The Grunsky Operator and the Schatten Ideals

GAVIN L. JONES

1. Introduction

Let J be a bounded Jordan curve in the complex plane. It divides the Riemann
sphere into two simply connected Jordan dom&n&* with Riemann mapg, g.

from the unit disdJ and the exterior of the closed di&c, which extend as home-
omorphisms of the boundary. We study the Grunsky opeiat¢defined in the

next section) and its relationship to the welding homeomorplhismg, ! o g of

the unit circle to itself for certain classes of smooth quasicircles. We recall two
theorems (which are equivalent).

THeOREM 1.1 (Pommerenke [7]). Let g be a conformal map of the unit disc to a
simply connected regioft. Thena2 is a quasicircle if and only if the Grunsky
operator I, acting on the Dirichlet space, has norm less than

THEOREM 1.2 (Beurling and Ahlfors [3]). LetJ be a Jordan curve in the plane
with weldingi. ThenJ is a quasicircle if and only if the composition operator
Vi: f(z) — f(h(z)) is bounded on the Dirichlet space.

These theorems are related by the idea of a conformal map acting as a composi-
tion operator. We will sketch this in Section 2, and in the remainder of the paper
will prove the following two theorems.

THEOREM 1.3. Letg be a conformal map of the unit disc to the interior of a Jor-
dan curve. The Grunsky operator lies in tp¢h Schatten ideal, (p > 1) of
operators on the Dirichlet space if and onlyldg g’ € B,, the Besov space.

THEOREM 1.4. LetJ be a quasicircle with welding. The commutatofV;,, H]
of V, with the Hilbert transform# lies in y, if and only if logg’ € B,, whereg
is the conformal map to the interior.

The proofs of the theorems will be straightforward applications of atomic decom-
positions of Bergman spaces and quasiconformal estimates, given our initial de-
scriptions of the welding and the Grunsky operator. We note the obvious analogy
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with unimodular multiplication operators di?(S%). | should like to thank Prof.
N. G. Makarov for his interest and encouragement.

2. Composition Operators

We start by working with conformal maps as composition operators.AL&t)

denote those analytic functions analytic in a neighbourhoasf ofind letA($2)

denote the analytic functions in a regiéh Consider the composition operator

W: f — f(g () that acts fromA(S?) to A(U) + A(U*) by first passing to

A(Q2) + A(2*), under composition and the Cauchy integral, and then by the con-

formal isomorphisms te\(U) + A(U*). Working in the topology of locally uni-

form convergence, one needs only perform the Cauchy integral on smooth curves.
One checks that, with respect to analytic functiong/cendU*, W has a matrix

of the form
I T
(o )

Now I" is commonly referred to as the Grunsky operator, andonsists of the
Faber transform [4] (i.e., composition gy ! followed by analytic projection to
Q via the Cauchy integral), followed by the composition within the same way,
g; tinduces a mapV, with matrix

A, O
L, 1)
We may study the operator

(T A,
AJ_(A r*)]’

where the operatof acts asf(z) — f(1/z) on A(S?) and the operaton ; acts
on A(U) + A(U,). Grunsky, using an integral representation, proved shais an
isometry ofD(S?), the Dirichlet space, if and only if has zero area [7, Thm. 4.1].
We recall that

DY ={f@) =) anz"eL2(SYH: |fI5 =) Inlla,*} < oo.

This splits intoD, andD_ = D & D, the analytic and co-analytic parts with
projectionsP* and P~. We can now show equivalence of the first two theorems
as follows. IfJ is a quasi-circle then the welding operajor> f o i is bounded

on the Dirichlet space, by Theorem 1.2. B4t: f — f o h has matrix

A, —TAI, —TA™?
AT, AT )
Hence, ifJ is a quasicircle them is invertible. SinceA; is an isometry, the

invertibility of A forces|I'| < 1. Now, by Theorem..1, J is a quasicircle.
The action of the Hilbert transform is that of the matrix

(6 %)

V= WW, = (
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0 ra-t

Therefore, ifA is invertible then conditions for compactness et cetera of the Grun-

sky operators are equivalent to conditions on the welding commutator. To prove
the Schatten class criterion, we will look at the necessity in terms of the Grunsky
operator in the next section, and the sufficiency will be studied from the viewpoint

of welding.

SO

3. The Grunsky Operator

In this section we prove the necessary part of Theorem 1.3. Grunsky defined the
operatorT, which appeared in the previous section, using the kernel

g(2) — g
| § :b
Ve iz

This induces an operatdron the Dirichlet spac®.. (via the matrix{b; ;} with re-
spect to the basig”/n%?}). Hence by differentiating we obtain an operafpr=

I'j on the Bergman spadefL(U) of square-integrable holomorphic functions on
the unit disc:

I f(2) =/Sg(z,f)f(1/§)dA(§),
with
1 g'(2)g' ()
z—0? (g(x)—g@)N?
We note that 8,(z, z) = S,(z) is the Schwarzian derivative gfatz and is re-

lated to the deviation from conformality [5]. Recall thatlies in thepth Schatten
classy, (p > 1) if and only if

> Teen. ea)l” < 00

for any orthonormal basis,.

S¢(z,8) =

Lemma 3.1. Letg beaconformalmap: U — 2, and letp > 1 Ifthe Grunsky
operatorIy lies iny, of the Dirichlet space, then

/ 15,2, DIP(L = 22772 dm () < oc.
U

We denote the hyperbolic area densiiy(z) = dm(z)/(1— |z]?)?; the hyperbolic
metric isp.

Proof. Pickr > 0 sufficiently small as well as a hyperbolic lattig} in the unit

disc so thap(z;, z;) > rd; ; and infi; p(z;, z;) < 2r. Lete, denote the standard

basis ofl,. Now define a map: 12 — Li(U) by Ae, = k,,, wherek,, (¢) =
— |za1%/(1—Z,¢)?, the unit reproducing kernel fag, in L2 (U). From [9], it now
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follows thatA is bounded and surjective forsufficiently small; hence, IF, € y,
thenA*T, A e y,. But

Z|(A*FgAen, en)? < oo
implies
> Uk, ko )P =D IS¢ (2ns 2n) P = |24 < o0.
From [6] we have that iflA,(z) = (1 — |z]%)*dm(z) for a > —1 then

1 sy ™ D@ = (20D (%)
Applying this fora = 2p — 2, we have

ILely, > ¢, f 15,z DI~ 1222 dm(2).
U
proving the lemma. O

However, Theorem 1.3 gave a criterion in terms ofgocpther than the Schwarzian
derivative. The Besov spac®s for p > 1 are defined as those analytic functions
in the discf with

(1—z) f'(z) € LP(d}).

The minimal space; consists off with f” e L.

LeEmMA 3.2. Let g be a conformal map of the unit disc. Then the Schwarzian
derivatives, liesin L?(dx,,—») ifand only iflog g’ € B, for p > 1

Proof. Given a discD;, we write

|Selp, = SUPIS,(2)]d(z, 0D;)?.
z€D;

Now coverU by isometric hyperbolic disc®;, having centers;, with at most
finite multiplicity. From(x) we have thaf, € L”(dA2,_>) impIiesZ|Sg|’L’)l_ < 00.

Recall [5] that ifg is a conformal map of the discto the complex plane with
IS;lv < 2, theng extends taG a quasiconformal map of the plane withy = g
and dilatationu ¢ such that g |eo = %|Sg|U. Setp, = g"/g’. From [5] we then
have

19 (O] < |Sglu-

OnD; (centerz;) this givesg, (z:)|(1—z:1?) < C|S,|p,. HenceSg € LP(dAz,-2)
shows that) " [|¢.(z:)I(1 — |z:|)]” converges, andx) implies logg’ € B, for
p>1Atp=1S,eLdm) givesp, € L*(dm). SOp, = S, + 3$2 € L*(dm)
and logg’ € B;.

Conversely, easy estimates show that

ISl Lrtrz,_o) < 2/l0gg'|5,. U

We may also give the condition in terms of the dilatatjonf G as follows.
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Lemma 3.3[2; 8]. Letg be aconformal map of’ to the interior of a Jordan curve
J so thatlim sup,, 4|5, (2)|(1 — |z12)? = 0. Theng extends to a quasiconformal
mapG of a neighborhood of the unit disc with dilatation

ne1/7) = —3(/D*A - 2198, (2).
This yields our next lemma.

LemMA 3.4. Letg be a conformal map of/ to the interior of a Jordan curve
J, and letp > 1. Then the operatol’, € y, only if there is a quasiconformal
extensionG of g with g € LP(dA).

4. Welding and Sufficiency

In this section we conclude the proofs of Theorems 1.3 and 1.4 by showing that the
Besov condition is sufficient fop, membership. We do this by simple quasicon-
formal calculations, and we will only compute the cages 1, 2 since the others
follow by trivial applications of Holder’s inequality.

To prove the sufficiency of Theorem 1.4 we need to show that iglag B,
thenP~V, P* € y,. From Lemmas 3.2 and 3.3 we may assume khata quasi-
symmetric homeomorphism of the circle with quasiconformal exten&ida the
unit disc such thatty € L”(d)), and with H smooth [5].

LemMmaA 4.1. Let f be a Dirichlet finite analytic function in the unit disc, and
let 1 be a quasisymmetric homeomorphismséf If H is a C! quasiconformal
homeomorphism of the unit distwith boundary mag, then

|P~V,flp < |3f o H| 2.

We identify f with its boundary values, recalling that the Poisson kemtdkes
functions onsS? to functions on the unit disc. The inner product bris of the
form

(f, &)p = (3f, dg)2 + (3f, 3g),2.

Now observe that Dirichlet finite functions in the unit disc split into three orthog-
onal subspace®),, D_, Dg. Hencef o H = F, + F_ + Fp and we have

|P~Viflp = |9F_|.2 < |3f o H|.

We now need to control thg, norms of P~ V,,, recalling that (forp > 2) B €
yp ifand only if )" |Be, | < oo for all orthonormal bases, [9].

Lemma 4.2. Let H be aC? quasiconformal map of the unit disc. Then Vy,
the operator of composition witH followed by the antiholomorphic projection,
liesiny,(D;, D_) for p > 2if

/I/LH—l(Z)IPd?» < oo.
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From the previous lemmaP~ Vye,|;2 < |de,(H(-))|;2. Hence

|P~ Vye,|? < f e, (H(2))|* dm(z)
U

= / 3¢, (H(2))3H (2)1? dm(z)
U
and, setting = H(z),
= /U 193¢, (O)1210H (H )12 dm(2).

But Jy (z)dm(z) = dm(¢) andJy (z) = |0H(2)|? — |0H(2)|2, SO

1
1P Ve = 7 [ 106s(©) Plis s (o)
1_ |/’L|oo U

Thus
|P~Vye,|* < 2K f 19, () 1P|t g-1() 12 dm (©).
U
Working in the Bergman space [9], we have

D loe, @) =1/~ 1217,
SO

S 1P Vaer < 2K [l s@) R di).
U

This gives thep = 2 condition. To controlp € (2, co), we apply Holder’s in-
equality with exponentg/2 andp/p — 2, recalling thatf|8en(§)|2dm(§) =1
sincee,, are unit vectors.

We must work a little harder fop € [1, 2).

Lemma 4.3. Let H be aC? quasiconformal map of the unit disc. Them Vy,
the operator of composition witH followed by the antiholomorphic projection,
liesinyiy(Dy, D_) if

w12l dh < oo.

From [9], it is sufficient to show that our condition forces

> UP~Vyen, &)l < o0
for any orthonormal basis, of D. We then estimate
(P~ Vuen, ex)pl

< / en ()1t (2)[0H(2) [den ()] dm(2)
12
- [/|aen(z)|2|uﬂ<z>|dm<z>]

1/2
X [/Iaen(H(Z))IZIMH(Z)I|3H(Z)|2dm(Z)}

by the Cauchy—Schwarz inequality.
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The second of these integrals, changing variablestoH(z) for H, K quasi-
conformal, gives

1/2
< [ f 18en (O |t (H ) Tu (H2)) I3 (HX))2K dm(;)}

1/2
< <2K>1/2[ / |aen<¢)|2|uH-1<;>|dm<;>] .
Therefore,

D UP Vien, e)]
1/2
< <2K)1/22[ / |aen(z>|2|uH<z)|dm<z)]

1/2
x [ / |aen<z>|2|uH-1<z)|dm<z>]
1/2
< <2K>”2[Z / |aen<z>|2|uH(z)|dm<z)}

1/2
x [Z f |aen(z>|2|uﬂl<z)|dm<z)}

1/2 1/2
< (2K)1/2[ / |;m(z)|dx(z>} [ / |uH1(z>|dA<z)] :

But our mapH is a quasi-isometry of the hyperbolic metric, so
¢ < Uu(@)dr(z) < C’

for ¢/, C’ bounded by constants depending @n- |ix|s)~? [1]. Settingz =
H(x), we thus have

12 1/2
[/IMH(Z)IUM(Z)] = [/IMH(Hl(x))Idk(Z)}

12
< [ / c/|uH-1<x)|dA(x)} .

This yields
[P~ Vuly, = C/luﬂ—l(z)ldk(z),

whereC has a bound of order at worét — |1 |«)~¥2. To deal withp € (1, 2)
we use Holder’s inequality as before. We observe that L?(d) if and only if
py-1€ LP(dL).

Proofs of Theorem 1.3 and Theorem 1¥he theorems stated at the outset now
follow. For Theorem 1.3, Lemmas 3.1 and 3.2 prove necessity. Conversely, given a
Jordan curvd with conformal mapping from U to the interior, suppose log €

B,. ThenJ is a quasicircle, by Lemma 3.2 and 3.3. Therefore the operatbis
bounded, and, < y, if there is a quasiconformal extensichof g with dilatation
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we satisfyingug € L?(d)), by Lemmas 4.1 and 4.2. Such an extension is given
by Lemma 3.3. This proves Theorem 1.3.

In order to prove Theorem 1.4, first we note thatWif,[ H] € y, thenT}, € y,,
and so log;’ € B,. Conversely, givery a Jordan curve angla conformal map to
its interior with logg’ € B,,, we have (from Lemma 3.4) thgtextends to a quasi-
conformal homeomorphism of the plane with; € L?(d}). Thus, the welding
homeomorphism of the unit circle has a quasiconformal extensibrio the unit
disc with uy € L?(d1). Hence, from Lemmas 4.2 and 4.B;V,P* € y, and,
running the same arguments, we obt&ihV, P~ € y,,, proving the theorem.

From the argument we see that Theorems 1.3 and 1.4 remain trug ifda8, is
replaced byS, € L?(dx,,—>), or by the condition thag admits a quasiconformal
extension to the plane withg € L?(d)).
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