Configurations of Linear Subspaces and Rational Invariants

Dmitri Zaitsev

1. Introduction

Let $\mathrm{Gr}_{n, d}(\mathbb{C})$ denote the Grassmannian of all d-dimensional linear subspaces in \mathbb{C}^{n}, and let $\mathrm{GL}_{n}(\mathbb{C}) \times\left(\mathrm{Gr}_{n, d}(\mathbb{C})\right)^{s} \rightarrow\left(\mathrm{Gr}_{n, d}(\mathbb{C})\right)^{s}$ be the canonical diagonal action. Dolgachev [DB] posed the following question:

Is the quotient $\mathrm{Gr}_{n, 2}(\mathbb{C})^{s} / \mathrm{GL}_{n}(\mathbb{C})$ (e.g., in the sense of Rosenlicht) always rational?

Recall that a Rosenlicht quotient of an algebraic variety X acted on by an algebraic group G is an algebraic variety V together with a rational map $X \rightarrow V$ whose generic fibers coincide with the G-orbits. Such quotients always exist and are unique up to birational isomorphisms [R]. In the sequel all quotients will be assumed of this type. An algebraic variety Q is rational if it is birationally equivalent to \mathbb{P}^{m} with $m=\operatorname{dim} Q$.

We answer the above question in the affirmative by applying the rationality of the quotient $\left(\mathrm{GL}_{2}(\mathbb{C})\right)^{2} / \mathrm{GL}_{2}(\mathbb{C})$, where $\mathrm{GL}_{2}(\mathbb{C})$ acts diagonally by conjugations (see [P1] and surveys [B;D]).

Theorem 1.1. For all positive integers n and s, the quotient $\left(\operatorname{Gr}_{n, 2}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ is rational. Equivalently, the field of rational $\mathrm{GL}_{n}(\mathbb{C})$-invariants on $\left(\mathrm{Gr}_{n, 2}(\mathbb{C})\right)^{s}$ is pure transcendental.

The statement of Theorem 1.1 has been recently proved by Megyesi [M] in the case $n=4$ and by Dolgachev and Boden [DB] in the case of odd n. Their proofs are independent of the present one.

More generally, we show the birational equivalence between $\left(\operatorname{Gr}_{n, d}(\mathbb{C})\right)^{s} /$ $\mathrm{GL}_{n}(\mathbb{C})$ and certain quotients of matrix spaces. Let $\mathrm{GL}_{n}(\mathbb{C}) \times\left(\mathrm{GL}_{n}(\mathbb{C})\right)^{s} \rightarrow$ $\left(\mathrm{GL}_{n}(\mathbb{C})\right)^{s}$ be the action defined by $\left(g, M_{1}, \ldots, M_{s}\right) \mapsto\left(g M_{1} g^{-1}, \ldots, g M_{s} g^{-1}\right)$. The first main result of the present paper consists of the following two statements.

Theorem 1.2.

(1) Let s and d be arbitrary positive integers, and let $n=r d$ for some integer $r>1$. Then $\left(\mathrm{Gr}_{n, d}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ is birationally equivalent to $\left(\mathrm{GL}_{d}(\mathbb{C})\right)^{k} /$ $\mathrm{GL}_{d}(\mathbb{C})$, where

Received August 3, 1998. Revision received December 14, 1998.
Michigan Math. J. 46 (1999).

$$
k= \begin{cases}(r-1)(s-r-1) & \text { if } s>r+1 \\ 1 & \text { else } .\end{cases}
$$

(2) Let s be an arbitrary positive integer. Let $n=(2 r+1) e$ and $d=2 e$ for some integers r and e. Then $\left(\mathrm{Gr}_{n, d}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ is birationally equivalent to $\left(\mathrm{GL}_{e}(\mathbb{C})\right)^{k} / \mathrm{GL}_{e}(\mathbb{C})$, where

$$
k= \begin{cases}2 r-4+(4 r-2)(s-r-2) & \text { if } r>1, s>r+1, \\ 2(s-4) & \text { if } r=1, s>4 \\ 1 & \text { else. }\end{cases}
$$

If n is even then Theorem 1.1 follows from the first part of Theorem 1.2 and from the rationality of the quotient of $\left(\mathrm{GL}_{2}(\mathbb{C})\right)^{s}$ by $\mathrm{GL}_{2}(\mathbb{C})$ (see Procesi [P1]); if n is odd then it follows from the second part of Theorem 1.2. Formanek [F1; F2] proved the rationality of $\left(\mathrm{GL}_{n}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ for $n=3,4$. Using his result together with Theorem 1.2, we obtain the following.

Theorem 1.3. For every positive integer s, we have:
(1) $\left(\mathrm{Gr}_{n, 3}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ is rational for $n=0(\bmod 3)$;
(2) $\left(\mathrm{Gr}_{n, 4}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ is rational for $n=0(\bmod 2)$;
(3) $\left(\mathrm{Gr}_{n, 5}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ is rational for $n=3(\bmod 6)$;
(4) $\left(\mathrm{Gr}_{n, 8}(\mathbb{C})\right)^{s} / \mathrm{GL}_{n}(\mathbb{C})$ is rational for $n=4(\bmod 8)$;

We refer the reader to [BS] for similar equivalences of stable rationalities (an algebraic variety V is stable rational if $V \times \mathbb{P}^{m}$ is rational for some m). We also refer to [GP1; GP2] for the classification of quadruples of linear subspaces of arbitrary dimensions and their invariants. In our situation, however, all rational invariants of the quadruples (i.e., the case $s=4$) are constant unless $r=2$ in the first part of Theorem 1.2.

Our method is based on constructing certain normal forms for our algebraic group actions. We call an algebraic variety acted upon algebraically by an algebraic group G a G-space. A G-subspace is a G-invariant locally closed algebraic subvariety of X. We use the standard notation $G s:=\{g s: g \in G\}$ and $G S:=$ $\{g s: g \in G, s \in S\}$, where $S \subset X$ is an arbitrary subset.

Definition 1.1. We say that (S, H) is a normal form for (X, G) if $H \subset G$ is a subgroup and $S \subset X$ is a H-subspace such that the following hold:
(1) $G S$ is Zariski dense in X;
(2) $G s \cap S=H s$ for all $s \in S$.

Clearly these conditions guarantee the birational equivalence of the quotients X / G and S / H. In Sections 3 and 4 we construct certain normal forms that are isomorphic to the spaces of matrices as in Theorem 1.2. Then, in Section 5, we use these normal forms for explicit computations of generators of the fields of rational invariants in each case of Theorem 1.2.

This method also has applications to biholomorphic automorphisms of nonsmooth bounded domains, where the configurations of linear subspaces appear
naturally as collections of tangent subspaces to the so-called characteristic webs. We refer the reader to [Z] for further details.

2. Notation

For brevity we write GL_{n} and $\mathrm{Gr}_{n, d}^{s}$ for $\mathrm{GL}_{n}(\mathbb{C})$ and $\left(\mathrm{Gr}_{n, d}(\mathbb{C})\right)^{s}$, respectively. The actions on the products will be assumed diagonal unless otherwise specified. For E and E^{\prime} vector spaces with $\operatorname{dim} E \leq \operatorname{dim} E^{\prime}$, denote by $\operatorname{Gr}_{d}(E)$ the Grassmannian of all d-dimensional subspaces of E, by $\operatorname{GL}(E)$ the group of linear automorphisms of E, and by $\operatorname{GL}\left(E_{1}, E_{2}\right)$ the space of all linear embeddings of E_{1} into E_{2}. A G-space X is homogeneous (resp. almost homogeneous) if G acts transitively on X (on a Zariski dense subset of X).

3. The Case \boldsymbol{d} Divides \boldsymbol{n}

In this section we study the diagonal GL_{n}-action on $\mathrm{Gr}_{n, d}^{s}$ with $n=r d$ for some integer r. Clearly, the set of all r-tuples $\left(V_{1}, \ldots, V_{r}\right) \in \mathrm{Gr}_{n, d}^{r}$ such that $\mathbb{C}^{n}=$ $V_{1} \oplus \cdots \oplus V_{r}$ is Zariski open and GL_{n}-homogeneous. This can be reformulated in terms of normal forms as follows.

Lemma 3.1. Suppose that $r \geq 2, s \geq r$, and $\left(E_{1}, \ldots, E_{r}\right) \in \operatorname{Gr}_{n, d}^{r}$ is such that $\mathbb{C}^{n}=E_{1} \oplus \cdots \oplus E_{r}$. Define

$$
S_{1}=S_{1}(s):=\left\{\left(V_{1}, \ldots, V_{s}\right) \in \operatorname{Gr}_{n, d}^{s}:\left(V_{1}, \ldots, V_{r}\right)=\left(E_{1}, \ldots, E_{r}\right)\right\}
$$

and the group $H_{1}:=\mathrm{GL}\left(E_{1}\right) \times \cdots \times \mathrm{GL}\left(E_{r}\right) \subset \mathrm{GL}_{n}$. Then $\left(S_{1}, H_{1}\right)$ is a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.

Now fix the splitting $\mathbb{C}^{n}=E_{1} \oplus \cdots \oplus E_{r}$ as before. Let $V \in \operatorname{Gr}_{n, d}$ be such that its projection on each $E_{i}(i=1, \ldots, r)$ is bijective. In this case we say that V is in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$. Clearly the subset of all V, which are in general position, is Zariski open in $\mathrm{Gr}_{n, d}$. Thus, for every $i=2, \ldots, r$, the projection V_{i} of V on $E_{1} \times E_{i}$ is a graph of a linear isomorphism $\varphi_{i}: E_{1} \rightarrow E_{i}$. We claim that this correspondence between elements $V \in \operatorname{Gr}_{n, d}$ and ($r-1$)-tuples of linear isomorphisms

$$
\left(\varphi_{2}, \ldots, \varphi_{r}\right) \in \prod_{i=2}^{r} \mathrm{GL}\left(E_{1}, E_{i}\right)
$$

is birational.
Lemma 3.2. Under the assumptions of Lemma 3.1, define

$$
\begin{gathered}
\Phi: \prod_{i=2}^{r} \operatorname{GL}\left(E_{1}, E_{i}\right) \rightarrow \mathrm{Gr}_{n, d}, \\
\Phi\left(\varphi_{2}, \ldots, \varphi_{r}\right):=\left\{\left(z \oplus \varphi_{2}(z) \oplus \cdots \oplus \varphi_{r}(z)\right): z \in E_{1}\right\}
\end{gathered}
$$

and the H_{1}-action on $\prod_{i=2}^{r} \operatorname{GL}\left(E_{1}, E_{i}\right)$ by

$$
\left(\left(g_{1}, \ldots, g_{r}\right),\left(\varphi_{2}, \ldots, \varphi_{r}\right)\right) \mapsto\left(g_{2} \circ \varphi_{2} \circ g_{1}^{-1}, \ldots, g_{r} \circ \varphi_{r} \circ g_{1}^{-1}\right)
$$

Then Φ is birational and H_{1}-equivariant. The image of Φ consists of all subspaces $V \in \mathrm{Gr}_{n, d}$ that are in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$.

Proof. Since Φ defines a system of standard coordinates on $\mathrm{Gr}_{n, d}$, it is birational. The equivariance and the statement on the image are straightforward.

Since $\prod_{i=2}^{r} \mathrm{GL}\left(E_{1}, E_{i}\right)$ is H_{1}-homogeneous, we have the following.
Corollary 3.1. Under the assumptions of Lemma 3.1, let $S_{1}^{\prime}(s) \subset S_{1}(s)$ be the Zariski open subset, where V_{r+1} is in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$. Then H_{1} acts transitively on $S_{1}^{\prime}(r+1)$.

This proves statement 1 of Theorem 1.2 for $s \leq r+1$. Suppose now that $s>$ $r+1$ and that $E_{r+1} \in \mathrm{Gr}_{n, d}$ is in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$.

Lemma 3.3. Define $S_{2}=S_{2}(s):=\left\{\left(V_{1}, \ldots, V_{s}\right) \in S_{1}(s): V_{r+1}=E_{r+1}\right\}$ and the group $H_{2}:=\mathrm{GL}\left(E_{1}\right)$ with the action on S_{2} defined by the homomorphism

$$
H_{2} \rightarrow H_{1}, \quad g \mapsto\left(g, \varphi_{2} \circ g \circ \varphi_{2}^{-1}, \ldots, \varphi_{r} \circ g \circ \varphi_{r}^{-1}\right)
$$

where

$$
\left(\varphi_{2}, \ldots, \varphi_{r}\right):=\Phi^{-1}\left(E_{r+1}\right)
$$

Then $\left(S_{2}, H_{2}\right)$ is a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.
Proof. By Corollary 3.1, $H_{1} S_{2}$ is Zariski open in S_{1}. By straightforward calculations, $\left(S_{2}, H_{2}\right)$ is a normal form for $\left(S_{1}, H_{1}\right)$ and hence, by Lemma 3.1, a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.

We now let $V \in \mathrm{Gr}_{n, d}$ be one more subspace in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$. Define $\left(\psi_{2}, \ldots, \psi_{r}\right):=\Phi^{-1}(V)$. Clearly the map

$$
\begin{gather*}
\prod_{i=2}^{r} \mathrm{GL}\left(E_{1}, E_{i}\right) \rightarrow \mathrm{GL}\left(E_{1}\right)^{r-1}, \tag{1}\\
\left(\psi_{2}, \ldots, \psi_{r}\right) \mapsto\left(\varphi_{2}^{-1} \circ \psi_{2}, \ldots, \varphi_{r}^{-1} \circ \psi_{r}\right)
\end{gather*}
$$

is one-to-one, where $\left(\varphi_{2}, \ldots, \varphi_{r}\right)=\Phi^{-1}\left(E_{r+1}\right)$ is fixed. Moreover, we obtain the following lemma.

Lemma 3.4. Define $K: \operatorname{GL}\left(E_{1}\right)^{r-1} \rightarrow \mathrm{Gr}_{n, d}$ by

$$
K\left(\chi_{2}, \ldots, \chi_{r}\right):=\Phi\left(\varphi_{2} \circ \chi_{2}, \ldots, \varphi_{r} \circ \chi_{r}\right),
$$

and define the H_{2}-action on X_{2} by

$$
\left(g,\left(\chi_{2}, \ldots, \chi_{r}\right)\right) \mapsto\left(g \circ \chi_{2} \circ g^{-1}, \ldots, g \circ \chi_{r} \circ g^{-1}\right) .
$$

Then K is birational and H_{2}-equivariant. The image of K consists of all subspaces $V \in \mathrm{Gr}_{n, d}$ that are in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$.

Proof. The map K is birational as the composition of Φ and the map (1). The other statements are straightforward.

Corollary 3.2. Under the assumptions of Lemma 3.3, define

$$
\begin{gathered}
\Psi: S_{2}(s) \rightarrow\left(\mathrm{GL}\left(E_{1}\right)^{r-1}\right)^{s-r-1}, \\
\Psi\left(E_{1}, \ldots, E_{r+1}, V_{r+2}, \ldots, V_{s}\right):=\left(K^{-1}\left(V_{r+2}\right), \ldots, K^{-1}\left(V_{s}\right)\right) .
\end{gathered}
$$

Then Ψ is birational and H_{2}-equivariant.
Finally, using Lemma 3.3, we obtain the following.
Corollary 3.3. For $n=r d$, the space $\mathrm{Gr}_{n, d}^{s}$ is almost GL_{n}-homogeneous if and only if $s \leq r+1$. If $s>r+1$, there is a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$ that is isomorphic to $\left(\mathrm{GL}_{d}^{(r-1)(s-r-1)}, \mathrm{GL}_{d}\right)$.

This implies the first part of Theorem 1.2.

4. The Case $n=(2 r+1) e$ and $d=2 e$

We start with an r-tuple $\left(V_{1}, \ldots, V_{r}\right) \in \mathrm{Gr}_{n, d}^{r}$. Clearly the subset of all r-tuples that form a direct sum is both Zariski open and GL_{n}-homogeneous. Fix an r-tuple $\left(E_{1}, \ldots, E_{r}\right)$ in this subset and suppose that $s>r$. A straightforward calculation yields the following.

Lemma 4.1. Define

$$
S_{1}=S_{1}(s):=\left\{\left(V_{1}, \ldots, V_{s}\right) \in \operatorname{Gr}_{n, d}^{s}:\left(V_{1}, \ldots, V_{r}\right)=\left(E_{1}, \ldots, E_{r}\right)\right\}
$$

and the group $H_{1}:=\left\{g \in \mathrm{GL}_{n}: g\left(E_{i}\right)=E_{i}\right.$ for all $\left.i=1, \ldots, r\right\}$ with the diagonal action on S_{1}. Then $\left(S_{1}, H_{1}\right)$ is a normal form for $\left(\operatorname{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.

Now we wish to parameterize the d-dimensional linear subspaces in \mathbb{C}^{n} with respect to $\left(E_{1}, \ldots, E_{r}\right)$. We say that V is in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$, if $\operatorname{dim} W=e$, where $W:=V \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right)$ and the projection of W on each $E_{i}(i=1, \ldots, r)$ is injective. The subset of all $V \in \mathrm{Gr}_{n, d}$ that are in general position is clearly Zariski open.

We first give another description of the subspaces $W \in \operatorname{Gr}_{e}\left(E_{1} \oplus \cdots \oplus E_{r}\right)$ that are in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$. For this, let $A_{i}=A_{i}(V) \in$ $\operatorname{Gr}_{e}\left(E_{i}\right)$ be the projections of W and let $\varphi_{i}=\varphi_{i}(V) \in \operatorname{GL}\left(A_{1}, E_{i}\right)$ be the linear isomorphisms whose graphs are equal to the projections of W on $E_{1} \oplus E_{i}(i=$ $2, \ldots, r)$. Denote by $X=X\left(E_{1}, \ldots, E_{r}\right)$ the space of all tuples $\left(A, \varphi_{2}, \ldots, \varphi_{r}\right)$, where $A \in \operatorname{Gr}_{e}\left(E_{1}\right)$ and $\varphi_{i} \in \operatorname{GL}\left(A, E_{i}\right)$, with the standard structure of a quasiprojective variety.

Lemma 4.2. Define

$$
\begin{gathered}
\Phi: X \rightarrow \operatorname{Gr}_{e}\left(E_{1} \oplus \cdots \oplus E_{r}\right), \\
\Phi\left(A, \varphi_{2}, \ldots, \varphi_{r}\right):=\left\{\left(z \oplus \varphi_{2}(z) \oplus \cdots \oplus \varphi_{r}(z)\right): z \in A\right\},
\end{gathered}
$$

and the H_{1}-action on X by

$$
\left(g,\left(A, \varphi_{2}, \ldots, \varphi_{r}\right)\right) \mapsto\left(g(A), g \circ \varphi_{2} \circ g^{-1}, \ldots, g \circ \varphi_{r} \circ g^{-1}\right) .
$$

Then Φ is birational and H_{1}-equivariant. The image of Φ consists of all subspaces $W \in X$ that are in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$.

Proof. The proof is straightforward.
Corollary 4.1. Let $S_{1}^{\prime}(s) \subset S_{1}(s)$ be the Zariski open subset of all s-tuples $\mathcal{V}=$ $\left(V_{1}, \ldots, V_{s}\right)$ such that V_{r+1} is in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$. Then H_{1} acts transitively on $S_{1}^{\prime}(r+1)$.

Proof. It follows from the general position condition that

$$
W(\mathcal{V}):=V_{r+1} \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right) \in \operatorname{Gr}_{e}\left(E_{1} \oplus \cdots \oplus E_{r}\right)
$$

in the notation of Lemma 4.2. Let $\mathcal{V}, \mathcal{V}^{\prime} \in S_{1}^{\prime}(r+1)$ be arbitrary elements. Since X is H_{1}-homogeneous, there exists $g_{1} \in H_{1}$ such that $g_{1}(W(\mathcal{V}))=W\left(\mathcal{V}^{\prime}\right)$. Then there exists $g_{2} \in \mathrm{GL}_{n}$ with $g_{2}\left(V_{r+1}\right)=V_{r+1}^{\prime}$ and $g_{2} \mid\left(E_{1} \oplus \cdots \oplus E_{r}\right)=\mathrm{id}$. By construction, $g_{2} \in H_{1}$ and the proof is finished.

Corollary 4.2. For $s \leq r+1, \mathrm{Gr}_{n, d}^{s}$ is almost GL_{n}-homogeneous.
Let $s>r+1$ and $E_{r+1} \in \mathrm{Gr}_{n, d}$ be in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$. As a direct consequence of Corollary 4.1, we have the following lemma.

Lemma 4.3. Define $S_{2}:=\left\{\left(V_{1}, \ldots, V_{s}\right) \in S_{1}: V_{r+1}=E_{r+1}\right\}$ and $H_{2}:=\{g \in$ $\mathrm{GL}_{n}: g\left(E_{i}\right)=E_{i}$ for all $\left.i=1, \ldots, r+1\right\}$, with the diagonal action on S_{2}. Then $\left(S_{2}, H_{2}\right)$ is a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.

For the sequel we suppose that the subspaces E_{1}, \ldots, E_{r+1} are fixed. Define

$$
\left(A, \varphi_{2}, \ldots, \varphi_{r}\right):=\Phi^{-1}\left(E_{r+1} \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right)\right) .
$$

Let $V \in \mathrm{Gr}_{n, d}$ be one more subspace that is in general position with respect to $\left(E_{1}, \ldots, E_{r}\right)$. Clearly, V is not uniquely determined by its e-dimensional intersection $Z_{1}(V):=V \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right)$. However, using E_{r+1}, we can consider another intersection $Z_{2}(V):=V \cap\left(E_{1} \oplus \cdots \oplus E_{r-1} \oplus E_{r+1}\right)$. Then the map

$$
Z:=\left(Z_{1}, Z_{2}\right): \operatorname{Gr}_{n, d} \rightarrow \operatorname{Gr}_{e}\left(E_{1} \oplus \cdots \oplus E_{r}\right) \times \operatorname{Gr}_{e}\left(E_{1} \oplus \cdots \oplus E_{r-1} \oplus E_{r+1}\right)
$$

is birational with the inverse $Z^{-1}:\left(W, W^{\prime}\right) \mapsto W+W^{\prime}$.
Using the construction of X and Φ for the tuple $\left(E_{1}, \ldots, E_{r-1}, E_{r+1}\right)$ instead of $\left(E_{1}, \ldots, E_{r}\right)$, we obtain $Y:=X\left(E_{1}, \ldots, E_{r-1}, E_{r+1}\right)$ and the H_{2}-equivariant birational map

$$
\Psi: Y \rightarrow \operatorname{Gr}_{e}\left(E_{1} \oplus \cdots \oplus E_{r-1} \oplus E_{r+1}\right)
$$

Combining Φ, Ψ, and Z, we obtain the following.

Corollary 4.3. The composition $\Omega:=Z^{-1} \circ(\Phi, \Psi): X \times Y \rightarrow \operatorname{Gr}_{n, d}$ is birational and H_{2}-invariant.

In the following we treat the cases $r>1$ and $r=1$ separately.

$$
\text { 4.1. The case } r>1 \text {. }
$$

For $V \in \mathrm{Gr}_{n, d}$, set

$$
\begin{gather*}
\left(B, \psi_{2}, \ldots, \psi_{r}\right):=\Phi^{-1}\left(V \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right)\right) \in X, \tag{2}\\
\left(C, \chi_{2}, \ldots, \chi_{r-1}, \chi_{r+1}\right):=\Psi^{-1}\left(V \cap\left(E_{1} \oplus \cdots \oplus E_{r-1} \oplus E_{r+1}\right)\right) \in Y . \tag{3}
\end{gather*}
$$

In order to construct a smaller normal form, fix $\left(A^{\prime}, \varphi_{2}^{\prime}, \ldots, \varphi_{r}^{\prime}\right) \in X, A^{\prime \prime} \in \operatorname{Gr}_{e}\left(E_{1}\right)$, and $\chi_{r+1}^{\prime} \in \mathrm{GL}\left(A^{\prime \prime}, E_{r+1}\right)$ such that $E_{1}=A \oplus A^{\prime}, A^{\prime \prime} \cap A=A^{\prime \prime} \cap A^{\prime}=\{0\}, E_{i}=$ $\varphi_{i}(A) \oplus \varphi_{i}^{\prime}\left(A^{\prime}\right)$ for all $i=2, \ldots, r$, and $\mathbb{C}^{n}=E_{1} \oplus \cdots \oplus E_{r} \oplus \chi_{r+1}^{\prime}\left(A^{\prime \prime}\right)$.

Lemma 4.4. In the notation just described, define

$$
S:=\left\{V \in \operatorname{Gr}_{n, d}: B=A^{\prime}, C=A^{\prime \prime}, \psi_{2}=\varphi_{2}^{\prime}, \ldots, \psi_{r}=\varphi_{r}^{\prime}, \chi_{r+1}=\chi_{r+1}^{\prime}\right\} .
$$

Then $\mathrm{H}_{2} \mathrm{~S}$ is Zariski open in $\mathrm{Gr}_{n, d}$.
Proof. For $V \in \mathrm{Gr}_{n, d}$ generic, $E_{1}=A \oplus B$. Hence there exists a $g \in \operatorname{GL}\left(E_{1}\right)$ with $g \mid A=$ id and $g(B)=A^{\prime}$. Clearly g extends to an isomorphism from the action by H_{2}. Without loss of generality, $B=A^{\prime}$. Similarly, there exists an isomorphism $g \in H_{2}$ such that $g \mid \varphi_{i}(A)=$ id and $g \circ \psi_{i}=\varphi_{i}^{\prime}$ on A^{\prime} for all $i=2, \ldots, s$. Thus we may assume that $\psi_{i}=\varphi_{i}^{\prime}$. By Lemma 3.1, we may also assume that $C=$ $A^{\prime \prime}$. Again, for V generic, $\mathbb{C}^{n}=E_{1} \oplus \cdots \oplus E_{r} \oplus \chi_{r+1}\left(A^{\prime \prime}\right)$, where $\chi_{r+1}\left(A^{\prime \prime}\right) \subset$ E_{r+1}. Hence there exists an isomorphism $g \in H_{2}$ such that $g \mid\left(E_{1} \oplus \cdots \oplus E_{r}\right)=$ id and $g \circ \chi_{r+1}=\chi_{r+1}^{\prime}$. This proves the lemma.

Let $\alpha \in \operatorname{GL}\left(A, A^{\prime}\right)$ be the isomorphism whose graph is $A^{\prime \prime}$ with respect to the splitting $E_{1}=A \oplus A^{\prime}$. Define $\beta: A \rightarrow A^{\prime \prime}$ by $\beta(z):=z \oplus \alpha(z)$. For every $i=$ $2, \ldots, r$, consider

$$
\xi_{i}:=\left(\varphi_{i} \times \varphi_{i}^{\prime}\right)^{-1} \circ \chi_{i} \circ \beta \in \operatorname{GL}\left(A, A \oplus A^{\prime}\right)
$$

and its components $\left[\xi_{i}\right]_{1} \in \mathrm{GL}(A)$ and $\left[\xi_{i}\right]_{2} \in \mathrm{GL}\left(A, A^{\prime}\right)$. Define the rational map

$$
\begin{gathered}
\Xi: S \rightarrow \operatorname{GL}(A)^{2(r-2)}, \\
\Xi: V \mapsto\left(\left[\xi_{2}\right]_{1}, \alpha^{-1} \circ\left[\xi_{2}\right]_{2}, \ldots,\left[\xi_{r-1}\right]_{1}, \alpha^{-1} \circ\left[\xi_{r-1}\right]_{2}\right),
\end{gathered}
$$

where S is defined in Lemma 4.4.
Let $g \in \mathrm{GL}(A)$ be arbitrary. Using the isomorphisms $\alpha: A \rightarrow A^{\prime}, \varphi_{i}: A \rightarrow$ $\varphi_{i}(A)$ and $\varphi_{i}^{\prime}: A^{\prime} \rightarrow \varphi_{i}^{\prime}\left(A^{\prime}\right)$ for $i=2, \ldots, r$, and $\chi_{r+1}^{\prime} \circ \beta: A \rightarrow \chi_{r+1}^{\prime}\left(A^{\prime \prime}\right)$, we can extend g canonically to an isomorphism from the action by H_{2}. This extension defines a canonical $\mathrm{GL}(A)$-action on \mathbb{C}^{n} and therefore on S (as defined in Lemma 4.4). We compare this action with the diagonal $\operatorname{GL}(A)$-action on $\mathrm{GL}(A)^{2(r-2)}$ by conjugations as follows.

Lemma 4.5. The map $\Xi: \mathrm{Gr}_{n, d} \rightarrow \mathrm{GL}(A)^{2(r-2)}$ is birational and $\operatorname{GL}(A)$ equivariant.

Proof. The inverse of Ξ is given by

$$
\Xi^{-1}\left(\lambda_{2}, \ldots, \lambda_{r-1}, \delta_{2}, \ldots, \delta_{r-1}\right)=\Omega(x, y)
$$

where $\Omega: X \times Y \rightarrow \mathrm{Gr}_{n, d}$ is birational (by Corollary 4.3) and

$$
\begin{gathered}
x:=\left(A^{\prime}, \varphi_{2}^{\prime}, \ldots, \varphi_{r}^{\prime}\right), \\
y:=\left(A^{\prime \prime},\left(\varphi_{2} \times \varphi_{2}^{\prime}\right) \circ\left(\lambda_{2}, \alpha \circ \delta_{2}\right) \circ \beta^{-1}, \ldots,\right. \\
\\
\left.\left(\varphi_{r-1} \times \varphi_{r-1}^{\prime}\right) \circ\left(\lambda_{r-1}, \alpha \circ \delta_{r-1}\right) \circ \beta^{-1}, \chi_{r+1}^{\prime}\right) .
\end{gathered}
$$

The equivariance is straightforward.
In the following corollary we use the space S as defined in Lemma 4.4.
Corollary 4.4. Define $S_{3}(s):=\left\{\left(V_{1}, \ldots, V_{s}\right) \in \operatorname{Gr}_{n, d}^{s}: V_{r+2} \in S\right\}$ and consider the diagonal $\mathrm{GL}(A)$-action on S_{3}. Then $\left(S_{3}, \mathrm{GL}(A)\right)$ is a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.

Corollary 4.5. If $d=2 e$ and $n=(2 r+1) e$, the space $\mathrm{Gr}_{n, d}^{r+2}$ is almost GL_{n} homogeneous if and only if $r=2$.

Now let $V \in \mathrm{Gr}_{n, d}$ be one more subspace. Using the previously fixed data, we associate with V a tuple of $4 r-2$ linear automorphisms of A as follows. In the notation following (2) and (3), let $\tau_{1} \in \mathrm{GL}\left(A, A^{\prime}\right)$ and $\tau_{2} \in \mathrm{GL}\left(A, A^{\prime}\right)$ be the linear isomorphisms with the graphs B and C, respectively. As above, let $\alpha \in \operatorname{GL}\left(A, A^{\prime}\right)$ be the isomorphism whose graph is $A^{\prime \prime}$. For $j=1,2$, set $\sigma_{j}:=\alpha^{-1} \circ \tau_{j} \in \operatorname{GL}(A)$ and $\tau_{j}^{\prime}(z):=z+\tau_{j}(z)\left(\tau_{1}^{\prime}: A \rightarrow B, \tau_{2}^{\prime}: A \rightarrow C\right)$. For $i=2, \ldots, r$,

$$
\zeta_{i}:=\left(\varphi_{i} \times \varphi_{i}^{\prime}\right)^{-1} \circ \psi_{i} \circ \tau_{1}^{\prime} \in \operatorname{GL}\left(A, A \oplus A^{\prime}\right)
$$

for $i=2, \ldots, r-1$,

$$
\theta_{i}:=\left(\varphi_{i} \times \varphi_{i}^{\prime}\right)^{-1} \circ \chi_{i} \circ \tau_{2}^{\prime} \in \mathrm{GL}\left(A, A \oplus A^{\prime}\right) .
$$

We write $\left[\zeta_{i}\right]_{1},\left[\theta_{i}\right]_{1} \in \mathrm{GL}(A)$ and $\left[\zeta_{i}\right]_{2},\left[\theta_{i}\right]_{2} \in \mathrm{GL}\left(A, A^{\prime}\right)$ for the corresponding components with respect to the splitting $E_{1}=A \oplus A^{\prime}$. Then we obtain the linear automorphisms of A as $x_{i}:=\left[\zeta_{i}\right]_{1}$ and $y_{i}:=\alpha^{-1} \circ\left[\zeta_{i}\right]_{2}$ for $i=2, \ldots, r ; z_{i}:=$ $\left[\theta_{i}\right]_{1}, t_{i}:=\alpha^{-1} \circ\left[\theta_{i}\right]_{2}$ for $i=2, \ldots, r-1$.

In order to deal with the remainder term χ_{r+1}, we define $\varphi_{r+1} \in \operatorname{GL}\left(A, \mathbb{C}^{n}\right)$ by

$$
\varphi_{r+1}(z):=z \oplus \varphi_{2}(z) \oplus \cdots \oplus \varphi_{r}(z)
$$

It follows from the construction that $\varphi_{r+1}(A) \in \operatorname{Gr}_{e}\left(E_{r+1}\right)$ and $E_{r+1}=\varphi_{r+1}(A) \oplus$ $\chi_{r+1}^{\prime}\left(A^{\prime \prime}\right)$. Using this splitting we define the remainder isomorphisms

$$
\theta_{r}:=\left(\varphi_{r+1} \times \chi_{r+1}^{\prime}\right)^{-1} \circ \chi_{r+1} \circ \tau_{2}^{\prime} \in \mathrm{GL}\left(A, A \oplus A^{\prime}\right),
$$

$z_{r}:=\left[\theta_{r}\right]_{1}$, and $t_{r}:=\alpha^{-1} \circ\left[\theta_{r}\right]_{2} \in \mathrm{GL}(A)$.

Lemma 4.6. Let $\Theta: \mathrm{Gr}_{n, d} \rightarrow \mathrm{GL}(A)^{4 r-2}$ be given by

$$
\Theta: V \mapsto\left(\sigma_{1}, \sigma_{2}, x_{2}, y_{2}, z_{2}, t_{2}, \ldots, x_{r}, y_{r}, z_{r}, t_{r}\right)
$$

Then Θ is birational and $\operatorname{GL}(A)$-equivariant.
Proof. In the foregoing notation, the inverse Θ^{-1} can be calculated as follows:

$$
\begin{gathered}
\tau_{j}^{\prime}:=\alpha \circ \sigma_{j}+\mathrm{id}, \quad B:=\tau_{1}^{\prime}(A), \quad C:=\tau_{2}^{\prime}(A), \\
\psi_{i}=\left(\varphi_{i} \times \varphi_{i}^{\prime}\right) \circ\left(x_{i}, \alpha \circ y_{i}\right) \circ\left(\tau_{1}^{\prime}\right)^{-1} \quad \text { for } i=2, \ldots, r, \\
\chi_{i}=\left(\varphi_{i} \times \varphi_{i}^{\prime}\right) \circ\left(z_{i}, \alpha \circ t_{i}\right) \circ\left(\tau_{2}^{\prime}\right)^{-1} \quad \text { for } i=2, \ldots, r-2, \\
\chi_{r+1}=\left(\varphi_{r+1} \times \chi_{r+1}^{\prime}\right) \circ\left(z_{r}, \alpha \circ t_{r}\right) \circ\left(\tau_{2}^{\prime}\right)^{-1}, \\
V=\Omega\left(\left(B, \psi_{2}, \ldots, \psi_{r}\right),\left(C, \chi_{2}, \ldots, \chi_{r-1}, \chi_{r+1}\right)\right) .
\end{gathered}
$$

The equivariance is straightforward.
Corollary 4.6. If $s \geq r+2$ then the space $\left(S_{3}, \mathrm{GL}(A)\right)$ is isomorphic to

$$
\left(\mathrm{GL}_{e}^{2 r-4+(s-r-2)(4 r-2)}, \mathrm{GL}_{e}\right) .
$$

Proof. The required birational isomorphism is given by

$$
\begin{equation*}
\left(V_{1}, \ldots, V_{s}\right) \mapsto\left(\Xi\left(V_{r+2}\right), \Theta\left(V_{r+3}\right), \ldots, \Theta\left(V_{s}\right)\right), \tag{4}
\end{equation*}
$$

where Ξ is birational by Lemma 4.5 and Θ is birational by Lemma 4.6.
This implies the second part of Theorem 1.2 in the case $r>1$.

4.2. The Case $r=1$

In this case we have $n=3 e$. Recall that we fixed $E_{1}, E_{2} \in \mathrm{Gr}_{n, d}$ in general position such that $\operatorname{dim} A=e$, where $A:=E_{1} \cap E_{2}$. Choose another subspace $E_{3} \in$ $\mathrm{Gr}_{n, d}$ such that $\operatorname{dim} A_{1}=\operatorname{dim} A_{2}=e$, where $A_{j}:=E_{j} \cap E_{3}$ for $j=1,2$. Recall that we defined $H_{2} \subset \mathrm{GL}_{n}$ to be the stabilizer of both E_{1} and E_{2}. Denote by $H_{3} \subset$ H_{2} the stabilizer of E_{3}. Then $H_{3}=\mathrm{GL}(A) \times \operatorname{GL}\left(A_{1}\right) \times \operatorname{GL}\left(A_{2}\right)$ with respect to the splitting $\mathbb{C}^{n}=A \oplus A_{1} \oplus A_{2}$. The following is straightforward.

Lemma 4.7. Suppose that $s \geq 3$ and define $S_{3}=S_{3}(s):=\left\{\left(V_{1}, \ldots, V_{s}\right) \in S_{2}\right.$: $\left.V_{3}=E_{3}\right\}$. Then $\left(S_{3}, H_{3}\right)$ is a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.

Now we choose $B_{j} \in \operatorname{Gr}_{e}\left(E_{j}\right)$ such that $B_{j} \cap A=B_{j} \cap A_{j}=\{0\}$ for $j=1,2$. Then each B_{j} can be seen as the graph of an isomorphism $\varphi_{j} \in \operatorname{GL}\left(A, A_{j}\right)$. On the other hand, for $V \in \mathrm{Gr}_{n, d}$ generic, the subspaces $C_{j}:=V \cap E_{j}$ are graphs of isomorphisms $\psi_{j} \in \operatorname{GL}\left(A, A_{j}\right)$. Define

$$
g=\left(\mathrm{id}, \psi_{1} \circ \varphi_{1}^{-1}, \psi_{2} \circ \varphi_{2}^{-1}\right) \in \mathrm{GL}\left(A \oplus A_{1} \oplus A_{2}\right)
$$

Then $g \in H_{3}$ and $g\left(B_{j}\right)=C_{j}$ for $i=1,2$; in particular, $V=B_{1}+B_{2}$. Together with Lemma 3.3 this proves the following.

Lemma 4.8. Suppose that $s \geq 4$. Define

$$
S_{4}=S_{4}(s):=\left\{\left(V_{1}, \ldots, V_{s}\right) \in S_{3}: V_{4} \cap E_{1}=B_{1}, V_{4} \cap E_{2}=B_{2}\right\}
$$

and $H_{4}:=\mathrm{GL}(A)$. Define the H_{4}-action on S_{4} via the homomorphism

$$
H_{4} \rightarrow H_{3}, \quad g \mapsto\left(g, \varphi_{1} \circ g \circ \varphi_{1}^{-1}, \varphi_{2} \circ g \circ \varphi_{2}^{-1}\right) .
$$

Then $\left(S_{4}, H_{4}\right)$ is a normal form for $\left(\mathrm{Gr}_{n, d}^{s}, \mathrm{GL}_{n}\right)$.
As a special case of Corollary 3.3, we obtain the following.
Lemma 4.9. The space $\mathrm{Gr}_{3 e, 2 e}^{s}$ is almost $\mathrm{GL}_{3 e}$-homogeneous if and only if $s \leq$ 4. If $s \geq 5$ then there exists a normal form that is isomorphic to $\left(\mathrm{GL}_{e}^{2(s-4)}, \mathrm{GL}_{e}\right)$, where GL_{e} acts diagonally by conjugations.

This implies the second part of Theorem 1.2 in the case $r=1$.

5. Computation of Rational Invariants

5.1. The Case $n=r d$

In order to compute the rational $\mathrm{GL}_{r d}$-invariants of $\mathrm{Gr}_{r d, d}^{s}$ we represent the elements of $\mathrm{Gr}_{r d, d}^{s}$ by the equivalence classes of $r d \times d s$ matrices $M \in \mathbb{C}^{r d \times s d}$, where the equivalence is taken under the right multiplication by GL_{d}^{s}. Then the diagonal $\mathrm{GL}_{r d}$-action on $\mathrm{Gr}_{r d, d}^{s}$ corresponds to the left multiplication on $\mathbb{C}^{r d \times s d}$. We start with $2 d \times 2 d$ matrices. Define

$$
D: \mathrm{GL}_{2 d} \rightarrow \mathrm{GL}_{d}, \quad D\left(\begin{array}{ll}
A_{11} & A_{12} \tag{5}\\
A_{21} & A_{22}
\end{array}\right):=A_{11} A_{21}^{-1} A_{22} A_{12}^{-1}
$$

Then D is a rational map that is invariant under the right multiplication by $\mathrm{GL}_{d} \times \mathrm{GL}_{d}$ and the left multiplication by $\{e\} \times \mathrm{GL}_{d}$, where $e \in \mathrm{GL}_{d}$ is the unit. Moreover, D is equivariant with respect to the left multiplication by $\mathrm{GL}_{d} \times\{e\}$.

More generally, let $M \in \mathbb{C}^{r d \times s d}$ be a rectangular matrix, where r and s are arbitrary positive integers. We split M into $d \times d$ blocks $A_{i j}(i=1, \ldots, r, j=$ $1, \ldots, s)$. Then, for every $i=2, \ldots, r$ and $j=2, \ldots, s$, define

$$
D_{i j}: \mathbb{C}^{r d \times s d} \rightarrow \mathrm{GL}_{d}, \quad D_{i j}(M):=D\left(\begin{array}{cc}
A_{11} & A_{1 j} \\
A_{i 1} & A_{i j}
\end{array}\right)
$$

Similarly to D, each $D_{i j}$ is a rational map that is invariant under the right multiplication by GL_{d}^{s} and under the left multiplication by $\{e\} \times \mathrm{GL}_{d}^{r-1}$.

Finally, we construct rational maps that are invariant under the left multiplication by the larger group $\mathrm{GL}_{r d}$. For this, we assume $s>r+1$; otherwise, the left $\mathrm{GL}_{r d}$-multiplication is almost homogeneous (see Corollary 3.3) and hence all rational invariants are constant. Then every matrix $M \in \mathbb{C}^{r d \times s d}$ from a Zariski open subset can be split into two blocks:

$$
M=(A B), \quad A \in \mathrm{GL}_{r d}, \quad B \in \mathbb{C}^{r d \times(s-r) d}
$$

Define

$$
\varphi(M):=A^{-1} B \in \mathbb{C}^{r d \times(s-r) d}
$$

and

$$
G_{i j}(M):=D_{i j}(\varphi(M)) \quad \text { for } i=2, \ldots, r \text { and } j=2, \ldots, s-r .
$$

In particular, for $d=1, r=2$ and $s=4$, we obtain the classical double ratio:

$$
\begin{aligned}
G_{22}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right) & =D\left(\begin{array}{ll}
z_{2}-z_{3} & z_{2}-z_{4} \\
z_{1}-z_{3} & z_{1}-z_{4}
\end{array}\right) \\
& =\frac{z_{2}-z_{3}}{z_{1}-z_{3}}: \frac{z_{2}-z_{4}}{z_{1}-z_{4}} .
\end{aligned}
$$

By the invariance of $D_{i j}$, every $G_{i j}$ is invariant under the left multiplication by $\mathrm{GL}_{r d}$ and under the right multiplication by $\{e\} \times \mathrm{GL}_{d}^{s-1}$. Moreover, by construction, $G_{i j}$ is equivariant with respect to the subgroup $\mathrm{GL}_{d} \times\{e\} \subset \mathrm{GL}_{d} \times \mathrm{GL}_{d}^{s-1}$, where we take the right action on $\mathbb{C}^{r d \times s d}$ and the conjugation on the image space GL_{d}. We therefore obtain the following rational $\left(\mathrm{GL}_{r d} \times \mathrm{GL}_{d}^{s}\right)$-invariants:

$$
\begin{equation*}
I_{\alpha \beta}:=\operatorname{Tr}\left(G_{\alpha_{1} \beta_{1}} \cdots G_{\alpha_{k} \beta_{k}}\right)=\operatorname{Tr}\left(\left(D_{\alpha_{1} \beta_{1}} \circ \varphi\right) \cdots\left(D_{\alpha_{k} \beta_{k}} \circ \varphi\right)\right), \tag{6}
\end{equation*}
$$

where $\alpha \in\{2, \ldots, r\}^{k}$ and $\beta \in\{2, \ldots, s-r\}^{k}$ are arbitrary multi-indices.
Using a result of Procesi [P2], we show that the invariant field is actually generated by these traces of monomials.

Theorem 5.1. Let d, r, s be arbitrary positive integers such that $s>r+1$. Then the field of rational $\left(\mathrm{GL}_{r d} \times \mathrm{GL}_{d}^{s}\right)$-invariants of $r d \times$ sd matrices is generated by the functions $I_{\alpha \beta}$, where $\alpha \in\{2, \ldots, r\}^{k}$ and $\beta \in\{2, \ldots, s-r\}^{k}$ and where $k<2^{d}$.

Proof. Set $n:=r d$ as before. We write the spaces $E_{1}, \ldots, E_{r+1}, V_{r+2}, \ldots, V_{s} \in$ $\mathrm{Gr}_{n, d}$ as in Lemma 3.3 in the form of an $r d \times s d$ matrix with $d \times d$ blocks as

$$
M:=\left(\begin{array}{cccccccc}
E & 0 & \cdots & 0 & E & E & \cdots & E \tag{7}\\
0 & E & \cdots & 0 & E & V_{2, r+2} & \cdots & V_{2, s} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & E & E & V_{r, r+2} & \cdots & V_{r, s}
\end{array}\right),
$$

where E denotes the identity matrix of the size $d \times d$.
Let $\tilde{S}_{2} \subset \mathbb{C}^{r d \times s d}$ be subspace of all matrices of the form (7). Clearly E_{1}, \ldots, E_{r+1} fulfill the assumptions of Lemma 3.3. It then follows from the lemma that $\left(\tilde{S}_{2}, \mathrm{GL}_{d}\right)$ is a normal form for $\left(\mathbb{C}^{r d \times s d}, \mathrm{GL}_{r d} \times \mathrm{GL}_{d}^{s}\right)$, where GL_{d} acts on \tilde{S}_{2} as the diagonal subgroup of $\mathrm{GL}_{r d} \times \mathrm{GL}_{d}^{s}$ (i.e., each $d \times d$ block is conjugated by the same matrix).

By the definition of a normal form, it is sufficient to prove that the field of invariants of ($\left.\tilde{S}_{2}, \mathrm{GL}_{d}\right)$ is generated by restrictions of the $I_{\alpha \beta}$. Let M be given by (7). By the obvious calculations,

$$
\varphi(M)=\left(\begin{array}{cccc}
E & E & \cdots & E \tag{8}\\
E & V_{2, r+2} & \cdots & V_{2, s} \\
\vdots & \vdots & \ddots & \vdots \\
E & V_{r, r+2} & \cdots & V_{r, s}
\end{array}\right)
$$

and hence

$$
\begin{equation*}
I_{\alpha \beta}(M)=\operatorname{Tr}\left(V_{\alpha_{1}, r+\beta_{1}} \cdots V_{\alpha_{k}, r+\beta_{k}}\right) \tag{9}
\end{equation*}
$$

By a theorem of Procesi [P2], the polynomial invariants of $(r-1)(s-r-1)$ tuples $\left(V_{i j}\right)$ with respect to the diagonal GL_{d}-conjugations are generated by the monomials of the form (9) with $k<2^{d}$. Since all points of ($\tilde{S}_{2}, \mathrm{GL}_{d}$) are semistable (see [MFK]), the categorical quotient $\tilde{S}_{2} / / \mathrm{GL}_{d}$ exists and is given by these monomials. Then the rational invariants on $\left(\tilde{S}_{2}, \mathrm{GL}_{d}\right)$ are pullbacks of rational functions on $\tilde{S}_{2} / / \mathrm{GL}_{d}$, and the proof is finished.

5.2. The Case $n=3 e$ and $d=2 e$

In this case the elements of $\mathrm{Gr}_{n, d}^{s}$ are represented by the equivalence classes of matrices $M \in \mathbb{C}^{3 e \times 2 s e}$ with $3 e \times 2 e$ blocks M_{1}, \ldots, M_{s}. As before, we are looking for rational invariants with respect to left multiplications by $\mathrm{GL}_{3 e}$ and right multiplications by GL_{d}^{s}. We start with the case of 3-blocks. Define the rational map

$$
\begin{align*}
\varphi: & \mathbb{C}^{3 e \times 6 e} \rightarrow \mathbb{C}^{3 e \times 6 e}, \\
\varphi\left(\begin{array}{ccc}
A_{1} & A_{2} & A_{3} \\
B_{1} & B_{2} & B_{3}
\end{array}\right) & :=\left(\begin{array}{ccccc}
E^{\prime} & E^{\prime} & E^{\prime} \\
B_{1} A_{1}^{-1} & B_{2} A_{2}^{-1} & B_{3} A_{3}^{-1}
\end{array}\right) \\
& =\left(\begin{array}{cccccc}
E & 0 & E & 0 & E & 0 \\
0 & E & 0 & E & 0 & E \\
c_{1} & d_{1} & c_{2} & d_{2} & c_{3} & d_{3}
\end{array}\right), \tag{10}
\end{align*}
$$

where $A_{1}, A_{2}, A_{3} \in \mathrm{GL}_{d}$ and $B_{1}, B_{2}, B_{3} \in \mathbb{C}^{e \times 2 e}$ and where $E^{\prime} \in \mathrm{GL}_{2 e}$ and $E \in \mathrm{GL}_{e}$ denote the identity matrices. We see the corresponding subspaces $E_{1}, E_{2}, E_{3} \in \mathrm{Gr}_{n, d}$ as graphs of linear maps given by the matrices $\left(c_{1} d_{1}\right),\left(c_{2} d_{2}\right)$, and $\left(c_{3} d_{3}\right)$, respectively. Our first goal will be to compute the intersections $A:=$ $E_{1} \cap E_{2}$ and $A_{j}:=E_{j} \cap E_{3}(j=1,2)$. For this, we set

$$
\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right):=\left(\left(\begin{array}{ll}
c_{1} & d_{1} \\
c_{2} & d_{2}
\end{array}\right)^{-1},\left(\begin{array}{ll}
c_{3} & d_{3} \\
c_{1} & d_{1}
\end{array}\right)^{-1},\left(\begin{array}{ll}
c_{2} & d_{2} \\
c_{3} & d_{3}
\end{array}\right)^{-1}\right)\binom{E}{E} \in \mathbb{C}^{e \times 3 e}
$$

Then $x_{1} c_{1}+y_{1} d_{1}=x_{1} c_{2}+y_{1} d_{2}=E$ and hence the $3 e \times e$ matrix

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
E
\end{array}\right)
$$

represents the intersection $E_{1} \cap E_{2}$. Similarly the $3 e \times e$ matrices

$$
\left(\begin{array}{l}
x_{2} \\
y_{2} \\
E
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{l}
x_{3} \\
y_{3} \\
E
\end{array}\right)
$$

represent the intersections $E_{3} \cap E_{1}$ and $E_{2} \cap E_{3}$, respectively. Equivalently, the 3-tuple (E_{1}, E_{2}, E_{3}) can be represented by the matrix

$$
\left(\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{1} & x_{2} & x_{3} \tag{11}\\
y_{1} & y_{2} & y_{3} & y_{1} & y_{2} & y_{3} \\
E & E & E & E & E & E
\end{array}\right) .
$$

Now take the general matrix $M=\left(M_{1}, \ldots, M_{s}\right) \in \mathbb{C}^{3 e \times 2 e s}$. Following the construction of Section 4.2, we bring A, A_{1}, and A_{2} (i.e., the matrix (11)) to a normal form. For this, consider the square matrix

$$
H(M):=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
E & E & E
\end{array}\right)
$$

and multiply M by $H(M)^{-1}$:

$$
\begin{align*}
& H(M)^{-1} M \\
& \quad:=\left(\begin{array}{ccccccccccc}
E & 0 & 0 & E & 0 & 0 & C_{14} & D_{14} & \cdots & C_{1 s} & D_{1 s} \\
0 & E & 0 & 0 & E & 0 & C_{24} & D_{24} & \cdots & C_{2 s} & D_{2 s} \\
0 & 0 & E & 0 & 0 & E & C_{34} & D_{34} & \cdots & C_{3 s} & D_{3 s}
\end{array}\right) . \tag{12}
\end{align*}
$$

Next we normalize the $3 e \times 2 e$ blocks:

$$
\left(\begin{array}{ll}
C_{1 i} & D_{1 i} \\
C_{2 i} & D_{2 i} \\
C_{3 i} & D_{3 i}
\end{array}\right)\left(\begin{array}{ll}
C_{1 i} & D_{1 i} \\
C_{2 i} & D_{2 i}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
E & 0 \\
0 & E \\
\alpha_{2 i-1} & \alpha_{2 i}
\end{array}\right)
$$

and define

$$
\sigma_{2 i-1}:=\alpha_{2 i-1} \alpha_{7}^{-1} \quad \text { and } \quad \sigma_{2 i}:=\alpha_{2 i} \alpha_{8}^{-1} \quad \text { for } i=5, \ldots, s
$$

Comparing this construction with Section 4.2, we conclude that the matrices σ_{j} $(j=9, \ldots, 2 s)$ represent exactly the $2(s-4)$ matrices in the isomorphic normal form $\left(\mathrm{GL}_{e}^{2(s-4)}, \mathrm{GL}_{e}\right)$. Using the theorem of Procesi [P2] and arguments similar to those used in Section 5.1, we obtain the following.

Theorem 5.2. Let e and s be arbitrary positive integers such that $s>4$. Then the field of rational $\left(\mathrm{GL}_{3 e} \times \mathrm{GL}_{2 e}^{s}\right)$-invariants of $3 e \times 2$ es matrices is generated by the functions

$$
J_{\alpha}:=\operatorname{Tr}\left(\sigma_{\alpha_{1}} \cdots \sigma_{\alpha_{k}}\right),
$$

where $\alpha \in\{9, \ldots, 2 s\}^{k}$ and $k<2^{e}$.

$$
\text { 5.3. The Case } n=(2 r+1) e \text { and } d=2 e
$$

Here an element $\left(V_{1}, \ldots, V_{s}\right) \in \mathrm{Gr}_{n, d}^{s}$ is represented by a matrix $M \in \mathbb{C}^{(2 r+1) e \times 2 s e}$ with s blocks M_{1}, \ldots, M_{s} of the size $(2 r+1) e \times 2 e$. Again, the GL_{n}-invariants on $\mathrm{Gr}_{n, d}^{s}$ correspond to $\left(\mathrm{GL}_{n} \times \mathrm{GL}_{2 e}^{s}\right)$-invariants on $\mathbb{C}^{(2 r+1) e \times 2 s e}$. Similarly to the previous paragraph, we start with a special case of a $(2 r+1) e \times(2 r+2) e$ matrix and compute representatives of the intersections $E_{r+1} \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right)$,
$E_{r+2} \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right)$, and $E_{r+2} \cap\left(E_{1} \oplus \cdots \oplus E_{r-1} \oplus E_{r+1}\right)$ as in Section 4. We start by normalizing the $n \times 2 e$ blocks as in (10):

$$
\varphi\left(\begin{array}{ccc}
A_{1} & \cdots & A_{s} \tag{13}\\
B_{1} & \cdots & B_{s}
\end{array}\right):=\left(\begin{array}{ccc}
E^{\prime} & \cdots & E^{\prime} \\
B_{1} A_{1}^{-1} & \cdots & B_{s} A_{s}^{-1}
\end{array}\right)=\left(\begin{array}{ccc}
E^{\prime} & \cdots & E^{\prime} \\
C_{1} & \cdots & C_{s}
\end{array}\right)
$$

In order to compute the first intersection $E_{r+1} \cap\left(E_{1} \oplus \cdots \oplus E_{r}\right)$, we consider the corresponding system of linear equations:

$$
\left(E^{\prime} \ldots E^{\prime}\right)\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{r}
\end{array}\right)=E^{\prime} X_{r+1}, \quad\left(C_{1} \ldots C_{r}\right)\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{r}
\end{array}\right)=C_{r+1} X_{r+1}
$$

where each X_{i} is a $2 e \times e$ block. Solving from the first equation $X_{r+1}=$ $X_{1}+\cdots+X_{r}$ and substituting this into the second, we obtain

$$
\left(\left(C_{1}-C_{r+1}\right) \ldots\left(C_{r}-C_{r+1}\right)\right)\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{r}
\end{array}\right)=0
$$

This is a system of $(2 r+1) e \times e$ equations with $2 r e \times e$ variables. Hence, for C_{1}, \ldots, C_{r+1} in general position, this system has a solution that can be represented by rational $2 e \times e$ block functions

$$
X_{i}=X_{i}(M) \quad(i=1, \ldots, r)
$$

Comparing this with the construction of Section 4, we see that the blocks

$$
\binom{E^{\prime}}{C_{i}}\left(X_{i}\right) \quad(i=1, \ldots, r)
$$

represent the subspaces $A, \varphi_{2}(A), \ldots, \varphi_{r}(A)$. For our normalization (Lemma 4.4) we also need the subspaces $A^{\prime}, \varphi_{2}^{\prime}\left(A^{\prime}\right), \ldots, \varphi_{r}^{\prime}\left(A^{\prime}\right)$ and χ_{r+1}^{\prime}, which come from the other intersections. For them we can also solve the corresponding linear systems and obtain rational $2 e \times e$ block functions

$$
Y_{i}(M) \quad(i=1, \ldots, r), \quad Z_{r+1}(M)
$$

such that the blocks

$$
\binom{E^{\prime}}{C_{i}}\left(Y_{i}(M)\right) \quad(i=1, \ldots, r), \quad\binom{E^{\prime}}{C_{r+1}}\left(Z_{r+1}(M)\right)
$$

represent $A^{\prime}, \varphi_{2}^{\prime}\left(A^{\prime}\right), \ldots, \varphi_{r}^{\prime}\left(A^{\prime}\right)$ and χ_{r+1}^{\prime}, respectively. As before, we put these blocks together in an $n \times n$ matrix:

$$
\begin{aligned}
& H(M) \\
& :=\left(\left(\begin{array}{ccc}
E^{\prime} & \cdots & E^{\prime} \\
C_{1} & \cdots & C_{r}
\end{array}\right)\left(\begin{array}{ccccc}
X_{1} & Y_{1} & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & X_{r} & Y_{r}
\end{array}\right),\binom{E^{\prime}}{C_{r+1}}\left(Z_{r+1}(M)\right)\right) .
\end{aligned}
$$

The $n \times e$ columns of $H(M)$ are exactly the representatives of

$$
A, A^{\prime}, \varphi(A), \varphi^{\prime}\left(A^{\prime}\right), \ldots, \varphi_{r}(A), \varphi_{r}^{\prime}\left(A^{\prime}\right), \chi_{r+1}^{\prime}\left(A^{\prime \prime}\right),
$$

in this order. If M is in general position, then $H(M)$ is invertible. As before, consider the matrix $H(M)^{-1} M$, which equals

$$
\left(\begin{array}{cccccccccccc}
E & 0 & \cdots & 0 & 0 & 0 & a_{1} & b_{1, r+2} & c_{1, r+2} & \cdots & b_{1, s} & c_{1, s} \\
0 & E & \cdots & 0 & 0 & 0 & a_{2} & b_{2, r+2} & c_{1, r+2} & \cdots & b_{1, s} & c_{1, s} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & E & 0 & 0 & a_{2 r-1} & b_{2 r-1, r+2} & c_{2 r-1, r+2} & \cdots & b_{2 r-1, s} & c_{2 r-1, s} \\
0 & 0 & \cdots & 0 & E & 0 & a_{2 r} & b_{2 r, r+2} & c_{2 r, r+2} & \cdots & b_{2 r, s} & c_{2 r, s} \\
0 & 0 & \cdots & 0 & 0 & E & a_{2 r+1} & b_{2 r+1, r+2} & c_{2 r+1, r+2} & \cdots & b_{2 r+1, s} & c_{2 r+1, s}
\end{array}\right) .
$$

Moreover, the property $E_{r+1}=\Phi\left(A, \varphi_{2}, \ldots, \varphi_{r}\right)+\chi_{r+1}^{\prime}\left(A^{\prime \prime}\right)$ implies

$$
a_{2}=a_{4}=\cdots=a_{2 r}=a_{2 r+1}=0 .
$$

Using the property $W^{\prime}:=\Phi\left(A^{\prime}, \varphi_{2}^{\prime}, \ldots, \varphi_{r}^{\prime}\right) \in E_{r+2}$, we may assume that W^{\prime} is represented by the block

$$
\left(\begin{array}{c}
b_{1, r+2} \\
\vdots \\
b_{2 r+1, r+2}
\end{array}\right)
$$

and hence

$$
b_{1, r+2}=b_{3, r+2}=\cdots=b_{2 r+1, r+2}=0 .
$$

Furthermore, the matrix components of the map (4) can be calculated directly as

$$
\begin{align*}
& Z(M)=\left(D\left(\begin{array}{ll}
a_{1} & c_{1, r+2} \\
a_{3} & c_{3, r+2}
\end{array}\right), D\left(\begin{array}{ll}
b_{2, r+2} & c_{2, r+2} \\
b_{4, r+2} & c_{4, r+2}
\end{array}\right), \ldots,\right. \\
&\left.D\left(\begin{array}{cc}
a_{1} & c_{1, r+2} \\
a_{2 r-3} & c_{2 r-3, r+2}
\end{array}\right), D\left(\begin{array}{cc}
b_{2, r+2} & c_{2, r+2} \\
b_{2 r-2, r+2} & c_{2 r-2, r+2}
\end{array}\right)\right) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
\Theta_{i}(M)= & D\left(\begin{array}{ll}
a_{1} & b_{1, i} \\
a_{3} & c_{3, i}
\end{array}\right), D\left(\begin{array}{cc}
b_{2, r+2} & c_{2, i} \\
b_{4, r+2} & c_{4, i}
\end{array}\right), \ldots, D\left(\begin{array}{cc}
a_{1} & b_{1, i} \\
a_{2 r-1} & b_{2 r-1, i}
\end{array}\right), \\
& \left.D\left(\begin{array}{cc}
b_{2, r+2} & c_{2, r+2} \\
b_{2 r, r+2} & c_{2 r, r+2}
\end{array}\right),\left(c_{2 r+1, r+2}^{-1} b_{2 r+1, i}\right),\left(c_{2 r+1, r+2}^{-1} c_{2 r+1, i}\right)\right) \tag{15}
\end{align*}
$$

for $i=r+3, \ldots, s$, where D is the generalized double ratio defined by (5).
Comparing this with the proof of Corollary 4.6 and applying the theorem of Procesi [P2] yields the following.

Theorem 5.3. Let e, r, s be arbitrary positive integers such that $s \geq r+2$. Then the field of rational $\left(\mathrm{GL}_{(2 r+1) e} \times \mathrm{GL}_{2 e}^{s}\right.$-invariants of $(2 r+1) e \times 2 e s$ matrices is generated by the functions

$$
\operatorname{Tr}\left(\sigma_{1} \cdots \sigma_{k}\right)
$$

where each σ_{l} is either a component of the map Z in (14) or of one of the maps $\Theta_{r+3}, \ldots, \Theta_{s}$ in (15) and $k<2^{e}$.

References

[B] L. le Bruyn, Centers of generic division algebras, the rationality problem 1965-1990, Israel J. Math. 76 (1991), 97-111.
[BS] L. le Bruyn and A. Schofield, Rational invariants of quivers and the ring of matrix invariants, Adv. Sci. Inst. Ser. C Math. Phys. Sci., 233, pp. 21-29, Kluwer, Dordrecht, 1988.
[D] I. V. Dolgachev, Rationality of fields of invariants, Algebraic geometry (S. J. Block, ed.), Proc. Sympos. Pure Math., 46, pp. 3-16, Amer. Math. Soc., Providence, RI, 1987.
[DB] I. V. Dolgachev and H. U. Boden, Lecture notes, Kazimierz, 1996.
[F1] E. Formanek, The center of the ring of 3×3 generic matrices, Linear and Multilinear Algebra 7 (1979), 203-212.
[F2] ——, The center of the ring of 4×4 generic matrices, J. Algebra 62 (1980), 304-319.
[GP1] I. M. Gelfand and V. A. Ponomarev, Quadruples of subspaces of a finitedimensional vector space, Dokl. Akad. Nauk SSSR 197 (1971), 762-765; translation in Soviet Math. Dokl. 12 (1971), 535-539.
[GP2] -, Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space, Colloq. Math. Soc. János Bolyai, 5, pp. 163-237, North-Holland, Amsterdam, 1972.
[M] G. Megyesi, The rationality of configuration spaces of lines in \mathbb{P}^{3}, preprint, 1998.
[MFK] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, Ergeb. Math. Grenzgeb., 3, Springer, Berlin, 1993.
[P1] C. Procesi, Non-commutative affine rings, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1967), 239-255.
[P2] ——, The invariant theory of $n \times n$ matrices, Adv. Math. 19 (1976), 306-381.
[R] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443.
[Z] D. Zaitsev, Domains of polyhedral type and boundary extensions of biholomorphisms, Indiana Univ. Math. J. (to appear).

Mathematisches Institut
Eberhard-Karls-Universität Tübingen
72076 Tübingen
Germany
dmitri.zaitsev@uni-tuebingen.de

