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1. Introduction

The study of pseudodifferential operators with symbols in the exotic classesSm1,1
has received a lot of attention. These are operators of the form

(Tf )(x) =
∫

Rn
eix·ξa(x, ξ)f̂ (ξ) dξ,

where the symbola(x, ξ) is aC∞(Rn × Rn) function satisfying

|∂βξ ∂γxa(x, ξ)| ≤ Cβ,γ (1+ |ξ|)m−|β|+|γ |,
for all β andγ n-tuples of nonnegative integers. The interest in such operators is
due in part to the role they play in the paradifferential calculus of Bony [1]. The
fact that not all such operators of order zero are bounded onL2 complicates their
study. Nevertheless, the exotic pseudodifferential operators do preserve spaces of
smooth functions. See, for example, Meyer [12], Paivarinta [14], Bourdaud [2], as
well as Stein [16] and the references therein.

The continuity results are often obtained by making use of the so-called sin-
gular integral realization of the operators. This involves proving estimates on the
Schwartz kernels of the pseudodifferential operators similar to those of the ker-
nels of Calderón–Zygmund operators. There is, however, an alternative approach
working directly with the symbols of the pseudodifferential operators. This ap-
proach has been pursued by Hörmander in [9] and [10] forL2-based Sobolev
spaces. The ideas in those papers combined with wavelets techniques were later
extended by Torres [17] toLp-based Sobolev spaces and other more general spaces
of smooth functions.

In this note we considerC∞ symbolsa(x, ξ) in Rn× (Rn \ {0}) that satisfy the
following conditions: For alln-tuples of nonnegative integersβ andγ there exist
positive constantsCβ,γ such that

|∂βξ ∂γxa(x, ξ)| ≤ Cβ,γ |ξ|m−|β|+|γ | (1)
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for (x, ξ)∈Rn× (Rn \{0}). We call such symbolshomogeneoussymbols of type
(1,1) and orderm. The class of all such symbols will be denoted byṠ m1,1.

Our purpose is to show boundedness for pseudodifferential operators with sym-
bols in Ṡ m1,1 on homogeneous function spaces. Our results are motivated by an
observation of Grafakos [8], who proved boundedness of pseudodifferential op-
erators with symbols iṅSm1,1 on homogeneous Lipschitz spaces. The proof in [8]
follows more or less the singular integral approach of Stein [16]. In this paper we
use a wavelet approach, borrowing ideas from [17].

The appropriate setting for our results is in the context of the homogeneous
Triebel–LizorkinḞ α,q

p (Rn) spaces and Besov–Lipschitz spacesḂ
α,q
p (Rn) (these

spaces will be defined shortly). As with inhomogeneous symbols, it is possible to
show that, forx 6= y, the Schwartz kernels of the operators of order zero satisfy
estimates of the form

|∂γxK(x, y)| + |∂γyK(x, y)| ≤ Cγ |x − y|−n−|γ | (2)

and even better estimates for|x − y| large (see e.g. [13, p. 294]). It is then pos-
sible to analyze boundedness properties of the operators using versions of the T1
theorem of David and Journé [4]. Moreover, such types of results are applied to
pseudodifferential operators with inhomogeneous symbols in the book by Meyer
[13, p. 329] in the context of Besov spaces with smoothnessα > 0 andp, q > 1
(cf. also [11]). The arguments in [13] may be adapted to pseudodifferential opera-
tors with homogeneous symbols and the same range of parameters for the Besov
spaces. Our approach, however, will be based on some very simple calculations
that notoriously work for the full scale of botḣF α,q

p (Rn) andḂα,qp (Rn) spaces.
LetS(Rn)be the space of Schwartz test functions and denote its dual byS ′(Rn),

the space of tempered distributions. In this paper the Fourier transform of a func-
tion f ∈S(Rn) is given byf̂ (ξ) = ∫ f(x)e−ix·ξ dx, andS0(Rn) is used to denote
the subspace ofS(Rn) consisting of all functions whose Fourier transform van-
ishes to infinite order at zero. The dual space ofS0(Rn) with respect to the topol-
ogy inherited fromS(Rn) is S ′/P(Rn), the set of tempered distributions modulo
polynomials. The Triebel–Lizorkin and Besov–Lipschitz spaces are defined as
follows. Letϕ be a function inS(Rn) satisfying supp̂ϕ ⊂ { ξ : 1/2 ≤ |ξ| ≤ 2 }
and|ϕ̂| ≥ C > 0 for 3/5≤ |ξ| ≤ 5/3. Defineϕj(ξ) = 2jnϕ(2jξ). Forα real, 0<
p, q <∞, andf in S ′/P(Rn), define the Triebel–Lizorkin and Besov–Lipschitz
norms off by

‖f ‖Ḟ α,qp (Rn) =
∥∥∥∥( ∞∑

j=−∞
(2jα|ϕj ∗ f |)q

)1/q∥∥∥∥
Lp

,

and

‖f ‖Ḃα,qp (Rn) =
( ∞∑
j=−∞

(‖2jα(ϕj ∗ f )‖Lp)q
)1/q

,

respectively. Note that these definitions are given modulo all polynomials, so
strictly speaking an element of the spacesḞ

α,q
p (Rn) andḂα,qp (Rn) is an equiva-

lent class of distributions. It can be shown that the definition of these spaces is
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independent ofϕ. The spaceS0(Rn) is dense in all of these spaces. For these and
further properties of these function spaces, we refer to the books [15] and [19].

We have the following results for operators with symbols inṠ m1,1 acting on the
spacesḞ α,q

p (Rn) andḂα,qp (Rn).

Theorem 1.1. Let 0 < p, q < ∞. For α > n(max(1, p−1, q−1) − 1), every
pseudodifferential operator

(Tf )(x) =
∫

Rn
a(x, ξ)f̂ (ξ)eix·ξ dξ (f ∈S0)

with symbola(x, ξ) in Ṡ m1,1 extends to a bounded operator that maps the space
Ḟ
α+m,q
p (Rn) to Ḟ α,q

p (Rn). For α ≤ n(max(1, p−1, q−1) − 1), everyT as above
that satisfiesT ∗xγ = 0 for all |γ | ≤ n(max(1, p−1, q−1) − 1) − α extends to a
bounded operator froṁF α+m,q

p (Rn) to Ḟ α,q
p (Rn).

Theorem 1.2. Let 0 < p, q < ∞. For α > n(max(1, p−1, q−1) − 1), every
pseudodifferential operator

(Tf )(x) =
∫

Rn
a(x, ξ)f̂ (ξ)eix·ξ dξ (f ∈S0) (3)

with symbola(x, ξ) in Ṡ m1,1 extends to a bounded operator that maps the space
Ḃ
α+m,q
p (Rn) to Ḃα,qp (Rn). For α ≤ n(max(1, p−1, q−1) − 1), everyT as above

that satisfiesT ∗xγ = 0 for all |γ | ≤ n(max(1, p−1, q−1) − 1) − α extends to a
bounded operator froṁBα+m,qp (Rn) to Ḃα,qp (Rn).

We end this section with the following observation. Note that ifm− |γ | + |β| <
0 then∂γξ ∂

β
x a(x, ξ) is singular atξ = 0 and, for a general functionf in S, the in-

tegral in (3) is not absolutely convergent. For this reason it is natural initially to
define the operatorT onS0.

2. Proofs of the Theorems

As we have just discussed, it is natural to considerT initially defined onS0.

Moreover, we have the following lemma.

Lemma 2.1. Leta(x, ξ) be a symbol iṅSm1,1. Then the pseudodifferential opera-
tor with symbola(x, ξ)mapsS0 toS. In particular, its formal transposeT ∗ maps
S ′ to S ′/P.
Proof. Letf be a function inS0 and let1ξ be the Laplace operator in the variable
ξ. Because

(I −1ξ)
N(eix·ξ ) = (1+ |x|2)Neix·ξ

for any positive integerN, an integration by parts gives

(Tf )(x) =
∫

Rn
eix·ξ

(I −1ξ)
N

(1+ |x|2)N (a(x, ξ)f̂ (ξ)) dξ. (4)
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Sincef̂ vanishes to infinity order at the origin, the conditions on the symbola(x, ξ)

and an application of Leibniz’s rule give

|(Tf )(x)| ≤ Rm,N(f )

(1+ |x|2)N , (5)

whereRm,N is an appropriate seminorm inS. A similar computation applies to
the derivatives∂γ(Tf ), thus proving the lemma.

For ann-tuple of integersk and an integerj, denote byQjk the dyadic cube
{ (x1, . . . , xn) ∈ Rn : ki ≤ 2jxi < ki + 1}, by xQjk its “lower left corner” 2−jk,
and byl(Qjk) its side length 2−j . ForQ dyadic letϕQ(x) = |Q|1/2ϕj(x− xQ). A
functionϕ as in the definition of the homogeneous spaces can be chosen so that,
for f ∈S ′,

f =
∑
Q

〈f, ϕQ〉ϕQ, (6)

where〈f, ϕQ〉 simply denotes the action of the distributionf on the test function
ϕQ. Forf in Ḟ α,q

p (Rn) or Ḃα,qp (Rn), the convergence in (6) is in the (quasi-)norm
of the spaces; forf in S0, the convergence is in the topology ofS. See [6] and [7].

It follows from Lemma 2.1 that the action of a pseudodifferential operator on
S0 can be expressed as

Tf =
∑
Q

〈f, ϕQ〉TϕQ. (7)

The operator given by (7) is the one that is extended to the whole homogeneous
space in our theorems. We now turn to the proofs.

The map
Sϕ(f ) = {〈f, ϕQ〉}Q (8)

is called theϕ-transform (or sequence of nonorthogonal wavelet coefficients). It
is well known by the work in [5; 6] that the homogeneousϕ-transform provides
a characterization of the spacesḞ α,q

p (Rn) and Ḃα,qp (Rn) via the equivalence of
norms

‖f ‖Ḟ α,qp (Rn) ∼
∥∥∥∥(∑

j

( ∑
l(Q)=2−j

|Q|−α/n−1/2|〈f, ϕQ〉|χQ
)q)1/q∥∥∥∥

Lp

and

‖f ‖Ḃα,qp (Rn) ∼
(∑

j

∥∥∥∥ ∑
l(Q)=2−j

|Q|−α/n−1/2|〈f, ϕQ〉|χQ
∥∥∥∥q
Lp

)1/q

,

whereχQ is the characteristic function ofQ.
For α, p, q as before letJ = n/min(1, p, q) and let [α] be the integer part in

α. A smooth molecule forḞ α,q
p (Rn) or Ḃα,qp (Rn) associated with a dyadic cube

Q with side lengthl(Q) is a functionmQ satisfying:∫
xγmQ(x) dx = 0 if |γ | ≤ [J − n− α], (9)

|mQ(x)| ≤ |Q|−1/2(1+ l(Q)−1|x − xQ|)−max(J+ε,J+ε−α), (10)

|∂γmQ(x)| ≤ |Q|−1/2−|γ |/n(1+ l(Q)−1|x − xQ|)−J−ε, |γ | ≤ [α] +1. (11)
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The importance of these functions is due to the fact that, if

f =
∑
Q

sQmQ

in S ′, where{mQ} is a family of smooth molecules foṙF α,q
p (Rn) or Ḃα,qp (Rn),

then

‖f ‖Ḟ α,qp (Rn) ≤ C
∥∥∥∥(∑

j

( ∑
l(Q)=2−j

|Q|−α/n−1/2|sQ|χQ
)q)1/q∥∥∥∥

Lp

or

‖f ‖Ḃα,qp (Rn) ≤ C
(∑

j

∥∥∥∥ ∑
l(Q)=2−j

|Q|−α/n−1/2|SQ|χQ
∥∥∥∥q
Lp

)1/q

.

For these results we refer again to [6] and [7].
Now, letT be a linear continuous operator fromS0 to S ′. Assume that

TϕQ = C|Q|−m/nmQ, (12)

where{mQ}Q is a family of smooth molecules foṙF α,q
p (Rn) or Ḃα,qp (Rn). Then,

using theϕ-transform, it is easy to see thatT can be extended as a bounded oper-
ator fromḞ α+m,q

p (Rn) to Ḟ α,q
p (Rn) or from Ḃ

α+m,q
p (Rn) to Ḃα,qp (Rn).

Suppose thatT is a pseudodifferential operator whose symbola(x, ξ) is in Ṡ m1,1.
By (12) it will suffice to show that, for a fixed dyadic cubeQ, TϕQ is a scaled
multiple of a molecule. A simple dilation shows that

(TϕQ)(x) =
∫
eix·ξa(x, ξ)ϕ̂Q(ξ) dξ = 2jn/2(TQϕ)(2

jx − k) (13)

if Q = Qjk, where we set

(TQf )(x) =
∫
eix·ξa(2−j(x + k),2jξ)f̂ (ξ) dξ.

Let us fix a multi-indexγ. We have

(∂γTQϕ)(x) =
∫

Rn
eix·ξ

∑
δ≤γ

Cδ(iξ)
δ∂γ−δx a(2−j(x + k),2jξ)ϕ̂(ξ) dξ (14)

for certainCδ constants, whereδ ≤ γ simply means thatδj ≤ γj for all j =
1, . . . , n.

Now fix N > max(J, J − α)/2. An integration by parts gives

(∂γTQϕ)(x)

=
∫

Rn
eix·ξ

(I −1ξ)
N

(1+ |x|2)N
∑
δ≤γ

Cδ(iξ)
δ∂γ−δx a(2−j(x + k),2jξ)ϕ̂(ξ) dξ. (15)

By Leibniz’s rule, there exist constantsKα,β such that

(I −1ξ)
N∂γ−δx (a(2−j(x + k),2jξ)ϕ̂(ξ)(iξ)δ)

=
∑

|α+β|=2N

Kα,β∂
β

ξ ∂
γ−δ
x

(
a(2−j(x + k),2jξ)∂αξ (ϕ̂(ξ)(iξ)δ)

)
.
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Using the estimates (1), we conclude that

|∂βξ ∂γ−δx a(2−j(x + k),2jξ)| ≤ Cβ,γ−δ2j |β|2−j(|γ |−|δ|)|2jξ|m+(|γ |−|δ|)−|β|

≤ C2jm|ξ|m+(|γ |−|δ|)−|β|.
Summing over allα, β, δ as before and using that|ξ| ∼ 1, we conclude that the
integrand in (15) is pointwise bounded byCγ2jm(1+ |x|2)−N and thus

|(∂γTQϕ)(x)| ≤ Cγ2jm(1+ |x|2)−N. (16)

We now dilate and translate (16) to deduce that

|(∂γTQϕ)(x)| ≤ C2jn/22j |γ |2jm(1+ |2jx − k|2)−N

≤ C|Q|−m/n−1/2−|γ |/n(1+ l(Q)−1|x − xQ|)−max(J+ε,J+ε−α).

We must now check the vanishing moment condition forTϕQ. If [ J −n−α] <
0 then this condition is vacuous. If [J − n − α] ≥ 0 then this is an easy conse-
quence of the hypothesisT ∗xγ = 0, since∫

xγ(TϕQ)(x) dx = 〈xγ, TϕQ〉 = 〈T ∗(xγ ), ϕQ〉 = 0.

Both theorems are now proved.

We conclude this section with some remarks.
1. Forp > 1 letp ′ denotep/(p−1). It can be shown that the spacesḞ α,q

p (Rn)

can actually be considered as spaces of distributions modulo polynomials of de-
gree less than or equal to [α−n/p] (see [6, p.154]). For1< p, q <∞, if T maps
Ḟ
α+m,q
p (Rn) to Ḟ α,q

p (Rn) then, by duality,T ∗ mapsḞ−α,q
′

p ′ (Rn) to Ḟ−α−m,q
′

p ′ (Rn).

It follows that for T ∗ to be even well-defined oṅF−α,q
′

p ′ (Rn) it must annihilate
polynomials of degree [−α − n/p ′ ]. The conditions onT ∗ in the second part of
Theorems 1.1 and 1.2 forα < 0 then become necessary forp→ 1+.

2. For more general operatorsT with kernels satisfying estimates (2) and the
usual weak boundedness property assumed in the T1 theorem (which is always
satisfied by pseudodifferential operators of order zero and their transposes), the
results in [13] state that the conditionsT(xγ ) = 0 for all |γ | ≤ [α] imply that
T is bounded onḂα,qp (Rn) for α > 0 andp, q ≥ 1. Let nowα < 0. If T is a
pseudodifferential operator iṅS 0

1,1, thenT ∗ is not necessarily a pseudodifferential
operator. Nevertheless, its kernelK∗(x, y) isK(y, x) and hence still satisfies the
estimates (2) by symmetry. The results in [13] state that ifT ∗ annihilates polyno-
mials of degree less than or equal to [−α] thenT ∗ is bounded oṅB−α,qp , and then
by dualityT = T ∗∗ is bounded inḂα,qp ,which agrees with our results. Such dual-
ity arguments are not available for other values of the parameters, but our proof is
still valid.

3. Form 6= 0 we could have precomposed the operator with an appropriate
power of the Laplacian and reduced our proof to the casem = 0. There are also
versions of the T1 theorem for general operators whose kernels satisfy appropri-
atem-versions of the estimates (2). In principle, such results could be applied to
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operators inṠ m1,1 and some values of the parametersα, p, andq, but they lead to
weaker results than the ones we have presented here (cf. [18]).

4. Note that our approach does not require the giving of a precise meaning on
the action of an operatorT (satisfying (2)) on polynomials, as is usually required
in versions of the T1 theorem. We only need to know thatT ∗ acts on polynomials,
which is automatic by duality.

5. Operators with homogeneous symbols of degreem in ξ satisfying estimates
(1) were studied by Calderón and Zygmund [3]. For this subclass of symbols, a
partial calculus holds but does not extend to the whole classṠ m1,1 (see [16, p. 268]).

3. Examples and Applications

Symbols inṠ m1,1 that are independent ofx exist in abundance. For instance, it is
easy to see that the reciprocal of an elliptic polynomial ofn variables that is ho-
mogeneous of degreem > 0 is in Ṡ−m1,1 .

An example of a homogeneous symbol in the classṠ 0
1,1 is the following:

+∞∑
k=−∞

ei2
kx·ξφ(2−kξ),

whereφ is a smooth bump supported away from the origin. More generally, sup-
pose that the sequence of smooth functions{mk(x)}k∈Z in Rn satisfies

‖∂βmk‖∞ ≤ Cα2|α|k (17)

for all α n-tuples of nonnegative integers andk any integer. Then the symbol

a(x, ξ) =
+∞∑
k=−∞

mk(x)φ(2
−kξ)

is in Ṡ 0
1,1.

We now give an application. Let1j be the Littlewood–Paley operators defined
by 1̂jg(ξ) = ĝ(ξ)φ(2−jξ), whereφ is a smooth bump (supported away from the
origin) that satisfies

∑
j∈Z φ(2

−jξ) = 1 for all ξ 6= 0.
Suppose now thatf is a function onRn that satisfies∑

j∈Z

‖1jf ‖∞ ≤ C(f ) <∞. (18)

Let F be aC∞ function onRn with F(0) = 0. Suppose thatf is in some of
the homogeneous function space discussed in the previous section with index of
smoothnessα > 0. Denote such space byXα,q

p . We claim thatF(f ) lies in the
same spaceXα,q

p . For the proof of this we borrow the ideas of Bony as presented
in [12].

For an integerk define

fk =
k∑

j=−∞
1jf (19)



268 Loukas Grafakos & Rod olfo H. Torre s

and writef = lim k→∞ fk, with uniform convergence because of (18). The func-
tionsfk have Fourier transforms with compact support and they are smooth (actu-
ally, analytic of exponential type). Moreover, by (18), they are uniformly bounded.
Using (18) and Bernstein’s inequality we obtain the following estimates for their
derivatives:

‖∂αfk‖∞ ≤ Cα2|α|k‖fk‖∞ ≤ C(f )Cα2|α|k. (20)

Write now

F(f ) = lim
N→∞

N∑
k=−N

F(fk)− F(fk−1) =
+∞∑
k=−∞

F(fk)− F(fk−1), (21)

where convergence is justified from the fact thatF is continuous,F(0) = 0, and
thatfN → f andf−N → 0 uniformly asN → +∞. Next apply the mean value
theorem to write (21) as

F(f )(x) =
+∞∑
k=−∞

mk(x)(1kf )(x),

where

mk =
∫ 1

0
F ′(tfk + (1− t)fk−1) dt. (22)

Using (20), the smoothness ofF, and the chain rule, we see that the functionsmk
satisfy (17). We conclude that the symbol

a(x, ξ) =
+∞∑

j=−∞
mj(x)φ(2

−jξ)

is in Ṡ 0
1,1. We have thatF(f ) = Taf. It follows from Theorems 1.1 and 1.2

that the functionF(f ) is in Xα,q
p , providedα > 0 andp, q ≥ 1, or if α >

n(max(1, p−1, q−1)− 1). Observe that, owing to the nonlinearity of the problem,
in the estimate

‖F(f )‖Xα,qp
≤ Cf‖f ‖Xα,qp (23)

the constantCf depends onf. In fact, both the functionsmk and the symbola
depend onf. If we assume thatF(t) = tD then, after carefully examining the ar-
guments given here and the proofs of the theorems (given in Section 2), we see
thatCf in (23) is controlled by a suitable (large) power of the boundC(f ) in (18).

Finally, observe that the left-hand side of (18) is theḂ0,1
∞ norm off. By some

well-known facts about functions of exponential type (see [19]),

‖1jf ‖∞ ≤ C2jn/p‖1jf ‖p.
From this one obtains the inequality (Sobolev–Besov embedding)∑

j∈Z

‖1jf ‖∞ ≤ C
∑
j∈Z

2jn/p‖1jf ‖p.

Then, in particular, the application described can be used inḂ
α,q
p (Rn) with α =

n/p andq = 1, yielding (23) withCf controlled by a power of‖f ‖Ḃ n/p,1p
.
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