
On the Argument Oscillation
of Conformal Maps

J. J. Carmona & Ch. Pommerenke

1. Introduction

Let D = { z ∈ C : |z| < 1} be the unit disk andT its boundary. We shall con-
sider (injective) conformal mapsf of D intoC. For ζ ∈T we denote byf(ζ) the
angular(= radial) limit if it exists and is finite. This holds for almost allζ ∈ T;
even the exceptional set has zero logarithmic capacity, by the well-known Beur-
ling theorem (see [Be; Po2, p. 215]). Furthermore, the set{ ζ ∈T : f(ζ) = a } has
zero capacity for everya ∈C [Du; Po2, p. 219]. A stronger condition is thatf is
continuous atζ ; that is

f(z)→ f(ζ) as z→ ζ, z∈D. (1.1)

Suppose now that the angular limitf(ζ) 6= ∞ exists atζ ∈T. The function

gζ (z) = log[f(z)− f(ζ)], z∈D, (1.2)

is analytic and univalent inD for any branch of the logarithm. It therefore has
finite angular limits at all points except a set of zero capacity. For convenience,
throughout this paper we will write

E(ζ) = { ζ ′ ∈T : f(ζ ′) andgζ (ζ
′) exist and are finite}.

ThusT \E(ζ) has zero capacity. Then we define the argument by

arg[f(z)− f(ζ)] =
{

Im gζ (z) for z∈D,
lim
r→1

Im gζ (re
it ) for z = eit ∈E(ζ). (1.3)

We also consider the analytic function

h(z) = log
f(z)− f(ζ)
z− ζ = gζ (z)− log(z− ζ), z∈D ∪ E(ζ). (1.4)

In the unit disk, we always use the branch of the logarithm determined by

θ + π/2< arg(z− ζ) < θ + 3π/2, z∈D ∪ E(ζ), ζ = eiθ .
The functionh is a Bloch function [Po2, p. 173]. We will make frequent use of
the harmonic function
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arg
f(z)− f(ζ)
z− ζ = Imh(z)

= arg[f(z)− f(ζ)] − arg(z− ζ), z∈D ∪ E(ζ). (1.5)

The McMillam twist theorem [Mc; Po2, p. 142] shows that, for almost allζ ∈T,
there are only two alternatives:

(i) log f(z)−f(ζ)
z−ζ has a finite nonzero angular limit asz→ ζ ;

(ii) arg f(z)−f(ζ)
z−ζ oscillates between−∞ and+∞ along any curve inD ending

at ζ.

This gives the definitive answer to the problem of argument oscillation almost
everywhere as far as angular approach is concerned. See [CaPo] for a discussion
of the behavior that is possible on subsets ofT of zero measure.

In this paper we study the oscillation of the argument for unrestricted approach.
It turns out that the exceptional sets tend to be either countable or of zero measure.

2. Results

Generically we define
osc= lim sup− lim inf ,

provided that both limits are finite; otherwise, we define osc= +∞.
Theorem 1. Let f mapD conformally intoC. Except possibly for countably
manyζ ∈ ∂T, we have: If the angular limitf(ζ) exists and if

osc
z→ζ, z∈D

arg[f(z)− f(ζ)] < 2π, (2.1)

thenf is continuous atζ. The constant2π is best possible.

We shall derive this theorem in Section 7 from two results of a topological nature.
The condition thatf be continuous atζ is important for the following reason.
There are two causes that may contribute to the oscillation of arg[f(z) − f(ζ)],
namely:

(i) nearby oscillation—that is, forf(z)− f(ζ) small;
(ii) faraway oscillation—that is, for|f(z) − f(ζ)| > c > 0 (e.g., iff(z) winds

around the entire domain).

If f is continuous atζ then only case (i) is possible.
Now we consider the oscillation of the difference quotient. Ifζ ∈T andf(ζ) 6=
∞ exists, then we define

1(ζ) = osc
z→ζ, z∈D

arg
f(z)− f(ζ)
z− ζ . (2.2)

The quantity1(ζ) is closely related to tangency properties of the boundary ofG =
f(D). We say that∂G has a tangent at the prime end corresponding toζ = eiθ if

arg[f(eit )− f(ζ)] →
{
β as t → θ+, eit ∈E(ζ),
β + π as t → θ−, eit ∈E(ζ). (2.3)
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Observe that this definition is completely different, in the case of an arbitrary con-
formal map, from the usual concept (see [Fa, p. 31]) that the planar set∂f(D) has
a geometric tangent atf(ζ). However, if∂G is a Jordan curve then the definitions
are equivalent.

We have the following result, which should be compared to the classical Lin-
delöf theorem (see [Po2, p. 51]) and to the theorem of Wolff [Wo]. Its proof will
be an application of Theorem 3.

Theorem 2. Letf mapD conformally intoC. If f(ζ) 6= ∞ exists atζ ∈T, then
∂f(D) has a tangent atf(ζ) if and only if1(ζ) = 0.

Theorem 3. Letf mapD conformally intoC. If f(ζ) 6= ∞ exists atζ ∈T, then

1(ζ) = osc
η→ζ, η∈E(ζ)

arg
f(η)− f(ζ)
η − ζ . (2.4)

If f is continuous atζ, then

osc
r→1

arg[f(rζ)− f(ζ)] ≤ 1(ζ) ≤ 3π + osc
z→ζ, z∈C

arg[f(z)− f(ζ)], (2.5)

whereC is any curve inD ∪ {ζ } ending atζ. The constant3π is best possible.

Note that the right-hand side of (2.4) is essentially a geometric quantity (see Sec-
tion 3 for details). The radial oscillation in (2.5) has been studied previously (see
e.g. [CaPo]).

Theorem 4. Let f mapD conformally intoC. Then the sets{ ζ ∈ T : 0 <

1(ζ) < π } and { ζ ∈ T : f is continuous atζ, 2π < 1(ζ) < ∞} have zero
Lebesgue measure onT.

If ∂f(D) is locally connected (see the definition in [Po2, p. 19]) then it follows
from Theorem 4 that

1(ζ) = 0 or π ≤ 1(ζ) ≤ 2π or 1(ζ) = +∞
for almost allζ ∈T. However “linear measure zero” cannot be replaced by “Haus-
dorff dimension< 1”, as the following theorem shows.

Theorem 5. There exists a conformal mapf onto a Jordan domain such that

dim{ ζ ∈T : 0< 1(ζ) < π } = 1. (2.6)

3. One-Sided Oscillation

Throughout this section we assume thatf mapsD conformally intoC, thatζ ∈T,
and that the angular limitf(ζ) 6= ∞ exists. We write

G = f(D), ζ = eiθ (0 ≤ θ < 2π), w = f(ζ).
We define
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α±(ζ) = lim inf
t→θ±, eit∈E(ζ)

arg[f(eit )− w],

β±(ζ) = lim sup
t→θ±, eit∈E(ζ)

arg[f(eit )− w].
(3.1)

Also, if C is a Jordan arc such thatζ ∈C andC \ {ζ } ⊂ D, we put

αC(ζ) = lim inf
z→ζ, z∈C

arg[f(z)− w],

βC(ζ) = lim sup
t→ζ, z∈C

arg[f(z)− w].
(3.2)

Note thatα±(ζ) andβ±(ζ) can essentially be determined from the domainG,

whereas one must know the functionf in order to findαC(ζ) andβC(ζ). When
there is no possibility of confusion, we will omit the pointζ and simply writeα±

andβ±.
Now we restate Theorem 3.

Theorem 6. If f(ζ) 6= ∞ exists, then

1(ζ) = max(β+ − α+, β+ − α− + π, β− − α+ − π, β− − α−), (3.3)

and iff is continuous atζ then

βR − αR ≤ 1(ζ) ≤ 3π + βC − αC, (3.4)

whereR = [0, ζ) andC is any curve inD ∪ {ζ } ending atζ. The constant3π is
best possible.

To see that (2.4) and (3.3) are equivalent, we first observe that

arg(eit − ζ)→
{
θ + π/2 as t → θ+,
θ + 3π/2 as t → θ−.

(3.5)

Therefore,

lim sup
η→ζ, η∈E(ζ)

arg
f(η)− w
η − ζ = max

(
β+ − θ − π

2
, β− − θ − 3π

2

)
and

lim inf
η→ζ, η∈E(ζ)

arg
f(η)− w
η − ζ = min

(
α+ − θ − π

2
, α− − θ − 3π

2

)
.

Then the foregoing identities give the equivalence.

Proposition 1. If f is continuous atζ, then

α+(ζ) ≤ αC(ζ) ≤ α−(ζ) ≤ α+(ζ)+ 2π, (3.6)

β−(ζ) ≥ βC(ζ) ≥ β+(ζ) ≥ β−(ζ)− 2π. (3.7)

Proof. Let g = gζ , wheregζ is defined by (1.2). By(1.1) we have

Reg(z) = log|f(z)− w| → −∞ as z→ ζ, z∈D. (3.8)
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Let us consider a parameterizationp(t), t ∈ [0,1], of C with p(1) = ζ. For each
b ∈ (−∞,Reg(0)), let tb be the last value on the curveC such that Reg(p(tb)) =
b. Let nowL(b) be the connected component of{ s : Res = b } ∩ g(D) that
containsg(p(tb)). Theng−1(L(b)) is a crosscut inD. Say thatQ(b) is the com-
ponent ofD \ g−1(L(b)) for whichζ belongs to its boundary. The definition oftb
gives thatQ(b) \C is the union of two domainsU+(b) andU−(b). We haveR =
{ g(p(t)) : tb < t < 1} ⊂ g(D) and therefore

B = { g(p(t))− 2πi : tb ≤ t < 1} ⊂ C \ g(D),
becausef is univalent. IfB− denotes the Jordan curveB with the reversed ori-
entation, then

J = B− ∪ [g(p(tb))− 2πi, g(p(tb))] ∪ R ∪ {∞}
is a positively oriented Jordan curve inC∞. LetH + be its interior. Since the tan-
gent vector tog(C) at the pointg(p(tb)) has negative real part and

g(U+(b)) ∩ J = ∅,
we conclude that

g(U+(b)) ⊂ H +.
Theng(eit ) ∈H + for some small intervalt ∈ (θ, θ + δ) with eit ∈ E(ζ). Letting
b→−∞, we infer from (3.1) and (3.2) that

αC(ζ)− 2π ≤ α+(ζ) ≤ αC(ζ),
βC(ζ)− 2π ≤ β+(ζ) ≤ βC(ζ).

(3.9)

Similarly, if we consider the Jordan arcB− + 4πi then we have

αC(ζ) ≤ α−(ζ) ≤ αC(ζ)+ 2π,

βC(ζ) ≤ β−(ζ) ≤ βC(ζ)+ 2π.
(3.10)

If we apply the inequalities (3.9) to curves that are sufficiently tangential to
{ eit : t < θ } or to{ eit : t > θ }, we obtainα− −2π ≤ α+ ≤ α− andβ− −2π ≤
β+ ≤ β−. This and (3.10) give (3.6) and (3.7).

It is not difficult to see that the hypothesis of continuity off at ζ is essential in
each inequality of (3.6) and (3.7). Also, the constant 2π is best possible, as will
be shown by Example 1. However, if we are considering only Stolz angles, then
some improvement of Proposition 1 is possible; see [Wa].

We recall that the functionf is isogonal atζ (see [Po2, p. 80]) if, for someγ,

arg
f(z)− w
z− ζ → γ as z→ ζ in every Stolz angle.

It follows from this definition that, for everyε > 0, there exists aδ > 0 such that

{ z : 0< |z− w| < δ, γ1+ ε < arg(z− w) < γ2 − ε } ⊂ G, (3.11)

with γ1= γ + θ + π/2 andγ2 = γ1+ π.
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Proposition 2. If f is continuous and isogonal atζ, thenα−(ζ) = β+(ζ)+ π.
Proof. Sincef is continuous atζ, it follows from (3.11) (forε→ 0) that

β+(ζ) ≤ γ1, α−(ζ) ≥ γ2.

Thenα− − β+ ≥ γ2 − γ1 = π. However, by Ostrowski’s theorem [Po2, p. 252],
the domain does not contain any sector of vertexf(ζ) of angle larger thanπ. Hence
α− − β+ = π.
It is interesting to point out that the inequalitiesα− ≤ α++2π andβ− ≤ β++2π
of Proposition 1 cannot be improved even in the case whenζ is an isogonal point,
as Example 1 will show. On the other hand, if∂G has a tangent atf(ζ) then one
hasα+ = β+, α− = β−, β− = β+ + π.
Example 1. PutD1= { z : Rez > 0, |z| < 2 }. For each natural numbern ≥ 1,
consider

Cn =
{ { z : z = reis, π2 ≤ s < 3π

2 ,
1
n
< r < 1

n
+ 1

3n } if n is an odd number,

{ z : z = reis, π2 < s ≤ 3π
2 ,

1
n
− 1

3n < r < 1
n
} if n is an even number.

NowG = D1∪
⋃
n≥1Cn is a simply connected domain. Letf a conformal map

from D ontoG with f(1) = 0. Because, at point 1, we haveβ− = 3π/2, α− =
π/2, β+ = −π/2, andα+ = −3π/2, it follows thatα− = α+ + 2π andβ− =
β+ + 2π. The functionf is continuous at 1 and so the fact that 1 is isogonal can
be proved, with a little effort, by means of Ostrowski’s theorem (mentioned in the
proof of Proposition 2).

Corollary 1. Letf mapD conformally ontoG, and assume thatG is starlike
with respect tof(0) = 0. If ζ ∈T andf(ζ) 6= ∞, then

1(ζ) ≤ π.
Proof. We writeβ1(t) = lim r→1 argf(reit ). Thenβ1(t) exists for allt andβ1 is
an increasing function [Po, p. 66]. Therefore,

β1 ≤ α+ ≤ β+ ≤ β1+ π
and

β1+ π ≤ α− ≤ β− ≤ β1+ 2π.

Hence, by (3.3), we obtain1(ζ) ≤ π.

4. Proofs of Theorem 3 and Theorem 2

Proof of Theorem 3.(a) First we recall [Po2, p. 52] that

log(f(z)− a) = log|f(0)− a| + i

2π

∫ 2π

0

eit + z
eit − z arg(f(eit )− a) dt

if f mapsD conformally ontoG anda /∈G. Therefore, if we apply this formula
to the functionsf andg(z) = z with the pointa = f(ζ), ζ ∈ T, and afterwards
take its imaginary part, we obtain the Poisson representation
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arg
f(z)− f(ζ)
z− ζ = 1

2π

∫
E(ζ)

1− |z|2
|eit − z|2 arg

f(eit )− f(ζ)
eit − ζ dt, z∈D. (4.1)

Now the proof is a consequence of a general fact about Poisson integrals. For the
sake of completeness we will present it. Letq(z) = Imh(z), z∈D∪E(ζ) with h
the function defined in (1.4), and assume thatβ = lim supη→ζ, η∈E(ζ) q(η) is finite.
Givenε > 0, there exists 0< δ < 1 such that

q(η) < β + ε for all η ∈E(ζ), |η − ζ| < δ.

Now we decompose the integral in (4.1) as the sum of two integrals over the sets
η ∈E(ζ), |η− ζ| > δ, andη ∈E(ζ), |η− ζ| ≤ δ, respectively. Estimates of each
term give

q(z) ≤ (1− |z|
2)

δ2
c + β + ε for z∈D and |z− ζ| < δ

2
. (4.2)

Hence (4.2) implies that
lim sup
z→ζ, z∈D

q(z) ≤ β. (4.3)

The reverse inequality in (4.3) is almost trivial becauseq(ξ) is the radial limit of
q(rξ) asr → 1 in each pointξ ∈E(ζ).

An analogous argument gives

lim inf
z→ζ, z∈D

q(z) = lim inf
η→ζ, η∈E(ζ)

q(η),

so (2.4) holds.
(b) If f is continuous atζ then we obtain from (3.3) and Proposition 1 that

1(ζ) ≤ max[βC − (αC − 2π), βC − αC + π, βC + 2π − (αC − 2π)− π,
βC + 2π − αC ]

= βC − αC + 3π,

which proves the right-hand inequality (3.4) and thus assertion (2.5). The left-hand
inequality (3.4) is immediate from (2.2).

(c) Finally, we construct an example where equality on the right side of (2.5)
holds forC = [0, ζ).

Example 2. Consider the parabolasP± = { t ± it 2 : 0 ≤ t < +∞} and letH
be the domain betweenP+ andP−. Let 0 < εn < 2−n andAn = {w : 2−n <
|w| < 2−n + εn }. Then

G = H ∪
⋃
n even

[(An \ H̄ ) ∪ (P− ∩ An)] ∪
⋃
n odd

[(An \ H̄ ) ∪ (P+ ∩ An)]

is a simply connected domain. It has a cusp at 0 and moreover narrow annular cor-
ridors whose entrances accumulate at 0 and that go almost completely around 0 in
the positive(n even) and negative(n odd) directions. Letf mapD conformally
ontoG such thatf(1) = 0. By (2.4) and (3.5), our construction gives
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1(1) =
(

2π − 3π

2

)
−
(
−2π − π

2

)
= 3π.

Now { f(r) : 0< r < 1} has, up to multiplicative bounds, the same distance from
the two parts{ f(eit ) : 0 < t < π } and{ f(eit ) : −π < t < 0 } of the bound-
ary (see e.g. [PoRo, Thm. 3.3]). Ifεn tends to zero rapidly enough, it follows that
f([0,1)) cannot cut infinitely many segmentsP− ∩ An or P+ ∩ An. So{ f(r) :
1− ε < r < 1} ⊂ H for someε > 0. Thus argf(r)→ 0 asr → 1.

As in Proposition 1, the hypothesis of continuity off atζ is essential in (2.5). To
prove that we make a little modification of Example 2; we will sketch the idea.
ConsiderP±(1) = { t ± it 2 : 0 ≤ t < 1} and letH be the domain betweenP+(1)
andP−(1). The domainG is defined as before, but nowAn is always a narrow cor-
ridor that starts in{w : 2−n < |w| < 2−n+ εn } ∩P+(1) with An ⊂ { z : |z| ≤ 2 }
and that goes aroundH at leastn times in the positive direction. In this situation
one actually hasα− = 0 andβ− = +∞, and the radial oscillation is zero.

Proof of Theorem 2.By (3.5) and by our hypothesis (see (2.3)), we have

arg
f(eit )− f(ζ)
eit − ζ → β − θ − π/2 as eit → ζ, eit ∈E(ζ).

Now the representation formula (4.1) and the properties of the Poisson kernel give
that lim argf(z)−f(ζ)

z−ζ exists whenz→ ζ (z∈D); hence1(ζ) = 0.
Conversely, if1(ζ) = 0 then Theorem 3 implies that there exists

lim arg
f(eit )− f(ζ)
eit − ζ = α as eit → ζ, eit ∈E(ζ).

Now consideringt → θ± and (3.5), we conclude that

α+ = β+, α− = β−, α = β+ − (θ + π/2) = β− − (θ + 3π/2).

From this it follows thatβ− = β+ + π. Hence (see (2.3)),∂G has a tangent at
f(ζ).

5. Proof of Theorem 4

We say thatf is “twisting” at ζ ∈ T [Po2, p.141] if αR(ζ) = −∞ andβR(ζ) =
+∞,which implies that1(ζ) = ∞ (recall thatαR = α[0,ζ ] in (3.2)). The McMil-
lan twist theorem states thatf is isogonal or twisting at almost allζ ∈ T. Hence
we may assume thatf is isogonal atζ. Let3 denote the linear measure inC [Po2,
p. 129].

(i) First we consider the case 0< 1(ζ) < π. It follows from (1.5) and (3.5)
that

osc
z→ζ, z∈D

arg[f(z)− f(ζ)] ≤ π +1(ζ) < 2π. (5.1)

Hence Theorem 1 shows thatf is continuous atζ with at most countably many
exceptions. Thus it suffices to show that3(L) = 0, where

L = { ζ ∈T : f is isogonal and continuous atζ and 0< 1(ζ) < π }.
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If E is an arbitrary subset ofC andw ∈ E, let TE(w) denote the union of all
rays{w + teiλ : 0 ≤ t < ∞} such that there existwn ∈ E with wn → w and
arg(wn − w) → λ asn → ∞. The Kolmogoroff–Ver̆cenko theorem (see [Sa,
Chap. 9; Po2, p. 127]) states that

E = E0 ∪ {w ∈E : TE(w) isC or a half-plane or a full line},
where3(E0) = 0.

Let (In) be the countable collection of all different intervals{ eit : q < t < q ′ }
with q, q ′ rational numbers. Fixn ≥ 1 and put

Bn =
⋂
r<1

⋃
r<s<1

{ f(seit ) : t ∈ In }. (5.2)

Now we apply the Kolmogoroff–Verc̆enko theorem toBn and obtain

Bn = En ∪ {w ∈Bn : TBn(w) isC or a half-plane or a full line},
3(En) = 0.

(5.3)

Let ζ = eiθ for ζ ∈L. The definition ofL, together with (5.1) and (3.11), tells us
that there exists aδ > 0 such that

f(eit )∈ S±(ζ) for almost all θ < t < θ + δ or θ − δ < t < θ, (5.4)

whereS±(ζ) are two open disjoint sectors with vertexf(ζ). Choosen(ζ) such
that

ζ ∈ In(ζ) ⊂ { eit : |t − θ | < δ }.
By (5.2), (5.4), and the density onG of the set of radial limits, one has

Bn(ζ) ⊂ S+(ζ) ∪ S+(ζ).
BecauseS+(ζ) ∩ S+(ζ) = ∅, we obtain thatTBn(ζ)(f(ζ)) can neither be the full
plane nor a half-plane. IfTBn(ζ)(f(ζ)) were a full line then the continuity off at
ζ would imply that1(ζ) = 0, in contradiction to the definition ofL. So by (5.3)
one has

f(ζ)∈En(ζ).
Thus we have seen thatf(L) ⊂ E, whereE =⋃∞n=1En. But (5.3) implies

0 ≤ 3(f(L)) ≤ 3(E) = 0.

Sincef is isogonal at each pointζ ∈ T, we conclude (cf. [Mc; Po2, p. 146]) that
3(L) = 0.

(ii) Now we consider the case that 2π < 1(ζ) <∞ for ζ ∈T, wheref is con-
tinuous atζ. Sincef is isogonal atζ, we obtain from Proposition 2 thatα− =
β+ + π and from Proposition 1 that

β+ − α+ = α− − π − α+ ≤ π, β+ − α− + π = 0,

β− − α+ − π ≤ β+ − α− + 3π = 2π, β− − α− = β− − β+ − π ≤ π.
Hence it follows from (3.3) that1(ζ) ≤ 2π, which is a contradiction with our
hypothesis.
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6. Proof of Theorem 5

Let k = 2,3, . . . andJk = [3−k,3 · 3−k]. We writeλk = (k − 1)/(2k) and, for
simplicity,`k = 2/3k. In each intervalJk we construct a Cantor setBk as follows.

We delete the central open interval of length`k/k. In each of the two remain-
ing closed intervals of length̀kλk, we delete the central open interval of length
`kλk/k. Then we obtain the union of four intervals of length`kλ2

k. In each of them
we delete the open central interval of length`kλ2

k/k, and so on. Then letBk be
the intersection of all sets obtained this way. The Hausdorff dimension (see [Fa,
p. 15]) satisfies

dimBk = log 2

log(1/λk)
= log 2

log 2+ log[k/(k −1)]
. (6.1)

The intersection ofBk withBk+1 is one point, and all theBk lie on the lower bound-
ary ofH = { z : |Rez| < 1, 0 < Im z < 1}. At each interval of length̀kλnk/k
with n ≥ 0 deleted fromJk, we attach downwards an isosceles open triangle of
height`kλnk/2. These triangles (for all generationsn and for allk) together with
H form a Jordan domainG. Let f andh be the continuous extensions toD̄ of the
conformal maps fromD ontoG andH, respectively.

We defineB = ⋃
k Bk andA = f −1(B). The functiong = f −1 B h mapsD̄

into itself and such thatg(h−1(B)) = A ⊂ T. Applying a theorem of Hamilton
[Ha; Po2, p. 235] tog, we derive that dimg(h−1(B)) ≥ dimh−1(B). Hence

dimA ≥ dimh−1(B) = dimB = sup
k

dimBk = 1. (6.2)

The first equality in (6.2) is true becauseh is analytic onh−1(B), and the last one
follows from (6.1).

Consider nowA1 ⊂ A, the set of points whose images byf are not extreme
points of some of the deleted intervals involved in the construction of the setsBk.

Let ζ ∈ A1. Thenp = f(ζ) ∈ Bk for somek. For each generation,p lies in one
of the remaining intervalsI of length`kλnk. To the right ofI there is an adjacent
deleted intervalI ′ of length`kλmk/k with m < n. The triangle attached toI ′ has
height 3−kλmk . Hence, there are pointsw ∈ ∂G near and to the right ofp with
arg(w − p) ≤ −π/4. On the other hand, arg(w − p) ≥ −arctank for all w ∈ ∂G
near and to the right ofp, so

−arctank ≤ α+(ζ) ≤ −π/4.
It easy to see thatβ+(ζ) = 0. Similarly, we haveα−(ζ) = π and 5π/4≤ β−(ζ) ≤
π + arctank. Hence we obtain from (3.3) that

π/2 ≤ 1(ζ) ≤ 2 arctank < π for all ζ ∈A1,

and (2.6) follows from (6.2).

7. Topological Results Related to Theorem 1

We assume throughout this section thatf mapsD conformally ontoG. We shall
only considerζ ∈T for which the angular limitf(ζ) 6= ∞ exists.
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We consider, for eachδ > 0, the setsUδ(ζ) = { z ∈ D : |z − ζ| < δ } and the
one-sided neighborhoods

U+δ (ζ) = { z∈Uδ(ζ) : argz > argζ },
U−δ (ζ) = { z∈Uδ(ζ) : argz < argζ }.

The one-sided cluster sets atζ are defined by

C±(f, ζ) =
⋂
δ>0

f(U±δ (ζ)) ⊂ ∂G (7.1)

and the total cluster set byC(f, ζ) = C+(f, ζ)∪C−(f, ζ). The prime endf̂ (ζ) of
G is called symmetric ifC+(f, ζ) = C−(f, ζ). The Collingwood symmetry theo-
rem (see [Po2, p. 38]) states that there are at most countably many nonsymmetric
prime ends. The symmetry of prime ends has some curious consequences.

Theorem 7. Letf mapD conformally ontoG, let ζ, ζ ′ ∈T (ζ 6= ζ ′), and letE
be a continuum. Assume that:

(i) the angular limitsf(ζ), f(ζ ′) exist andf(ζ)∈E, f(ζ ′)∈E;
(ii) there exists a neighborhoodV of ζ such thatf(V ) ∩ E = ∅; and

(iii) the prime endf̂ (ζ) is symmetric.

ThenC(f, ζ) ⊂ E ∩ ∂G.
Proof. We may assume thatV = { z ∈ D : |z − ζ| < ρ } andζ ′ /∈ V̄. Let z0 =
(1− ρ)ζ and00 = [z0, ζ). Now take a circular arc0 from z0 to ζ ′ such that0 ⊂
D \ V. By (i) and (ii) we have

f(z0) /∈E, f(ζ ′)∈E.
Hence there exists a first pointz1∈0 wheref(0)meetsE (it is possible thatz1=
ζ ′). We consider the open arc01 betweenz0 andz1. Then the Jordan arcC =
C0 ∪ C1, whereC0 = f(00) andC1 = f(01), satisfiesC ∩ E = ∅ andC̄ ∩ E =
{f(ζ), f(z1)}. The components ofC \E are simply connected domains. By (ii)
there exists a componentH of C \E such thatf(V ) ⊂ H. The Jordan arcC lies
in H, soC is a crosscut ofH and thusH \ C has exactly two componentsH +

andH−. If we write

V + = { z∈Uρ(ζ) : argz > argζ },
V − = { z∈Uρ(ζ) : argz < argζ },

then we may assume that
f(V ±) ∩H ± 6= ∅.

Sincef is univalent, we have

C0 ∩ f(V ±) = ∅, C1∩ f(V ±) = ∅, E ∩ f(V ±) = ∅
by (ii). Therefore,

(E ∪ C) ∩ f(V ±) = ∅
and sof(V ±) ⊂ H ±, which implies
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C±(f, ζ) ⊂ f(V ±) ∩ ∂G ⊂ H ± ∩ ∂G.
Using (iii) and the fact thatC ∩ ∂G = ∅, we obtain

C(f, ζ) = C+(f, ζ) ∩ C−(f, ζ) ⊂ (H + ∩H−) ∩ ∂G ⊂ (C ∪ E) ∩ ∂G
= (C ∩ ∂G) ∪ (E ∩ ∂G) = E ∩ ∂G.

Corollary 2. Suppose that̂f(ζ) is symmetric and thatf is not continuous at
ζ. LetH be a domain andA a Jordan arc such thatA \ {w} ⊂ H and thatA
begins atw = f(ζ). If f(Uδ(ζ)) ⊂ C \H for someδ > 0 then

f(D) = G ⊂ C \H.
Proof. Suppose thatf(Uδ(ζ)) ⊂ C \H but there existsz∈D with f(z)∈H. We
may assume thatA ends atf(z). Letw1 be the last point whereAmeetsC\f(D).
By [Po2, p. 29] we know thatw1= f(ζ ′) for someζ ′ 6= ζ ; it is possible thatw1=
w. We consider the subarcA1 of A betweenw andw1. NowE = A1 satisfies all
hypotheses of Theorem 7, soC(f, ζ) ⊂ E ∩ ∂G ∩ f(Uδ(ζ)) = {w} andf is con-
tinuous [Po2, p. 35] atζ, which contradicts our assumption.

LetH be a connected component ofC \G. The angular limitw = f(ζ) is called
a transition pointofG with respect toH if there exists a Jordan arcA that begins
atw and such thatA \ {w} ⊂ H. It is easy to see that is equivalent to saying there
exists a continuumK (i.e., a compact connected set with more than one point)
with K ⊂ H ∪ {w}.

A point b ∈ ∂G is accessiblefromG if there exists a Jordan arcL that lies inG
except for the endpointb. We shall now study the relationship between the con-
cepts of transition point, continuity point, and symmetric prime end.

Proposition 3. Letf mapD conformally ontoG, and letw = f(ζ) be a tran-
sition point ofG with respect toH. Let

H̃ = { b ∈ ∂G : there exists a continuumF ⊂ C \G, ∂H * F, and b,w ∈F }.
Assume thatf is not continuous atζ and thatf̂ (ζ) is symmetric. Then

∂H ∪ H̃ ⊂ C(f, ζ). (7.2)

Proof. First we will show that∂H ⊂ C(f, ζ). Assume this inclusion is not true;
then there existsb ∈ ∂H with b /∈ C(f, ζ). Choose a discV of centerb such that
V ∩ C(f, ζ) = ∅. Sinceb ∈ ∂H ⊂ ∂G, we can select two points

c ∈G ∩ V and c ′ ∈H ∩ V.
Let A ⊂ H be the arc of transition and leta 6= w be the other endpoint ofA.
Consider an arcL ⊂ H joininga with c ′. Now takec ′′ as the first point of [c, c ′ ] ∈
V that meetsGc. The setE = A∪L∪ [c ′′, c ′ ] allows us to apply Theorem 7, and
we conclude that

C(f, ζ) ⊂ E ∩ V c ∩ ∂G ⊂ {w},
in contradiction to the hypothesis thatf is not continuous atζ. Thus∂H ⊂ C(f, ζ).
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Assume now that there exists ab ∈ H̃ and thatb /∈ C(f, ζ). Consider the con-
tinuumE = F ∪ [b, c ′′ ], whereF is as in the definition ofH̃ and wherec ′′ is
chosen as before. It follows from Theorem 7 that

C(f, ζ) ⊂ (F ∩ C(f, ζ)) ∪ ([c ′′, b] ∩ C(f, ζ)) ⊂ F.
But this contradicts the facts that∂H ⊂ C(f, ζ), b ∈ H̃ , and∂H * F, so H̃ ⊂
C(f, ζ) and therefore (7.2) is proved.

We have the following consequence.

Corollary 3. Except for at most countable many pointsζ ∈T, if f(ζ) is a tran-
sition point thenf is continuous atζ.

Proof. By the Collingwood symmetry theorem and the fact that there are only
countably many componentsH of C\G, it is enough to show that in each compo-
nentH there is at most a transition pointw = f(ζ), with f̂ (ζ) symmetric andf
not continuous atζ, where for this pointζ the setf −1(ζ) is a singleton. Assume
thatw = f(ζ) andw ′ = f(ζ ′), w 6= w ′, are two transition points with respect to
H. Then letB be an arc joining the endpoints of the corresponding arcsA,A′ and
putE = A ∪ B ∪ A′. We can apply Theorem 7 to conclude thatf must be con-
tinuous atζ andζ ′. If w = w ′ andζ 6= ζ ′, we can takeE = {w} to infer thatf
would be continuous atζ ; henceζ = ζ ′.
Proof of Theorem 1.By the Collingwood symmetry theorem, we may assume that
f̂ (ζ) is symmetric. It follows from (2.1) that there is a sectorH(ζ) of vertexf(ζ)
with f(Uδ(ζ)) ⊂ C \ H(ζ) for someδ = δ(ζ) > 0. If f is continuous atζ then
we are finished. Otherwise,G ⊂ C\H(ζ) by Corollary 2. We conclude thatf(ζ)
is a transition point (withA the midline ofH(ζ)), and Corollary 3 implies thatf
is continuous atζ with at most countably many exceptions.

In order to show that the constant 2π is best possible we present an example
in which there are uncountable many points where the oscillation (2.1) equals 2π

and where the function is not continuous. LetK be the usual Cantor set and letQ
be the square{ x + iy : 0 < x < 1, 0 < y < 2 }. Now take any conformal map
f from D onto the simply connected domainQ \ (K + i[0,1]). For each point
w = a + i (a ∈K) there exists a pointζ ∈T such thatf(ζ) = w [Po2, p. 29]; let
us denote byE the set of such points. Now we have finished because the setE is
uncountable and in each pointζ ∈E one has

lim inf
z→ζ

Im f(z) = 0 and osc
z→ζ, z∈D

arg[f(z)− f(ζ)] = 2π.

8. Additional Topological Results

In the proof of Corollary 3, we have seen what occurs if there are two transition
points with respect to the same componentH. It is interesting to study what hap-
pens if we relax this hypothesis and assume that one of those points is accessible
only fromG. Before stating the next result, we will need the following definition:
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A continuumE is indecomposableif it cannot be written as the union of two proper
subcontinua (see [Na, pp. 7–14] for more information).

Theorem 8. Letf mapD conformally ontoG, and letζ ∈T. Assume that:

(a) the radial limit f(ζ) = w exists and is a transition point with respect to the
componentH of C \ Ḡ;

(b) the prime endf̂ (ζ) is symmetric;
(c) f is not continuous atζ ; and
(d) there exists a pointw ′ ∈ ∂H (w ′ 6= w) that is accessible fromG.

ThenC(f, ζ) = ∂H and ∂H is indecomposable.

Proof. We already know that

∂H ⊂ C(f, ζ). (8.1)

Assume that∂H is decomposable; then there exist continuaA,B such that

∂H = A ∪ B (A 6= ∂H, B 6= ∂H, andw ′ ∈A). (8.2)

First we will prove the following.

Claim: If b ∈ ∂H is accessible fromH thenb ∈B.
In order to prove the claim, assume thatb /∈ B; thusb ∈ A by (8.2). There

exists a curveC ⊂ H ∪ {w, b} joiningw andb. ThenE = A ∪ C ⊂ C \G is a
continuum that contains two accessible pointsw andw ′, so Theorem 7 entails

C(f, ζ) ⊂ E ∩ ∂G = (A ∩ ∂G) ∪ (C ∩ ∂G) = A ∪ {w}. (8.3)

Recall thatw ∈ C(f, ζ). Therefore, ifw /∈ A then (8.3) impliesC(f, ζ) = {w},
which is impossible by (c). Ifw ∈A then (8.3) and (8.2) imply that

C(f, ζ) ⊂ A ∪ {w} = A Ã ∂H,
which contradicts (8.1). Thereforeb ∈B and the claim is proved.

From the claim we see that the set of points accessible fromH lies inB. Since
this is a dense subset of∂H, it follows that

B = B̄ = ∂H,
which contradicts (8.2). Therefore∂H is indecomposable.

Because∂H is a continuum that containsf(ζ) and another pointw ′ ∈ ∂H, ac-
cessible fromG and with∂H ⊂ C(f, ζ), the minimality property of cluster sets
(see Proposition 2.22 of [Po2, p. 38]) implies that∂H = C(f, ζ).
It is a natural question to ask whether there exists a conformal map under the hy-
potheses of the previous theorem. The answer isyes,as the following result shows.

Proposition 4. There exists a continuumE with the following properties:

(a) C \ E = G ∪ H, whereG andH are disjoint domains andG is simply
connected;

(b) ∂G = ∂H = E;
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(c) E is indecomposable;
(d) there is a pointζ ∈ T where the conformal map fromD ontoG has a radial

limit f(ζ) = w and

C+(f, ζ) = C−(f, ζ) = E;
(e) w is a transition point off with respect toH.

Proof. To fix ideas, let us takeak = (−1)k+1π/2k+1 and putzk = eiak . Also, we
consider a sequence of points(wk) such that, for allk ≥ 1,

|wk| > 1, Imw2k+1 > Imw2k+3 > 0, Imw2k < Imw2k+2 < 0

with lim k→∞wk = 1.
WriteG0 = D andH0 = { z : |z| > 1}. To start the construction, selectε1 > 0

such thatz3 does not belong to the arc inT betweenz1e
iε1 andz1e

−iε1. Then con-
sider an open stripB1 with B1 ⊂ H0 of width 2ε1 joining the arc(z1e

iε1, z1e
−iε1)

in T with the pointw2 and satisfying, moreover,

B1∩ [1,∞) = ∅ and d(x, ∂B1) < 1 for all points x ∈T.

Now we putG1 = G0 ∪ B1 andH1 = C \ G1. Assume that we have al-
ready constructed the domainsGn andHn. Consider an open stripBn+1 with
Bn+1⊂ Hn of width 2εn+1, for suitably chosenεn+1 < εn, joining the arcIn+1=
(zn+1e

iεn+1, zn+1e
−iεn+1)with the first pointwk (k ≥ n+2) such thatwk /∈

⋃
s≤n Bs

and with the additional restrictions

Bn+1∩ [1,∞) = ∅, zn+3 /∈ In+1 and

d(x, ∂Bn+1) < εn for x ∈ ∂Gn.
(8.4)

We must show that this construction is always possible. One way to see this is to
consider a continuous conformal map fromD ontoHn,mapping 0 to∞, and then
apply its uniform continuity.

As before, we denoteGn+1 = Gn ∪ Bn+1 andHn = C \ Gn+1. Then the do-
mains areG =⋃∞n=1Gn andH = C \ Ḡ. A conformal map fromD ontoG with
f(1) = 1 gives our example. The point 1 is a transition point, since [0,1) ⊂ G and
(1,∞) ⊂ H. The prime endf̂ (1) is symmetric andC(f,1) = E because mem-
bers of the family of crosscuts(zneiεn , zne−iεn ) are alternatively above and below
the real axis and, by (8.4), each point ofE is an accumulation point in∂Bn; hence
(d) holds. The continuumE = ∂H = ∂G is indecomposable. A direct proof is
possible, but it is enough to apply Theorem 8 becauseE has a dense set of acces-
sible points from the componentH.
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