2 can be rewritten as derivativég/2)d,; acting on the plane wave
e?0=Y) Integrating thesg-derivatives by parts gives

q Y\ D' 1 Y
A<p+§’p_§)__; ! (Z)Z(Zk)'22k+21+l

n C]j 0 ZkT(n+1)
A\ 2 ) e (p).

We shift the indices andk accordingto: — ! — n andk +1 — k. This changes
the range of thé-summationtd =0, . . ., k. We thus obtain

q q
AT, . p—2<
(P+ > P 2)

o (D" (Y -
:_; ! <Z> Z 2k + 12(2k 21)|1'

k= 1=

a*\ qj o\ T (414D
X (p)
4 2 Bpl
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3 (- 1)" " 1 Gl
- Z Z (2k + 1)| Z

q g 9 2k—21
X (?) ( 57 j) T D (p). (3.21)
p

In this way, we have transformed the line integrals in (3.16) to momentum space.
We remark that we did not use the special fornTpin the calculation from (3.20)
to (3.21); for the computation so far, we could repldgdoy any other function.

In the last step, we apply Lemma 3.2: substituting (3.18) into the light-cone ex-
pansion (3.15) forAT, also yields the expression (3.21). Thaicoincides with
AT,, which concludes the proof. O

4. Resummation of the Noncausal Contribution

In this section, we will put the previous formal calculations on a rigorous basis.
The interesting part is to recover the noncausal structureTpt (x, y) by resum-
ming the formal light-cone expansion. We begin with specifying the conditions
on the potentiaV in (2.5).

Lemma 4.1. LetV e LY(R*) be a potential which decays so fast at infinity that
the functionsc’V(x) are alsoL. ThenAT,2(x, y) of (2.5)is a well-defined tem-
pered distribution orR* x R4,

Proof. Itis easier to proceed in momentum space and to show that

AT,2(p2, p1)
= =Su2(p2)V(p2 = pOT,2(p1) = T,2(p2)V(p2 — p1)Sy2(p1)  (4.1)
is a well-defined tempered distribution, whéreis the Fourier transform of.
The assumption then follows by Fourier transformation.
In momentum space, the conditions on the potential gieeC(R*)NL>(R*).

We choose two test functiong g € S(R*). Then the functiom7(p2 —)f¢)is
C! and has rapid decay at infinity. Thus the integral over the lower mass shell

4
(2n )4

is finite and depends differentiably gi. Consequently, the produgf is in C*
and has rapid decay, and we can calculate the principal value by

d* P2
20<£—>OZ/ (27-[)4 mz:l: 08(1’2)1([72)

which gives a finite number. This shows that the first summand

I(p2) = L V(p2— pO) T2 (p1) f(p1)

Su2(p2V(p2 — p1)T2(p1)
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in (4.1) is a well-defined linear functional dfi(R*) x S(R*). This functional is
bounded in the Schwartz normis|lo.o0, | - ll4,0, || - ll0.1, @nd|| - [l4.1 Of f, g, which
gives continuity.

For the second summand in (4.1), one can argue in the same way after exchang-
ing p; andpo. O

For the light-cone expansion, we clearly need a smooth potential. Therefore, we
will assume in the following tha¥ € C* N L andx'V (x) € L~

We come to the mathematical analysis of the light-cone expansion. We again
assume that # 0; the casen = 0 will be obtained at the end of this section in the
limit m — 0. In the first step, we disregard the convergence of the infinite sums
and check that all the performed operations make sense and that all expressions
are well-defined. We start with the end formula (3.19) of the light-cone expan-
sion. The line integrals over the potentials &®-functions inx, y. The factors
Trfl’z')(x, y) are tempered distributions, as one sees after differentiating the explicit
formula (3.1) with respect ta. Thus (3.19) makes mathematical sense. The cal-
culations leading to this result are not problematic except for the handling of the
principal value following (3.9). The easiest method for studying this more rigor-
ously is to regularize the principal value in (3.9) with the replacement

PP X

x Z;xiis C x24 62

Then all the subsequent transformations are well-defined, and the critical opera-
tion is the cancellation of the principal value against one fagtpbefore (3.15).
In order to justify this operation, we use in (3.14) the exact formula
Pq
(pq)? + &2

((pg)* +?) —¢? &?
T (i tel (”Q)Zk=<l_(pq)2+e?-'>(”‘”2k

= = (p)* - 2(p)* 2+ -+ (=D + (-1

(pq)2k+l

2k+2

(pq)?+ €2
The first summand gives (3.15); the following summaqds)’s?( pq)?*~? con-
tain no principal value and vanish in the linsit—> 0. Thus it remains to consider
the last summand for — O,

lim 82k+2 q2 nT(2k+1+n)( ) (4 2)
e>0 (pg)2+¢e2\ 4 ) "m? P .

We use that the support @f,2(p) is on the mass sheft? = m? and apply the
relation lim,_.q &/(x% + £2) = n8(x),

P (2k L) 2k+1+4n e
im ——— +1tn ( ) im ———T,
#0 (pq)? + 62 g P =\da =0 (pq)? + €2 (»)

d 2k+1+n p p
= (%) (ﬁ‘s(qm)w)



Light-Cone Expansion of the Dirac Sea 391

This expression is well-defined for £ 0. The limit (4.2) contains an additional
factore2+1(¢%/4)" and thus vanishes.

We conclude that the light-cone expansion is mathematically rigorous except
for the formal character of the infinite sums. In the remainder of this section, we
will carefully analyze the infinite sum in (3.19). More precisely, we will do the
following. As explained in the introduction, the infinite sum in (1.8) is only a no-
tation for the approximation (1.9) of the partial sums. Following this definition,
we need only show that the light-cone expansion is well-defined to any order on
the light cone; we need not study the convergence of the sum over the order on
the light cone. According to the explicit formula (3.1), each faatf™ in (3.19)
consists of an infinite number of terms of different order on the light cone (we will
see this in more detail in a moment). In order to bring (3.19) into the required form
(1.8), we must collect all contributions to a given order on the light cone and form
their sum. This procedure is calleesummatiorof the light-cone expansion. If
the sum over all contributions to a given order on the light cone were finite, this
resummation would be trivial; it would just correspond to a rearrangement of the
summands. It will turn out, however, that these sums are infinite, and we must
find a way to carry them out.

In order to see the basic problem in more detail, we consider the explicit for-
mula (3.1) forT,. We start with the last summand

e _11 2\1
T.(6.3) < —25 ) % Ez +)1), Cl@ityron @3
2 Ta+ D!

(the notation *<” means that we consider only a certain contributiofp This
is a power series in, and we can calculate its derivatives to

., 1 00 (_1)1 al+lfn 2(l+n—-1)
T, y) < —= Y g,
167% 4= 11 (I +1—n)! 4
x (O +1D+ ), n>1 (4.4)

For increasing:, the derivatives are of higher order on the light cone; more pre-
cisely, the contribution (4.4) is of the ordéX((y — x)?"~?). Thus, the contribu-
tion of (4.3) to the formal light-cone expansion (3.19) consists, to any order on the
light cone, of only a finite number of terms. Thus the resummation is trivial. Of
course, we could rearrange the sum by collecting all the summands in (4.3) and
(4.4) of a given degree i#? and writing them together, but this is only a matter of
taste and is not really needed.

For the second summand in (3.1),

(=" (at?'
I+ 4

T,(x,y) < (log(£% — i0g )—i—m—i—c)z (4.5)

163

00 Y 2\l
(3 Y (4.6)

N+l 4
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the situation is more complicated: the contribution (4.5) is a power seriearial

can be discussed exactly as (4.3). The only difference (apart from the missing fac-
tors @) is the prefactoflog(¢? — i0£°%) + i + ¢), which has a logarithmic pole

on the light cone. The contribution (4.6), however, contains a factar kg is

not a power series im. As a consequence, the highederivatives of (4.6) are

not of higher order on the light cone. For example, the contribution to the order
O((y — x)?) has the form

aloga + O((y — x)?)

Ta(x,y) = 7573

1
TP (x,y) =< 1631+ 10ga) +O((y — x)?)

="
163 P o

This means that we must resum an infinite number of terms; more precisely,

T (x,y) =< + 0y —x)%, n>2

ATON(x, y) =< —

1
/ Vv |oty+(lfa)x dOl(l + IOQ a)
0

1673
1 © 1 1 - . (_1)}1
+ 1673 ; ;l/(; (¢ —a5)"(O V)|oty+(17a)x da P
+- Oy — 0. (4.7)

This is a serious problem. Namely, we can expect the series in (4.7) to converge
only if the derivatives1"V do not grow too fast in the ordenof the derivative.
It turns out that analyticity oV is necessary for convergence, which is too restric-
tive.

On a technical level, this convergence problem of the contributions}p to
a given order on the light cone is a consequence of the factarilo{t.6); we call
it the logarithmic mass problemBecauseAT,,2(x, y) is well-defined by (2.4), it
is not a problem of the perturbation expansion but rather shows that the light-cone
expansion was not performed properly. The deeper reason for the convergence
problem is that we expresseNT,,.(x, y) only in terms of the potential and its
derivatives along the line segment. However, the perturbationT,,2(x, y) is
not causal in this sense; it dependsloin the whole Minkowski space (this be-
comes clear in (2.4) from the fact that the supporTpf(x, -) is R*). In a formal
expansion, we can expread;, 2 (x, y) interms of 0"V |,y a-xx, 0 < A <1, but
we cannot expect this expansion to converge. The simplest 1-dimensional analog
of this situation is the formal Taylor series

<1
f =) = 7 Ox"
n=0""

of a smooth function. The right side cannot in general converge, because it is not
possible to expresg(x), x # 0, in terms of £ (0).
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The solution to the logarithmic mass problem is to reformulate the problematic
contribution of (4.6) to the light-cone expansion (3.19) as a noncausal term that
is obviously finite. In some sense, we will simply reverse our former construc-
tion of the light-cone expansion. Yet this is not trivial, because the differentiation
rule (3.4), which was crucial for rewriting the Taylor expansion (3.12) as an ex-
pansion in the mass parameteris not valid for (4.6). In the end, we want to
write the light-cone expansion in a way which shows that part of the behavior of
AT,2(x, y) can be described with line integrals of the form (3.19) whereas other
contributions are noncausal in a specific way.

We work in momentum space. The Fourier transform of the problematic series
(4.6)is

e 1o (D! ag?
Ja — d4 ipx -5
(P) / ve 167r3;l!(1~|—1)! 4l

e !

a
= —— %% p). 4.8
”;411!(1+1)! (P) (4.8)
Notice that this expression is highly singularmat= 0; especially, it is not a dis-
tribution. However, it is well-defined as a distribution on analytic functiong.in
This comprises all functions with compact support in position space, which is a
sufficiently large function space for the following. Furthermore, we introduce the
series

412

dy dy
JIW=(—) I, LY =(—)La
“ (da) “ da

LemMma 4.2. The serieg4.8) and (4.9) satisfy the relations

o l
Lap) =7 —-—0'%(p) (4.9)
=0

and set

1
Jo(p) = / Lea(p)dr, (4.10)
0
) (nt+D)
_'La (p) = _2ija (p) (411)
ap’

Proof. Equation (4.10) is verified by integrating the power series (4.9) and com-
paring with (4.8). The distributiop;34( p) vanishes identically. Since the deriva-
tives of distributions are defined in the weak sense, it follows that

ad
0=0""(p;8%(p) = p; "% (p) +2(n + 1>@D"54(p>

and thus

9 1
— "% p) = —————(O"%*(p))2p;.
o (p) 4(n+1)( (P)2pj

Applying this relation to every term of the series (4.9) yields that
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diLe =—2p;LY,
and (4.11) follows by differentiating with respectdo O

The functionL, is useful because (4.11) coincides with the differentiation rule
(3.4) forT,. This implies that all the formulas fdf,, especially the manipulations
of Lemma 3.2, are also valid fdr,,.

The following technical lemma is the key for handling the logarithmic mass
problem.

LemmMma 4.3 (resummation of the noncausal contributionlf. V is the plane wave
(3.7),then
o0 1 1 d n+1
_Z - / (o — az)n(DnV)|ay+(l—a)x da <_) (a |09(a)Ja(P)) (412)
—nl Jo da

1d (!
= ——— dul\(a + b)log(a + b)
2da -1

(4.13)
a=m?—q?/4, b=2q?/4

1
X / Lra+(t71)b7upq(p) dT)
0

Proof. The series (4.12) is obtained from the formula (3.2)40x, y) by the re-
placementl, — alog(a)J,. As remarked in the proof of Theorem 3.3, all the
transformations from (3.20) to (3.21) are also valid if we replcby any other
function. Therefore,

00 (_1)n qz n oo 1 k 2k q2 1
(412)= -3 al (Z) ; 2k + 1)! ;[ ! }(?)

n=0
L]j P 2k—21 d n+1+1
5 (7$> (%> (alog(a)Ju(p)).

We carry out the sum over by redefininga asa = m? — ¢%/4 and substitute
(4.10) as follows:

w2 Lo 2 11(5)

k=0

q/ 9 2k—21 d 1+ | lL J
<2 8p1> <d_(1) <a Og(a)/o ra(p) 7:)-

Using thatL,(p) andT,(p) obey the same differentiation rules (4.11) and (3.4),
respectively, we can apply relation (3.17) witf’ replaced by to obtain

00

(4.12):_;ﬁ§[2k}z( 1)[2k ZlK?)zﬂ

1+1
x(pq)z"—ZZ—ZS(%) (alog(a) / LE2- ”<p>dr>.
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We introduce the index = [ + s, replaces by r — [, and substitute the combina-
torial formula (3.13):

4.12)— o (=D’ d 42 2k—2r
(4. )__;2k+1zr'(2k 20! (Pq)

r=0

r (r 4\ 1 k2t
E -1 — | L ekmertir= dr ).
) 1:0( ) <1)<da> (a Og(a)/o i (7) T)

The last sum can be eliminated using the combinatorics of the product rule,
l
Z( 1 ( )( ) (alog(@ L=+ (p))

— (- 1>( )(<a+b>|og<a+b> ) |

Furthermore, we shift the indéxaccording tok — r — &, yielding
= 1 p* 3 1(q%Y
4.12)= — —{ =
(4.12) ;2k+2r+1(2k)! ;r!(4)

x <i> <i>r<(a + b) log(a + b)/ L0 (p) dt)
da db ta+(t—1b b—0

Without the facto2k + 2r 4+ 1)1, we had two separate Taylor series which could
easily be carried out explicitly. The coupling of the two series by this factor can
be described with an additional line integral,

1d [* & 1[¢%Y
412)=—->-— | d (L) u
(4.12) 2da/_1MZr!<4>M

d\
(db) <(6l + b) |Og(6l + b) / Ta+(t— 1)b+upq(P) dt)
b=0

We finally carry out the remaining Taylor sum. O

The result of this lemma is quite complicated. The important point is that the con-
vergence problems of the infinite series (4.12) have disappeared in (4.13), which
is obviously finite. Namely, the-derivative of the integrand in (4.13) has at most
logarithmic singularities. These singularities are integrable and disappear when
the u-integration is carried out.

After these preparations, we can state the main theorem. Since the resulting ex-
pansion is regular in the limiz — O, it is also valid form = 0.

THEOREM 4.4 (light-cone expansion ai7,,2). The distributionAT,,. of (2.5)
has the representation

=1 ! ’
AT,e(x, )= =) = / (@ = )" (O"V)layra-wr da Ti52" P (x,y)  (4.14)
=0 JO

+ Ny2(x, y), (4.15)
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with J
Tareg =T,—a |Og([l).]a, 7—~al’eg(n) = (—) Tareg,
da
and the Bessel functiah, of (4.8). The serieg4.14)is well-defined in the sense
of Definition1.1. ThecontributionN,,2(x, y) is a smooth function ir, y and has

a representation as the Fourier integral
d*p d*q

V(N q)e PO =i/ (416
@2m* ] @2n)* (@) Ny2(p.q)e ¢ (4.16)

Nmz(x’ )’) =
with

1 2 o,
Nipa) = =5 g0 [ dwtoa(a=a-id % )as izt S @)
Proof. By definition, 7, *® differs from 7, by the contribution (4.6). Thus, an ex-
plicit formulafor7,°is obtained from (3.1) if we replace the factor{ag% —ic£°)
in the second line by log?2 — ie£%). As a consequencé, % is a power series in
a, and the higher-order contributions dnare of higher order on the light cone.
This justifies the infinite sum in (4.14) in the sense of Definitidn Furthermore,
the difference between the formal light-cone expansions (3.19) and (4.14) coin-
cides with the contribution (4.12), which was resummed in Lemma 4.3. We carry
out thet-integration in (4.13) using the series expansions (4.8) and (4.8), which
gives (4.17).

Theg-integral in (4.16) is well-defined sindé(g) is C* and decays sufficiently
fastatinfinity. Finally, the»-integration can be carried out with th& distributions
in (4.8), which gives a smooth functio¥,2(x, y). O

We call (4.14) and (4.15) theausalandnoncausal contributionggspectively.

We could proceed by studying the noncausal contribution more explicitly in po-
sition space. For the purpose of this paper, however, it is sufficient to notice that
N(x, y) is smooth on the light cone.

5. The Light-Cone Expansion of the Dirac Sea

Having performed the light-cone expansion foF,,2, we now return to the study

of the Dirac se¢l.7). From the theoretical point of view, the light-cone expansion
for AP, is an immediate consequence of Theorem 4.4 and formula (2.4): we
substitute the light-cone expansion (4.14)—(4.15) into (2.4). Calculating the par-
tial derivativesd, andd, of the causal contribution (4.14) gives expressions of the
form

1
AP,2(x,y) < / P(@) DOPV |ysaonx da DTS Px,y),  (5.)
0

which are again causal in the sense that they depend on the potential and its par-
tial derivatives only along the line segment (here?(«) denotes a polynomial
in «; D* stands for any partial derivatives of the ordgr Since (5.1) contains
distributional derivatives orn;39<"+1>, it is in general more singular on the light
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cone than the corresponding contributiotd,,.. On the other hand, the partial
derivatives of the noncausal contributidf),2(x, y) can be calculated with (4.17)

and yield smooth functions im, y. We conclude that the qualitative picture of
Theorem 4.4, especially the splitting into a causal and a noncausal contributions,
is also valid for the Dirac sea.

The situation becomes more complicated if one wants to go beyond this quali-
tative picture and is interested in explicit formulas for the Dirac sea. The problem
is to find an effective and reliable method for calculating the partial derivatives
and for handling the combinatorics of the Dirac matrices. Before entering these
computational details, we explain how the qualitative picture of the light-cone ex-
pansion can be understood directly from the integral fornlg. The tempered
distributionss(x, y) and P(x, y) are regular functions fofy — x)? # 0 and are
singular on the light cone (this can be seen explicitly from e.g. (2.1) and (3.1)).
Integrals of the form

/ P(x,2) f(2)d% or / s(x.2) (D) d%

with a smooth functionf (which decays sufficiently fast at infinity) give smooth
functions inx. The integral in(1.7) ismore complicated because it contains two
distributional factorss and P. This causes complications only if the singularities
of s and P meet—that is, itz lies on the intersectiofi, N L, of the light cones
aroundx, y, where

Ly ={yeR% (y =0)?=0}.

If y—x istimelike or spacelike theh, N L, is a 2-sphere or a hyperboloid (respec-
tively), either of which depends smoothly eny. As a consequence, the integral
over these singularities can be carried outlid) and gives amooth function. On
the light cong(y — x)? = 0, however,L, N L, does not depend smoothly eny.
More precisely, in the limit O< (y —x)? — 0, the 2-spherd., N L, degenerates
to the line segmerfity + (1—Ax), 0 < A < 1}. The limit0> (y —x)2 — 0, on
the other hand, gives the degenerated hyperbgloid+ (1 — Ax), A <0orx >

1}. This simple consideration explains why the singularitieA & x, y) occur on
the light cone and makes it plausible that the behavior of the singularities is char-
acterized by the potential and its derivatives along thetine- {Ay + (1 — A)x,

A € R}. Clearly, V(z) also enters inta\ P,2(x, y) for z ¢ xy, but this noncausal
contribution is not related to the discontinuity bf N L, on the light cone and is
therefore smooth. The special form of the singularities,

AP(x,y) ~ D*log((y — x)? —i0(y — x)°)(y — x)", (5.2)

is less obvious. That the potential enters only along the line segayerdn be
understood only from the special form @f7); it is a consequence of the causal-
ity principle for the Dirac sea that was introduced in [1]. In fact, it gives an easy
way to understand the meaning of “causality” of the perturbation expansion for
the Dirac sea.

We finally describe our method for explicitly calculating?(x, y). As in The-
orem 4.4, we will not study the noncausal contribution; we are content with the
fact that it is bounded and smooth. In other words, we consider only the singular
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contribution (5.1) to the Dirac sea. Since the difference betwéné’nand Tr;‘Zg(")
is smooth, we can just as well consider the formal light-cone expansion (3.19) and
calculate modulo smooth terms on the light cone. This has the advantage that we
can work with the useful differentiation rule (3.5). The calculation can be split
into several steps, which may be listed as follows.

(1) Calculation of the partial derivativewith the product rule and the differen-
tiation formulas

9 1
(”) R Al ()] (3_5)_ _ (n=1)
o7 D2 (0 9) = aijmz(x,y) =50 =0T (. (63
9 1 1
37 P(a)D 0%V ay+a-ayx = fo aP(@) 9 D0V ]uysa-an. (5.4)
9 1
3 ; P(Ol)D D Vla}-&-(l—a)x
1
=/ L—)P(@) 3 DTV |ay+a-a (5.5)
0
9 9
W()’ — X)) = —m()’ —X); = —&jk- (5.6)

(2) Simplification of the Dirac matricewith the anti-commutation relations
{y/, y*} = 2g7*. This leads to a contraction of tensor indices. The generated fac-
tors(y — x)? and(y — x)73;V are simplified in the calculation steps (3) and (4).

(3) Absorption of the factorsy — x)?. We calculate the Laplacian by iterating
(5.3),

O 752, y) = =2T 5 (0, y) + 20y = 02T R (x, y),
and then combine it with (3.6), which gives the rule
(v — x)zTn(jzl)(x, y) = —4nTW(I'21+1)(x, y) — 4m2Tn5';+2)(x, y). (5.7)

(4) Partial integration of the tangential derivatives,

1
/ P@)(y - x)7 8 DTV oyt
0
1 d )
:/o P(OZ)EDCID Vley+@-a)x

1
a=1 a
= P(@) DTV |yt~ - / P'(@) DTV luystmy. (5.8)
0
After these stepsh P,z (x, y) consists of many terms of the form
AP,z2(x, y) = (causal expression iD*0°V) x T3 (x,y), n> -1

It remains to insert the series representaﬂonﬂé)r(x y). Itis useful first to in-
troduce the short notatiart = £2* (n > 0) and



Light-Cone Expansion of the Dirac Sea 399

1 1
2.1
LT3 oilsnloz (82 — jg£0)2’

+

1 1
a1
S ZOLlsnloZi £2 — jg£0’

. 1 . 2 -0
logz == 5 Oilgnloglog(g — ie&0).

(5) Substitution of the explicit formulas

1 m?
T(—l) , - -2 _ " -1
1 0 (_1)l+1 m21+4

l
TEO A AT ot 9% (:9)

1 . 1 & (_1)1+1 m21+2

530 " Y ———z'logz, (5.10)

Tmz(-xa )’) = —
8% £ 4T 11(1+1)!

o0

T®(x, y) = — = 3 H™
m2 873 4= 4+ II(I+1—n)

m21+2—2n

Iz’logz (n>1, (5.11)

where again we have used the notation of (3.1) (we take only the singular contri-
bution on the light conel ;¥ is defined via (5.3)).

In this way, the calculation of the causal contribution is reduced to a small num-
ber of symbolic computation rules (5.3)—(5.11), which can be applied mechani-
cally. This makes it possible to use a computer program for the calculation. The
C++ program “classcommute” was designed for this task (commented source
code available from the author on request). It computes the causal contribution
for a general perturbation (1.3) to any order on the light cone. The formulas to the
orderO((y — x)°) modulo the noncausal contribution are listed in the appendix.

6. Outlook

In this paper, the light-cone expansion was performed for the Dirac sea to first
order in the external potential. The presented method can be generalized in sev-
eral directions and applied to related problems, which we now briefly outline.
First of all, the method is not restricted to the Dirac and Klein—Gordon equations;
it can also be used for the analysis of other scalar and matrix hyperbolic equations
(in any space—time dimension). The consideration (2.8), which gives the basic ex-
planation for the line integrals in the light-cone expansion, can be applied to any
hyperbolic equation (in curved space—time, the line integrals must be replaced by
integrals along null geodesics; see e.g. [5]). Thus, the behavior of the solution near
the light cone is again described by an infinite series of line integrals. The line
integrals might be unbounded, however, which leads to additional convergence
problems (e.g., one can replace the integrals in (3@ﬁj’/§o e(a)da - - -, which
gives a different formal solution of (3.3)).
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Furthermore, the light-cone expansion can be generalized to symmetric eigen-
solutions and the fundamental solutions. The formal light-cone expansion of Sec-
tion 3 applies in the same way to any Lorentzian invariant faffjjbyof solutions
of the Klein—Gordon equation, that is, to a linear combination of

T,2(p) =8(p?>—m?  and (6.12)

T,2(p) = 8(p? — m®)e(p°). (6.13)

The second case (6.13) allows us to generalize the light-cone expansion to the
Green’s function. The advanced Green's function of the Klein—Gordon oper-
ator, for example, can be derived frdfy): of (6.13) by

Snle(-x, y) = 2]'[[.Tmz(x’ y)@(yo _ )CO)_

This relation even remains valid in the perturbation expansion—for example, to
first order,
ASYy(x,y) = 27iAT,2(x, y)O(y° — x0) (6.14)

(for a derivation of this formula in the context of the Dirac equation, see [1]). Thus
the light-cone expansion f& T, immediately yields corresponding formulas for
the Green’s function.

In contrast to the formal light-cone expansion of Section 2, the resummation
of the noncausal contribution depends much on the particular problem. An anal-
ysis in position space according to [4] might be helpful for the understanding of
the noncausality. Fdf,,2 according to (6.13), for example, there is no noncausal
contribution at all, which also simplifies the analysis of the Green'’s functions.

By iteration, the method can also be applied to higher-order Feynman diagrams
and even makes it possible to sum up certain classes of Feynman diagrams explic-
itly. For the Dirac Green'’s function and the Dirac sea, this is explained in detail
in [3].

A. Some Formulas of the Light-Cone Expansion

The following formulas giveA P(x, y) to first order in the external potential (1.3)
up to contributions of the orde?((y — x)°) on the light cone. For the causal line
integrals, we use the short notation

y 1
/ f = f flozy+(l—a)x - -da.
x 0

A.l. Electromagnetic Potential

y

e ) .
AP(x,y) = —m/ Ajfjfz_z

e
1673

y
/ (@? — )&tz

€ g ik -1
+ @/x (20[ — 1)51)/ ijZ



Light-Cone Expansion of the Dirac Sea 401

ie yo _
+ 327{3/ eME &y Syt

/(a —2a° 4« )fékljj logz

128713

e .
+1ZT&T3/; (40[3—6a2+2a)§])/k(Dij)|0gZ

ie Y i
+ s f (@2 — @)e (O, %y log 2

+ I6m 3/ (@® — &)y logz

e .
+@"’/ Al

e y ..

y
m[ (az—a)jkéklogz

€ 2 [ j 1

‘@’" / AjglEz

/(2a—1)y 1€ logz

ie
12873

m2/ e™F,&y°y1 109z

e Y

+ 52 3m2/ (a? — a)jrE* ¢ logz
. yo

- 323m3/ A&7 logz

e Y .
+ 128n3m4/ A;E/¢logz

+ (noncausal contributionsj 0(52),

with the electromagnetic field tenspf, = 9; A — 9;A; and the electromagnetic
currentj* = 9,F*.

A.2. Axial Potential
e Y - _
aw | B

T 3/(a — )y S

AP(x,y) =
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T 167 3/(2“_1)5’ v iy

ie
f ljklEj SszZ

- 3273
e Y )
+ e f (@* — 20 + a?)y % 0j* log 2
128713/ (4o — 6% + 20)&7 y5y"(Dij)Iogz
_ e y(az—oe)e"f’f’(DF-asmlogz
12873 J, /

e Y )
- Fﬂ:g/ (Olz—a)ysyk]k logz

ie Y 51 1
- ﬁm/x Y E[Z, Blz
e Y .
— mm'/ (2o — 1) Fyy°c* logz
TT X

ie Y iB
+ %m 9;B’y logz

¢ Y2 5 _jk
+mm/; (a” — )OBj&y o’ logz

1673

e
1673

e o7 i 5y —1
+=—=m Bj&ly >z
X

y
m? / y°Blogz

y .
mZ/ (2a — 1) Fy£*y®y/ logz

n ie
128r3

Yo
m2/ e F;& v logz
X

e
6473
ie
3273

:
m? f (@ — ) juE*y 58 10g:

+

Vel
m [ v*31% Bllog:

e Y .
- 128773;714/)r A;E7y°¢ logz
+ (noncausal contributions) O(£2),

with the axial field tensoFj, = 9;B; — 9, B; and the axial current* = 9,F*’.
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A.3. Scalar Potential

1
AP(x,y) = 155 (®() + @)z

16 3/ (8 q))gkU]kZ -1

64 3 / (@? — o) (8;0®) 07 log 2

1
—@\/x |:|CI>|09Z
i Y 1
T S
i v
- 200 — D) (FD) |
+32n3’"/x( o — D (§®)logz

+ ﬁm /X"(az — @)(O®)# logz

1
6473
1 y
— sz/; 0] |OgZ

i y )
- 64n3m2f (3;®)& o log z

i 3 [’
—327t3m / dflogz

+ (noncausal contributions) O(£2).

A.4. Pseudoscalar Potential

AP(x,y) = = 7— 3( E() + Byt
+iams [ @Dyttt
1673 |, T
1 g 2 — 5 _jk
4 64n3/ (@2 — &) (3 0)y % log:
i Y 5
+ 643 OEy>logz

5/“(,35) logz

403
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AP(x,y) =
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E(x))y°logz

i
6473

y .
m2/ (3 8)&y°0* logz

+ (noncausal contributions) O(£2).
A.5. Bilinear Potential
1o
_ﬁ/ Hij%-lgkUij 2

t T6n 3( e (y) + Hp(x)o 77

y
- Hyolkz1
A3 /X J

i y jk_—1
o ), Gt

1 k Ky ij -1
+ 873 (2o = D(§"Hjx,i + &iHy )o"z

1 1, ie _jk_-1
+ 873 (a° —o)(UH;j)E'E07" 2

Y ik 5 -1

~ 163 e Hyj 1 &1y 7

1 [ .
+@/ («® — a)3;H{, o™ logz

16n3/(°‘ — o+ ) (OHy)o " logz

~ 5223 f (0 — )¢ ™M(OH; )&y logz

32 3/ (@? —Ol)gj(DHk)l()gZ

64 3/ (05 —a) (Dzl'ljk)fjflUk”ng

* 3273 / (20° — 30® + @) (6" OHy.; + &0HY )0 logz
i g ijkl 5, . -1

+8—713m i e"Hj&y viz

N
—@m ij7)/ |OgZ
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+

i y L
32ﬂ3mfx (20[ — 1)8Ule,‘jyk)/5)/l |OgZ
i Y 2 ijkl 5
+@m/)c (@ —a)e""(OH;j)&y yi109z
1 y ) .
_ ﬁmZ/ Hij%-lgko__/kz—l

1 2 "
— ——m“(Hy(y) + ij(x))a" logz

6473
i y "
- 32713’"2/; £;H' logz
1 y ..
- 32n3m2/x (20 — V(" Hy,i + & Hj )0 logz
1 ¥ i '
B 32n3m2/x (@® — a)(OH,;)E'E 07 logz
n 1 m2 Y Skl . k§17/5|0gz
64r3 . i,
— i m3 ygij‘le“%- 5 |ng
3273 . ijSkY Vi .
Yoo, . .
+ 647T3m4/; 8l]leij%-l€_-ko,jk |ng

+ (noncausal contributions) O(£2).

B. Perturbation by a Gravitational Field

In this appendix, we outline how the light-cone expansion can be extended to a
perturbation by a gravitational field. For the metric, we consider a perturbation
hj of the Minkowski metricnj; = diagd, -1, -1, —1),

gik(x) = njr + hj(x).

We describe gravitation with the linearized Einstein equations (see e.g. [6]). Ac-
cording to the usual formalism, we raise and lower tensor indices with respect to
the Minkowski metric. Using the transformation &f under infinitesimal coor-
dinate transformations, we can assume [6, Par. 105] that

1 :
Fhjy = Sdih with h = hy.

In the so-called symmetric gauge, the Dirac operator takes the form
it — Syt L)
27 7T axl 8
(see [2]). In contrast to (1.2), the perturbation is now itself a differential operator.
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One complication arises from the fact that the integration measure in curved
space is/[g]d*x = (1+h/2) d*x, whereas the formul@.7) for theperturbation
of the Dirac sea is valid only if one has the integration meag(ixeof Minkowski
space. Therefore we first transform the system such that the integration measure
becomesi“x, then apply(1.7), and finally transform back to the original integra-
tion measure/[g] d*x. Since the scalar product

[ weovisiats = [ Grmw g o) dts
is coordinate-invariant, the transformation to the meagtixds accomplished by

W(x) — U(x) = g4 () W(x);

. i i . i
ifle — 5 'hj 0k + g (h) »|g|1/“(zax -

ipky, 4 L -1
: 7+ )l

i

=i kg, — L h)
—lﬂx_zy jk_s(a .
The perturbatioms P@*® of the transformed system is given fy7),
(@) _ a i ik d i
AP V(x,y) = —/d Z<s(xvz)<§y]hjm - é(ﬂh)(z))P(Z, y)

i i
+ P(x, Z)(Eyjhj P é(WO(Z))S(L Y)>o (B.1)
The formula for the transformation of the Dirac sea to the original integration mea-
sure./[gld*x is
P(x.y) + AP(x. ) = [gl 401 Y40 (P(x, y) + AP (x, y)).
Thus .
AP(x,y) = AP (x, y) = 3(h(x) + h(y) P(x, ).
The factorsP(z, y) ands(z, y) in (B.1) depend only oiiz — y), that is,
L P =Py, s ) = — s y)

- 7 ) = -7 ) ) — 52, = ——75, )

gk T TR ey gk V) = TRty
so we may rewrite the-derivatives ag-derivatives, which can be pulled out of
the integral. Furthermore, the relations

/ 4%z P(x. 2)(ifh(2)s(z, y) = / d*z P(x, D[GF. — m), h(@)]s(z. )

= —P(x, y)h(y)
and

/d4z s(x, 2)(ig:h(2)) P(z, y) = h(x) P(x, y)

allow us to simplify the factorg§dh) in the integral. In the resulting formula for
AP(x,y), one recovers the perturbation by an electromagnetic potential. More
precisely,
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1 3 9 :

AP(x,y) = (—gh(x) - gh(y)) P(x,y) — ia—ykAP[V’h,’f](x, y), (B.2)
whereAP[yf'hj’F](x, y) is the perturbatioifl.7) of theDirac sea corresponding to
the electromagnetic potenti&l = yfhj’F. The light-cone expansion af P(x, y)
is obtained by substituting the light-cone expansionmﬂyfhj’.‘] (x, y)into (B.2)
and calculating the-derivatives. To the orde&?((y — x)°) on the light cone, this

gives the following formula for the light-cone expansion of the Dirac sea in the
gravitational field:

AP(x, y) :_#</yhjf;)$j;_kgzz
e 3</ (20 — Dy e — m)

~ 3073 ( & (i — hik,j)ékészm>z‘2
— f (o0® — )EE'R, )zz
- 12;713( / (@t - 2a3+a2)ggf§kDRjk>z—l
+128n3< / (6a? —6a+1);i’R>
- 12%#3 </V(4oz3 —6a? + ZQ)SjEklej[kJ])z

64713(/ (@® —a)e" Ry; ;& §/PVm>
+ 32in3(/x (a? —Ol)f;-'j)/ijk>z_l
+ #"(/‘ h/cz:_/'>$k0"jz_l

X x

m /y(a2 — )Ry &gl

1

y o
m? / Qo — Dl — hig)y'eE

1

y .o
o’ / £ e 161 pyz L

i

y
T / (@2 — @) Ry &g ¢z + O(E0),
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whereRj; andR are the (linearized) Riccitensor and scalar curvature, respectively.
A general difference to the formulas of Appendix A is thaP(x, y) now has a
stronger singularity on the light cone. This is a consequence of-tiherivative in
(B.2). The leading singularity oA P(x, y) can be understood as describing the
“deformation” of the light cone by the gravitational field in linear approximation.
We finally remark that this method works also for the higher-order perturba-
tion theory as developed in [3]. It can likewise be used to perform the light-cone
expansion of higher-order Feynman diagrams in the presence of a gravitational
field.
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