On the Argument Oscillation
of Conformal Maps

J. J. CARMONA & CH. POMMERENKE

1. Introduction

LetD = {z € C : |z| < 1} be the unit disk and its boundary. We shall con-
sider (injective) conformal mapg of D into C. For¢ € T we denote byf(¢) the
angular(= radia) limit if it exists and is finite. This holds for almost ajle T;

even the exceptional set has zero logarithmic capacity, by the well-known Beur-
ling theorem (see [Be; Po2, p. 215]). Furthermore, th¢ 8&tT : f({) = a } has

zero capacity for every € C [Du; Po2, p. 219]. A stronger condition is thitis
continuous at; that is

f(@)— f¢) asz—¢, zeD. (1.1)
Suppose now that the angular linfit¢) # oo exists atz € T. The function
g:(2) =10g[f(z) — f(©)], zeD, 1.2)

is analytic and univalent ifid for any branch of the logarithm. It therefore has
finite angular limits at all points except a set of zero capacity. For convenience,
throughout this paper we will write

E@)={¢'eT: f(¢') andg,(¢") exist and are finitg.
ThusT \ E(¢) has zero capacity. Then we define the argument by

Im g, (z) for zeD,
arg[f(z) - f(;)] = I‘imllmg;(re”) for z = eit e E(0). (13)
We also consider the analytic function
h(z) = log %;(O =g:(z) —log(z —¢), z€DUEQ). (1.4)

In the unit disk, we always use the branch of the logarithm determined by
0+m/2<argz—¢) <0+3n/2, zeDUE®Q), ¢ =e".

The functioni is a Bloch function [Po2, p. 173]. We will make frequent use of
the harmonic function
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()= f©O
¢

argf =Imh(z)
7 —

=arg[f(z) — f(O)] —argz —¢), zeDUEE). (1.5)

The McMillam twist theorem [Mc; Po2, p. 142] shows that, for almost &lIT,
there are only two alternatives:
(i) log %{“) has a finite nonzero angular limit as> ¢;
(ii) arg %{(“ oscillates betweer-co and+oo along any curve i ending

ate.

This gives the definitive answer to the problem of argument oscillation almost
everywhere as far as angular approach is concerned. See [CaPo] for a discussion
of the behavior that is possible on subsetd aif zero measure.

In this paper we study the oscillation of the argument for unrestricted approach.
It turns out that the exceptional sets tend to be either countable or of zero measure.

2. Results

Generically we define
osc= lim sup— liminf,

provided that both limits are finite; otherwise, we define 85¢-cc.

THEOREM 1. Let f mapD conformally intoC. Except possibly for countably
many¢ € T, we have If the angular limit £ (¢) exists and if

c;scDarg[f(z) — f(©©)] < 2m, (2.2)
—>C, Z€

4

then f is continuous at. The constan®r is best possible.

We shall derive this theorem in Section 7 from two results of a topological nature.
The condition thatf be continuous at is important for the following reason.
There are two causes that may contribute to the oscillation off&a@|F f(2)],
namely:

(i) nearby oscillation—that is, fof'(z) — f(¢) small;
(i) faraway oscillation—that is, foff(z) — f(¢)| > ¢ > 0 (e.g., if f(z) winds
around the entire domain).
If fis continuous at then only case (i) is possible.
Now we consider the oscillation of the difference quotient T and f(¢) #

oo exists, then we define
f@) — f(C). 2.2)
=7

The quantityA (¢) is closely related to tangency properties of the bounda€y ef
F(D). We say thadG has a tangent at the prime end correspondingoe? if

B ast — 0%, e € E(0),
B+m ast— 07, e eEQ).

A(Q) = oscDarg

z—>¢, z€

arg[f(e") — f(£)] - { (2.3)
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Observe that this definition is completely different, in the case of an arbitrary con-
formal map, from the usual concept (see [Fa, p. 31]) that the planaf &€@j has
a geometric tangent gi(¢). However, ifdG is a Jordan curve then the definitions
are equivalent.

We have the following result, which should be compared to the classical Lin-
del6f theorem (see [P0o2, p. 51]) and to the theorem of Wolff [Wo]. Its proof will
be an application of Theorem 3.

THEOREM 2. Let f mapD conformally intaC. If f(¢) # oo existsatz € T, then
af (D) has atangent af (¢) if and only if A(¢) = 0.

THEOREM 3. Let f mapD conformally intaC. If f(¢) # oo existsatz € T, then

A(C) = 0sC argw.
n—¢, n€EQ) n—=¢

If fis continuous at, then

oscarg [f(ro) — f(©)] < A@©) <3m + ,_0sc arg [f(2) = (O], (2.5)

(2.4)

whereC is any curve inD U {¢} ending at¢. The constan8r is best possible.

Note that the right-hand side of (2.4) is essentially a geometric quantity (see Sec-
tion 3 for details). The radial oscillation in (2.5) has been studied previously (see
e.g. [CaPo)).

THEOREM 4. Let f mapD conformally intoC. Thenthe set$ € T : 0 <
A() <wm}land{¢ e T : fiscontinuous at, 27 < A({) < oo} have zero
Lebesgue measure dn

If af(ID) is locally connected (see the definition in [Po2, p. 19]) then it follows
from Theorem 4 that

A)=0 or m <A() <27 or A(l)=+4o0

foralmost all; € T. However “linear measure zero” cannot be replaced by “Haus-
dorff dimension< 1", as the following theorem shows.

THEOREM 5. There exists a conformal mgponto a Jordan domain such that

dim{ceT:0<A@@) <m}=1 (2.6)

3. One-Sided Oscillation

Throughout this section we assume thfanapsD conformally intoC, that; € T,
and that the angular limif(¢) # oo exists. We write

G=fD), ¢=¢% 0<0<2m), w= f(0).
We define
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af(0) = liminf arg[f(e”) — w],
0

t—0%, el E(

. . (3.2
=)= limsup arg[f(e") —w].
t—0%, et eE(7)
Also, if C is a Jordan arc such that C andC \ {¢} c D, we put
ac(¢) = liminf arg[f(z) — w],
z—¢, zeC
(3.2)

Bc(¢) = limsuparg[f(z) — w].

t—¢,zeC

Note thate*(¢) and 8% (¢) can essentially be determined from the dom@in
whereas one must know the functighin order to finda(¢) andB¢(¢). When
there is no possibility of confusion, we will omit the poinand simply writex*
andp®*.

Now we restate Theorem 3.

THEOREM 6. If f(¢) # oo exists, then
A)=maxpt —at, Bt —a 47, BT —at —m, BT —a7), (3.3)
and if f is continuous at then
Br —ar < A(Q) <3m + Bc — ac, (3.4)

whereR = [0, ¢) andC is any curve inD U {¢} ending atz. The constan8r is
best possible.
To see that (2.4) and (3.3) are equivalent, we first observe that

0+m/2 ast— Ot

it _ 3.5
arge g)_){9+3n/2 ast — 0. (3:3)

Therefore,

lim sup argf(n)—_w = max(,ffr 9T g —p— 3—”)
n—>¢.neEQ) n—¢ 2 2

and

. - . 3
lim inf argm—w:mm(a*—e—z, a‘—@——”).
n—¢, neE) n—=¢<

Then the foregoing identities give the equivalence.
ProrosiTiON 1. If f is continuous at, then
" (0) Sac@) e (@) <t (@) + 27, (3.6)
B7(&) = Bc@©) =BT () =B (O — 27 3.7
Proof. Letg = g., whereg, is defined by (1.2). By1.1) we have
Reg(z) =log|f(z) —w| - —oc0 asz— ¢, zeD. (3.8)
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Let us consider a parameterizatip(y), ¢ € [0, 1], of C with p(1) = ¢. For each
b € (—oo, Reg(0)), letr, be the last value on the cur¢esuch that Rg(p(1,)) =

b. Let now L(b) be the connected component{of : Res = b} N g(D) that
containsg(p(t;)). Theng=X(L(b)) is a crosscut if). Say thatQ (b) is the com-
ponent ofD \ g~X(L (b)) for which ¢ belongs to its boundary. The definitiongf
gives thatQ (b) \ C is the union of two domain& *(b) andU ~ (b). We haveR =

{g(p@®):t, <t <1} C g(D) and therefore

B={g(p@)—2mi:t, <t <1} Cc C\ g(D),

becausef is univalent. If B~ denotes the Jordan curiewith the reversed ori-
entation, then

J =B~ U[g(p(tp)) — 2mi, g(p(1,))] U R U {0}

is a positively oriented Jordan curve@h,. Let H* be its interior. Since the tan-
gent vector tqz(C) at the pointg(p(#,)) has negative real part and

gUTd)YNJI =4,

we conclude that
gUtTWb) c HT.

Theng(e') € H+ for some small interval € (6, 6 + 8) with ¢’ € E(¢). Letting
b — —oo, we infer from (3.1) and (3.2) that

ac(Q) = 2w <a™(¢) < ac(?),

(3.9)
Be(§) =2 < BT(0) < Bc(©).
Similarly, if we consider the Jordan aB:” + 4xi then we have
ac() <a (§) < ac(@) + 2,
(3.10)

Bc(@) = B~ () = Bc(§) + 27.

If we apply the inequalities (3.9) to curves that are sufficiently tangential to
(e 1t <@)orto{e” :t >0}, weobtainh™ —27r <o <o~ andf™ —27 <
B+ < B~. This and (3.10) give (3.6) and (3.7). O

It is not difficult to see that the hypothesis of continuity ofat ¢ is essential in
each inequality of (3.6) and (3.7). Also, the constamtig best possible, as will
be shown by Example 1. However, if we are considering only Stolz angles, then
some improvement of Proposition 1 is possible; see [Wal].

We recall that the functiorf is isogonal at (see [Po2, p. 80]) if, for somg,

arg f@)—w
=4
It follows from this definition that, for every > 0, there exists @ > 0 such that

— y asz — ¢ inevery Stolz angle.

{z:0<|z—w|<§, yite<argz—w) <y,—¢e} CQG, (3.11)
withyi=y +60 + /2 andy; = y1+ 7.
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ProposiTION 2. If f is continuous and isogonal gt thena™(¢) = B (¢) + 7.

Proof. Sincef is continuous at, it follows from (3.11) (fore — 0) that

BHO) <y, @ (Q) =y

Thena™ — BT > y» — y1 = m. However, by Ostrowski's theorem [Po2, p. 252],
the domain does not contain any sector of veyt@y of angle larger than. Hence
a” — Bt =m. O

Itis interesting to point out that the inequalities < ™ +27 andg™ < 8™ +2x
of Proposition 1 cannot be improved even in the case wheran isogonal point,
as Example 1 will show. On the other hand)@ has a tangent af(¢) then one
hasa™ =BT, 0" =87, =BT +m.

ExampLEl. PutD;={z:Rez > 0, |z| < 2}. For each natural number> 1,

consider

(z:z=re", %§s<37”, <r<l+3in} if nis an odd number
C, = 1 "
4

{ziz=re®, T <s<Z 11 <y <1} if nisaneven number.
Now G = D1 U J,.,C, is a simply connected domain. Lgta conformal map
from D onto G with f(1) = 0. Because, at point 1, we hage = 37/2, ™ =

w/2, Bt = —m/2, anda™ = —37/2, it follows thata™ = o™ + 27 andB~ =

Bt + 2x. The functionf is continuous at 1 and so the fact that 1 is isogonal can
be proved, with a little effort, by means of Ostrowski’s theorem (mentioned in the
proof of Proposition 2).

1
n
1

CoroLrLary 1. Let f mapD conformally ontoG, and assume thag is starlike
with respect tof(0) = 0. If £ €T and f(¢) # oo, then

A(g) <.

Proof. We write 81(¢) = lim,_arg f(re”). Thenp(t) exists for allr andg; is
an increasing function [Po, p. 66]. Therefore,

pr<a® <Bt <Bi+m
and
Bri+7 <o <p <Pi+27m.

Hence, by (3.3), we obtain(¢) < x. O

4. Proofs of Theorem 3 and Theorem 2

Proof of Theorem 3(a) First we recall [Po2, p. 52] that

. 2w it )
109(/(2) — ) =10g|f(©) — al + 5 /0 ¢ 2 arg e —aydr

eit — z
if f mapsD conformally ontoG anda ¢ G. Therefore, if we apply this formula

to the functionsf andg(z) = z with the pointa = f(¢), ¢ € T, and afterwards
take its imaginary part, we obtain the Poisson representation
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f(Z) f(&) _ i/ 1— [z arg f(e”) — f(é“)
z—¢ 27 Jg le" — z/? -
Now the proof is a consequence of a general fact about Poisson integrals. For the
sake of completeness we will presentit. h€t) = Imh(z), ze DU E(¢) with h

the function defined in (1.4), and assume that limsup, ., . ) (1) is finite.
Givene > 0, there exists 6< § < 1 such that

zeD. (4.1)

g < B+e foral neEW), |n—¢| <8é.

Now we decompose the integral in (4.1) as the sum of two integrals over the sets
nekEQ)),|n—c¢| >34, andn e E(C), |n—¢| <38, respectively. Estimates of each
term give

1—1z)? $
q(Z)S(S#c+ﬂ+e for zeD and|z—§|<§. (4.2)
Hence (4.2) implies that
lim supq (z) < B. (4.3)
z—>¢, zeD

The reverse inequality in (4.3) is almost trivial becaysg) is the radial limit of
q(r&) asr — lin each poink € E(¢).
An analogous argument gives
liminf ¢(z) = I|m inf g(n),

z—¢, zeD neE)

S0 (2.4) holds.
(b) If £ is continuous at then we obtain from (3.3) and Proposition 1 that

A(Q) <max[Bc — (ac — 2n), Bc —ac + 7, Bc +2n — (ac — 27) — m,
Bc + 27 — ac]
= Bc —ac + 3,

which proves the right-hand inequality (3.4) and thus assertion (2.5). The left-hand
inequality (3.4) is immediate from (2.2).

(c) Finally, we construct an example where equality on the right side of (2.5)
holds forC = [0, ¢).

ExAMPLE 2. Consider the parabola™ = {r +ir?: 0 <t < 400} and letH
be the domain betweeR™ andP~. Let0 < ¢, < 27" andA, = {w : 27" <
lw| < 2" +¢,}. Then

G=HU | JIA,\H)UP nA)U | JIA,\ H)UPnA,)]
n even n odd
is a simply connected domain. It has a cusp at 0 and moreover narrow annular cor-
ridors whose entrances accumulate at 0 and that go almost completely around 0 in
the positive(n even) and negative: odd) directions. Letf mapD conformally
onto G such thatf (1) = 0. By (2.4) and (3.5), our construction gives
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37 Vg
AQD = <27'r — 7) — (—271 — E) = 3.

Now{ f(r) : 0 < r < 1} has, up to multiplicative bounds, the same distance from
the two party f(e) : 0 < t < w} and{ f(e') : —w < t < 0} of the bound-
ary (see e.g. [PoRo, Thm. 3.3]).4df tends to zero rapidly enough, it follows that
f([0, D) cannot cut infinitely many segments N A, or P™ N A,,.. So{ f(r) :
1-—¢<r <1} C H forsomees > 0. Thus argf(r) - 0asr - 1 O

As in Proposition 1, the hypothesis of continuity pft¢ is essential in (2.5). To
prove that we make a little modification of Example 2; we will sketch the idea.
ConsiderP*(1) = {t +it?: 0 <t < 1} and letH be the domain betweeh* (1)
andP~(1). The domairG is defined as before, but naty, is always a narrow cor-
ridorthatstartsiqw : 27" < |w| < 2" +¢&, }NPTQ with A, C {z:]z] <2}

and that goes around at least: times in the positive direction. In this situation
one actually has~ = 0 and8~ = 400, and the radial oscillation is zero.

Proof of Theorem 2By (3.5) and by our hypothesis (see (2.3)), we have
ity
argf(e ') é‘(s“)

S o B—0-m/2 ase’ ¢ "B

Now the representation formula (4.1) and the properties of the Poisson kernel give
that lim argf(zg%g(“ exists whery — ¢ (z € D); henceA(¢) = 0.

Conversely, ifA(¢) = 0 then Theorem 3 implies that there exists
fle = f@©)
—_— =

ett _ C
Now considering — 6* and (3.5), we conclude that

at=8%, a" =87, a=p"—O+n/2) =B —(0+3n1/2).

From this it follows that3~ = B* + =. Hence (see (2.3)3G has a tangent at
(). O

limarg ase'’ - ¢, e" € E(0).

5. Proof of Theorem 4

We say thatf is “twisting” at ¢ € T [Po2, p.141] if ag(¢) = —oc andBg(¢) =
+o0, which implies thatA (¢) = oo (recall thatxgz = apo ¢ in (3.2)). The McMil-
lan twist theorem states thgtis isogonal or twisting at almost ajfle T. Hence
we may assume thatisisogonal at. Let A denote the linear measureGPo2,
p. 129].

(i) First we consider the case© A(¢) < . It follows from (1.5) and (3.5)
that

osc_arg[f(z) — f(O] =7 + A@) < 2. (5.1)

z—¢, Z€

Hence Theorem 1 shows thétis continuous at with at most countably many
exceptions. Thus it suffices to show thetZ) = 0, where

L ={¢eT: fisisogonal and continuous atand O0< A(¢) <« }.



On the Argument Oscillation of Conformal Maps 305

If E is an arbitrary subset df andw € E, let Tg (w) denote the union of all
rays{w + te” : 0 < t < oo} such that there exist, € E with w, — w and
arg(w, — w) — A asn — oo. The Kolmogoroff-Vegenko theorem (see [Sa,
Chap. 9; P02, p. 127]) states that

E=EqU{wekE: Tg(w)isC or a half-plane or a full ling,

whereA(Eq) = 0.
Let (1,) be the countable collection of all different intervals’ : g <t < ¢’}
with ¢, ¢’ rational numbers. Fix > 1 and put

By =() | fGset):tel,}. (5.2)

r<lr<s<l

Now we apply the Kolmogoroff-V&enko theorem t®,, and obtain
B, =E,U{weB,: Tg (w)isC ora half-plane or a full ling,

A(E,) = 0. (5-3)

Let¢ = e for ¢ € L. The definition ofL, together with (5.1) and (3.11), tells us
that there exists & > 0 such that

fe"yeS*() foralmostalld <t <O +350r0—8 <t <8, (54)

whereS*(¢) are two open disjoint sectors with vertgx:). Choosen(¢) such
that '
(el Cle" i t—0] <38}

By (5.2), (5.4), and the density ap of the set of radial limits, one has
Bug) C ST UST(©).

BecauseSt(¢) N ST(¢) = ¥, we obtain thall’, ., (f(¢)) can neither be the full
plane nor a half-plane. Ifg, (f(¢)) were a full line then the continuity of at
¢ would imply thatA(¢) = 0, in contradiction to the definition af. So by (5.3)
one has

f(Q) € En)-
Thus we have seen th#tL) C E, whereE = |J;-, E,. But (5.3) implies

0=<A(f(L) = AE) =0.

Sincef is isogonal at each poigte T, we conclude (cf. [Mc; Po2, p. 146]) that
A(L) = 0.

(if) Now we consider the case that2< A(¢) < oo for¢ € T, wheref is con-
tinuous atz. Since f is isogonal at, we obtain from Proposition 2 that™ =
B + 7 and from Proposition 1 that

B —at =0 —m—at <m, Bt —a +7 =0,
B —at —m <pt —a +37 =27, B~ —a =B —pt—m <m.

Hence it follows from (3.3) that\(¢) < 2z, which is a contradiction with our
hypothesis. O
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6. Proof of Theorem 5

Letk = 2,3,...andJ; = [37%, 3. 37%]. We write A, = (k — 1)/(2k) and, for
simplicity, ¢, = 2/3*. In each intervall, we construct a Cantor s8}, as follows.

We delete the central open interval of lendifik. In each of the two remain-
ing closed intervals of length,, we delete the central open interval of length
Lih/k. Then we obtain the union of four intervals of Iengmi. In each of them
we delete the open central interval of lengi2 /k, and so on. Then leB; be
the intersection of all sets obtained this way. The Hausdorff dimension (see [Fa,
p. 15]) satisfies

dimp, = 292 _ log 2 . 6.1)

log(1/rx)  log2+ loglk/(k — D]

The intersection oB; with B, is one point, and all thg, lie on the lower bound-
ary of H = {z : |Rez|] < 1, 0 < Imz < 1}. At each interval of lengtt; A’ /k
with n > 0 deleted from/;, we attach downwards an isosceles open triangle of
height¢, A, /2. These triangles (for all generationsand for allk) together with
H form a Jordan domai6. Let f andi be the continuous extensionsiioof the
conformal maps fronid onto G and H, respectively.

We defineB = | J, By andA = f~Y(B). The functiong = f~1oh mapsD
into itself and such thag(h~%(B)) = A C T. Applying a theorem of Hamilton
[Ha; Po2, p. 235] tg, we derive that ding (2 ~%(B)) > dimh~Y(B). Hence

dimA > dimk~%(B) = dimB = supdimB; = 1. (6.2)
k

The first equality in (6.2) is true becaukés analytic o, ~%(B), and the last one
follows from (6.1).

Consider nowA; C A, the set of points whose images Ifyare not extreme
points of some of the deleted intervals involved in the construction of theBgets
Let¢ € A;. Thenp = f(¢) € By for somek. For each generatiory lies in one
of the remaining intervalg of length¢,A’;. To the right of/ there is an adjacent
deleted interval’ of length¢,A}'/k with m < n. The triangle attached t& has
height 3*A7. Hence, there are poinis € 3G near and to the right op with
argw — p) < —m/4. On the other hand, a¢g — p) > —arctank for all w € G
near and to the right g6, so

—arctank < at(¢) < —m/4.

It easy to see thatt (¢) = 0. Similarly, we havex—(¢) = m and5r/4 < B~ (¢) <
7 + arctank. Hence we obtain from (3.3) that

/2 < A) <2arctark < forall ¢e€ A,
and (2.6) follows from (6.2). O

7. Topological Results Related to Theorem 1

We assume throughout this section tlifatnapsD conformally ontoG. We shall
only consider; € T for which the angular limitf(¢) # oo exists.



On the Argument Oscillation of Conformal Maps 307

We consider, for each > 0, the setdJs(¢) = {zeD : |z —¢| < §} and the
one-sided neighborhoods

Us' (©) = {z € Us(¢) s argz > arge},
Uy (§) ={zeUs(¢) rargz < arge }.
The one-sided cluster setszaare defined by

CH(f. 0 =) fWU () € 9G (7.0)

§>0

and the total cluster set I £, £) = C*(f, £)UC~(f, ¢). The prime endf(¢) of

G is called symmetric i " (f, ¢) = C~(f, ¢). The Collingwood symmetry theo-

rem (see [P02, p. 38]) states that there are at most countably many nonsymmetric
prime ends. The symmetry of prime ends has some curious consequences.

THEOREM 7. Let f mapD conformally ontaG, let¢, ¢’ €T (¢ #¢’), and letE
be a continuum. Assume that

(i) the angular limitsf(¢), f(¢') existandf(¢) € E, f(¢') € E;

(ii) there exists a neighborhodd of ¢ such thatf(V) N E = ¢; and
(iii) the prime endf(¢) is symmetric.
ThenC(f,¢) C ENJG.
Proof. We may assume that = {zeD: |z —¢| < p}and¢’ ¢ V. Letzg =
(1— p)¢ andTy = [z, ¢). Now take a circular ar€ from zg to ¢’ such that™ C
D\ V. By (i) and (ii) we have

f(zo) ¢ E, f&HeE.

Hence there exists a first pointe I where f(I") meetsE (it is possible that; =
¢’). We consider the open alg betweenzg andz;. Then the Jordan ar€ =
Co U C1, whereCo = f(Ip) andCy = f(I'y), satisfiesC N E =@andCNE =
{f(©), f(z1)}. The components of \ E are simply connected domains. By (ii)
there exists a componeht of C \ E such thatf (V) c H. The Jordan ar€ lies

in H, soC is a crosscut off and thusH \ C has exactly two componenfs™
andH . If we write

VY ={zel,(¢) :argz > arge },

V™ ={zeU,(¢):argz < arg¢ },

then we may assume that
FVHNHE £0.

Sincef is univalent, we have
ConNf(VEY=0, CGnfVH =0, ENnfVvH =0

by (ii). Therefore,
(EUuC)N f(VEH)Y =0

and sof(V*) c H*, which implies
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CE(f.0) c fF(VEYNIG Cc HENHG.
Using (iii) and the fact thaf N 9G = ¢, we obtain
C(fL,o)y=CH(f£,0)NC(f,.0) C(H*NH-)NJG C (CUE)NIG
=(CNIG)U(ENIG)=ENOIG. UJ

CoRrOLLARY 2. Suppose thaf (¢) is symmetric and thaf is not continuous at
¢. Let H be a domain andA a Jordan arc such tha#t \ {w} ¢ H and thatA
begins atw = f(¢). If f(Us(¢)) c C\ H for somes > 0then

f(D) =G cC\H.

Proof. Suppose thaf(Us(¢)) ¢ C\ H but there existg € D with f(z) € H. We
may assume that ends atf(z). Letw; be the last point wherg meetsC\ f(D).
By [Po2, p. 29] we know thab, = f(¢’) for some;’ # ¢; itis possible thatv; =
w. We consider the subart; of A betweerw andw,. Now E = A, satisfies all
hypotheses of Theorem 7, 664 f, ¢) C E N 3dG N f(Us(¢)) = {w} and f is con-
tinuous [Po2, p. 35] at, which contradicts our assumption. O

Let H be a connected component@f\ G. The angular limitw = f(¢) is called
atransition pointof G with respect taH if there exists a Jordan arcthat begins
atw and such thatl \ {w} C H. Itis easy to see that is equivalent to saying there
exists a continuunk (i.e., a compact connected set with more than one point)
with K ¢ H U {w}.

A pointb € 3G is accessibldrom G if there exists a Jordan afcthat lies inG
except for the endpoirit. We shall now study the relationship between the con-
cepts of transition point, continuity point, and symmetric prime end.

ProrosiTiON 3. Let f mapD conformally ontoG, and letw = f(¢) be a tran-
sition point of G with respect taH. Let
H= {bedG : there exists a continuuti C C\ G, dH ¢ F, andb, w € F }.
Assume thaf is not continuous at and thatf(¢) is symmetric. Then

OH U H C C(f, 0). (7.2)
Proof. First we will show thabH C C(f, ¢). Assume this inclusion is not true;

then there exists € 0H with b ¢ C(f, ¢). Choose a dis# of centerb such that
VNC(f,¢) =9. Sinceb € dH C 3G, we can select two points

ceGNV and c'eHNV.

Let A C H be the arc of transition and let # w be the other endpoint of.
Consideranarg C H joininga with ¢’. Now takec” as the first point ofd, ¢’] €
V that meetsG¢. The setE = AU L U[c¢”, ¢’] allows us to apply Theorem 7, and
we conclude that

C(f,0) CENV NG C {w},

in contradiction to the hypothesis thats not continuous at. ThusoH C C(f, ¢).
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Assume now that there existshac H and thath ¢ C(f, ¢). Consider the con-
tinuum E = F U [b, ¢"], whereF is as in the definition off and where:” is
chosen as before. It follows from Theorem 7 that

C(f.OCFENCH U, BINC(f.0) C F.

But this contradicts the facts thatl c C(f,¢), b € H, anddH g F,soH C
C(f, ¢) and therefore (7.2) is proved. O

We have the following consequence.

CoroLLARY 3. Except for at most countable many points T, if £(¢) is atran-
sition point thenf is continuous at.

Proof. By the Collingwood symmetry theorem and the fact that there are only
countably many componenis of C\ G, itis enough to show that in each compo-
nentH there is at most a transition point= f(¢), with f(g) symmetric andf

not continuous a§, where for this point the setf ~1(¢) is a singleton. Assume
thatw = f(¢) andw’ = f(¢’), w # w’, are two transition points with respect to
H. Then letB be an arc joining the endpoints of the corresponding Atcs’ and
putE = AU B U A’. We can apply Theorem 7 to conclude thfamust be con-
tinuous atz and¢’. If w = w’ and¢ # ¢’, we can takeE = {w} to infer that f
would be continuous &t; hencer = ¢'. O

Proof of Theorem 1By the Collingwood symmetry theorem, we may assume that
f(;) is symmetric. It follows from (2.1) that there is a sectd?) of vertex f(¢)
with f(Us(¢)) ¢ C\ H(¢) for somes = §(¢) > 0. If f is continuous at then
we are finished. Otherwis€, ¢ C\ H(¢) by Corollary 2. We conclude thgt(¢)
is a transition point (with the midline ofH(¢)), and Corollary 3 implies thaf
is continuous at with at most countably many exceptions.
In order to show that the constant s best possible we present an example
in which there are uncountable many points where the oscillation (2.1) eguals 2
and where the function is not continuous. lkebe the usual Cantor set and &t
be the squaréx +iy : 0 <x < 1, 0 < y < 2}. Now take any conformal map
f from D onto the simply connected domain\ (K + i[0, 1]). For each point
w =a+1i (a € K) there exists a point € T such thatf(¢) = w [Po2, p. 29]; let
us denote by the set of such points. Now we have finished because the set
uncountable and in each point E one has
osc arg[f(z) — f(¢)] = 2n. O
z—¢, zeD

Z

lim i?f Im f(z) =0 and

8. Additional Topological Results

In the proof of Corollary 3, we have seen what occurs if there are two transition
points with respect to the same compon&ntlt is interesting to study what hap-

pens if we relax this hypothesis and assume that one of those points is accessible
only from G. Before stating the next result, we will need the following definition:
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A continuumeE isindecomposabliéit cannot be written as the union of two proper
subcontinua (see [Na, pp. 7-14] for more information).

THEOREM 8. Let f mapD conformally ontoG, and let¢ € T. Assume that

(a) the radial limit f(¢) = w exists and is a transition point with respect to the
component{ of C\ G;

(b) the prime endf (¢) is symmetric

(c) f is notcontinuous at; and

(d) there exists a poinb’ € 9H (w’ # w) that is accessible frorg.

ThenC(f, ¢) = 0H and dH is indecomposable.

Proof. We already know that

d0H C C(f, 7). (8.1)
Assume thabH is decomposable; then there exist contiduyaB such that
OH =AUB (A#0H, B+ dH, andw’ € A). (8.2)

First we will prove the following.

Claim: If b € 9H is accessible fronH thenb € B.

In order to prove the claim, assume tlta¥ B; thusb € A by (8.2). There
exists a curve&C C H U {w, b} joiningw andb. ThenE = AUC c C\ Gisa
continuum that contains two accessible pointandw’, so Theorem 7 entails

C(f,0) CENAG = (ANIG)U(CNIG) = AU {w}. (8.3)

Recall thatw € C(f, ¢). Therefore, ifw ¢ A then (8.3) implieC(f, ¢) = {w},
which is impossible by (c). Ifv € A then (8.3) and (8.2) imply that

C(f,.o)cAU{w}=AG 0H,

which contradicts (8.1). Therefotes B and the claim is proved.
From the claim we see that the set of points accessible fidies in B. Since
this is a dense subset &ff, it follows that

B =B =0H,
which contradicts (8.2). Therefot# is indecomposable.
BecauséH is a continuum that containg(¢) and another poinb’ € 9H, ac-

cessible fromG and withoH c C(f, ¢), the minimality property of cluster sets
(see Proposition 2.22 of [Po2, p. 38]) implies that = C(f, ¢). O

It is a natural question to ask whether there exists a conformal map under the hy-
potheses of the previous theorem. The answggssas the following result shows.

ProrosiTION 4. There exists a continuui with the following properties

(@ C\E = GU H, whereG and H are disjoint domains and; is simply
connected

(b) G = 9H = E;
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(c) E is indecomposable
(d) there is a point; € T where the conformal map froiid onto G has a radial
limit f(¢) = w and

CH(f,0)=C(f.0) = E;
(e) w is a transition point off with respect taH.

Proof. To fix ideas, let us take, = (—1)**1zr/2¢+1 and puty, = /. Also, we
consider a sequence of poirts,) such that, for alk > 1,

lwg] > 1, Im Wok+1 > Im W2k+3 > 0, Imwy <Im Wokt2 < 0

with lim koo Wiy = 1.

Write Go =D andHgp = {z : |z| > 1}. To start the construction, selegt> 0
such that3 does not belong to the arc Thbetween et andzie~*t. Then con-
sider an open stri; with By C Hy of width 2¢; joining the arc(zie'1, zie 1)
in T with the pointw, and satisfying, moreover,

BiN[l,00)=¢ and d(x,dB1) <1 forallpointsxeT.

Now we putG; = Go U B; and H; = C \ G;. Assume that we have al-
ready constructed the domaids, and H,. Consider an open strip, 1 with
B,+1 C H, of width 2¢,_4, for suitably chosen,,1 < ¢,, joining the arcl,,1 =
(zn1€"m+L, 2, 2¢ 7 €7+1) with the first pointw, (k > n+2) such thatw, ¢ |, Bs

and with the additional restrictions

Bn+l N [1a 00) = @, Zn+3 ¢ 1n+l and

(8.4)
d(x,0B,+1) < e, for xe€dG,.

We must show that this construction is always possible. One way to see this is to
consider a continuous conformal map frénonto H,,, mapping 0 taxo, and then
apply its uniform continuity.

As before, we denot&, 1 = G, U B,,1 andH, = C\ G,;1. Then the do-
mains areG = | J, G, andH = C \ G. A conformal map fron) onto G with
f(@) = 1gives our example. The point 1is a transition point, sin¢c&)[@ G and
(1, 00) C H. The prime endf (1) is symmetric and’(f,1) = E because mem-
bers of the family of crosscutg,e®", z,e~"*") are alternatively above and below
the real axis and, by (8.4), each pointfofs an accumulation point iéB,,; hence
(d) holds. The continuunk = 0H = dG is indecomposable. A direct proof is
possible, but it is enough to apply Theorem 8 becaubas a dense set of acces-
sible points from the compone#ik. O
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