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Suppose thatM is a closed orientable 3-manifold. Anessential surfaceS in M
is aπ1-injective map of a closed surfaceS toM. Throughout this paper, we will
restrict ourselves to the case ofS being orientable. The surface coverMS of S is
said to betopologically tameif it is homeomorphic toS × R. Equivalently, there
is a compactification of the surface cover homeomorphic toS × [−1,1]. In this
paper we establish tameness of surface covers for two natural classes of essential
surfaces. The first class we calltopologically finite. The defining properties of
such surfaces are conditions that are easily seen to be satisfied by quasi-Fuchsian
surfaces in hyperbolic 3-manifolds (cf. [RS1]). Using geometric techniques, it is
straightforward to check that quasi-Fuchsian surfaces in a hyperbolic 3-manifold
have topologically tame surface covers. In fact,MS can be compactified by adding
the quotient of the domain of discontinuity by the action off∗(π1(S)) at infinity
(see e.g. [Th]). We give an alternate topological proof of tameness by using three
important properties of geometrically finite surfaces. The proof is reminiscent of
an argument in [HRS] that establishes this tameness for the case whenS is a torus.

The second class of essential surfaces that we address are calledstrongly filling.
A filling surfaceS is essential and satisfies the condition that every noncontractible
loop in the 3-manifold always intersects every surface in the homotopy class ofS.

This immediately implies that the complementary regions ofS are all simply con-
nected when a least area representative surface is picked in the homotopy class of
S, regardless of the choice of metric. In order to make this into a property that
ensures tameness, we need a notion of strongly filling for an essential surfaceS.

Strongly filling for S means that, in the universal cover ofM, all pairs of points
(that are sufficiently far apart) are separated by many disjoint planes lying overS.

See Section 2. For quasi-Fuchsian surfaces in hyperbolic 3-manifolds, we show
that it is sufficient to assume that every geodesic line has endpoints separated by
at least one plane in the preimage ofS. If S is totally geodesic in the hyperbolic
case, we establish that strongly filling and filling are equivalent. Finally, we will
show that if all essential surfaces are either strongly filling or topologically finite,
then topological tameness is always true not only of the surface cover but also of
any cover with finitely generated and freely indecomposable fundamental group.
It is a well-known result of Simon [Si] that this is true for Haken 3-manifolds.
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We would like to thank the referee for a number of helpful comments and in par-
ticular for pointing out that our original proof of the second case, which used only
the filling condition, was incomplete. This led us to the current notion of strongly
filling, which seems to be an interesting condition on essential surfaces.

Topologically Finite Surfaces

Suppose thatM is a closed, orientable, irreducible 3-manifold and thatf : S →
M is an essential surface inM. LetH denotef∗(π1(S)). Following [FHS], we will
assume thatf is a small perturbation of a least-area map, as one always exists in
a given homotopy class of maps fromS toM. This perturbation is chosen so that
f is in general position and, in the universal covering ofM, the complete inverse
image off(S) consists of embedded planes meeting along lines. By an abuse of
notation we will just say thatf is “least area”, rather than continually referring to
the necessity of choosing a small perturbation. We will often consider the inter-
mediate coverMS associated toH. We let5S denote the collection of lifts ofS to
MS. Each such lift consists of a map from some coverS ′ of S toMS; we will say
that such a lift is a plane ifS ′ is a plane and the map toMS does not factor through
any covering maps. In5S we have a natural compact embedded surface, the lift
of the mapf toMS,which we will denoteSc. We say thatS is topologically finite
if it satisfies the following three conditions.

(1) For every conjugateHg of H, Hg ∩H is finitely generated.
(2) There are finitely many lifts in5S that are not planes.
(3) There is a finite coverM ′S of MS in which every lift ofS is embedded.

It is not hard to see that quasi-Fuchsian surfaces in 3-manifolds satisfy these three
properties (see [RS1]).

Our aim in this section is the following.

Theorem 1.1. If S is a topologically finite essential surface, thenMS is topolog-
ically tame.

As in the work of Simon [Si], we will make use of the following algebraic result
due to Cohen.

Lemma1.2. SupposeG is finitely generated and splits as a graph of groups where
all the edge groups are finitely generated. Then all the vertex groups are finitely
generated.

It follows from Tucker’s criterion for tameness (see[T]) thatMS is topologically
tame if and only if some finite cover ofMS is topologically tame. So, replacing
MS byM ′S, we may assume that all the lifts ofS toMS are embeddings.

The main technical lemma is the following.

Lemma 1.3. SupposeP ⊂ 5S is some collection of lifts ofS toMS. Then

(1) Every component ofMS \
⋃
P∈P P has finitely generated fundamental group.

(2) All but finitely many components ofMS \
⋃
P∈P P are simply connected.
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Proof. We enumerateP = {P1, P2, . . . }. LetSi = {P1, . . . , Pi} and letCi denote
the collection of components ofMS \

⋃
P∈Si P . Finally, letC denote the set of com-

ponents ofMS \
⋃
P∈P P. We first prove the claim for eachSi . Note that, by as-

sumption, only finitely manyPj are not planes. Thus we suppose thatP1, . . . , Pn
are not planes, and thatPm is a plane, for anym > n.

LetL denote the curves of intersection of the elements ofP. As in [FHS], one
sees that only finitely many elements ofL are closed curves, while the rest are
lines. Otherwise, since there are only finitely many lifts that are not planes but
are of finite type, one could find a pair of double curves bounding annuli on two
different lifts, a possibility ruled out by an area swap argument.

We prove the claim forSi by induction oni. For i = 1 the claim follows from
Lemma 1.2. Fori > 1, the elements ofCi are obtained from those ofCi−1 by cut-
ting a given component ofMS \

⋃
P∈Si−1

P along a collection of surfaces, all of
which are obtained fromPi cut along double curves and lines inL. Thus, ifN ∈
Ci−1, one gets a splitting ofπ1(N ) as a graph of groups, where the vertex groups
are fundamental groups of elements ofCi and the edge groups are all finitely gen-
erated. It follows from Lemma 1.2 that all the vertex groups are finitely gener-
ated, establishing part 1 of the claim forSi . Since only finitely many of the edge
groups are nontrivial, Grushko’s theorem ensures that only finitely many of the ver-
tex groups are nontrivial; together with the induction hypothesis, this establishes
part 2 of the claim forSi .

We now need to establish the claim for the possibly infinite setP. The elements
of C are obtained from the elements ofCn by cutting along subsurfaces of the pla-
nar liftsPn+1, . . . . Thus, the fundamental group of every element ofCn splits as a
graph of groups, where the edge groups are trivial and the vertex groups are fun-
damental groups of elements ofC. It follows from Grushko’s theorem that finitely
many of these vertex groups are nontrivial and that they are all finitely generated.
Since the claim is true forSn, only finitely many of the elements ofCn have non-
trivial fundamental group. It then follows that the claim is true forC.

Proof of Theorem1.1. We proceed in a fashion similar to the proof of Theorem 2.1
in [HRS]. Let5S denote the collection of lifts ofS to MS. It suffices to engulf
each compact regionX in a product region (i.e., a homeomorphic copy ofS× I in
MS for which inclusion is a homotopy equivalence). We first expandX so that it
is a compact connected 3-manifold whose boundary is incompressible to the out-
side. Moreover, we can arrange thatπ1(X) surjects ontoπ1(MS) by includingSc
in X. Let {P1, ..., Pn} denote the collection of lifts intersectingX and let5i =
5S \ {P1, . . . , Pi}. If M is Haken then the result follows directly from Simon’s
theorem. IfM is not Haken then, by [HRS], the closures of the complementary
regions ofS inM areπ1-injective handlebodies. It then follows from Simon’s the-
orem that the closures of all the components ofMS \

⋃
P∈5S P are almost com-

pact. Now one can successively apply Simon’s theorem to obtain that the closure
of each complementary component ofMS \

⋃
P∈5i P is almost compact. Next

consider the componentN ofMS \
⋃
P∈5n P containingX. ThisN is homeomor-

phic toS × I with a closed set from the boundary removed. One can thus find a
product region containingX as required.
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Strongly Filling Surfaces

As before, we assume thatM is a closed, orientable, irreducible 3-manifold. A
surfaceS may have a finite number of components.

Definition. An essential surfaceS immersed in a 3-manifoldM satisfies the
k-plane propertyfor some positive integerk if, when S is represented as a least
area map and given any collection ofk planes lying overS in the universal covering
of M, there exists a disjoint pair.

Recall that in [RS1] it is shown that any quasi-Fuchsian surface in a hyperbolic 3-
manifold satisfies thek-plane property for somek. In [RW], an example is given of
an immersedπ1-injective surface in a graph manifold that fails to have thek-plane
property for anyk.

Definition. An essential surfacef : S → M is filling if every surface in the
homotopy class off meets every loop inM that is homotopically nontrivial.

Note that if a least area representativeg of the homotopy class of some essential
surfacef is chosen for some metric onM, then by [HRS] every complementary
region ofM \ g(S) is aπ1-injective handlebody. So, iff is filling then all the
complementary regions ofg(S) are balls—that is, a least area representative of
the surface is (geometrically) filling.

We would like to thank Ian Leary for correcting an earlier definition of filling
that did not achieve the correct property. Note that one can always homotopef so
that there are complementary regions that are not balls yet their images inπ1(M)

are trivial. Assume thatf is least area, so that all the preimages off(S) in the
universal coverM̃ of M are embedded planes. An important special case of fill-
ing is if, in M̃, each nontrivial loop ofM is homotopic to a curve that lifts to a
line meeting some plane lying overf(S) in a single point. In this case, any ho-
motopy off cannot remove this essential intersection. For example, iff(S) is
hyperbolically totally geodesic and is filling then it has this property. For in this
case, each nontrivial loop can be homotoped to a geodesic curve that lifts to a geo-
desic line meeting the planes overf(S) in at most single points, or the line lies in
some plane. Indeed, if the loop is homotopic intoS then its geodesic representa-
tive lies inS. But then it is easy to see that the filling property implies that all the
complementary regions of the double curves off(S) pulled back toS are disks.
Hence, in the universal covering ofM, the loop lifts to a line in some plane over
S that meets other planes in single points. Note we can define that a proper line
L in M̃ has ends separated by a planeP̃ lying overS if, in the surface coverMS,

choosingP̃ to map toSc entails thatL maps to a line going from one end ofMS

to the other.
Based on the discussion in the previous paragraph, we want to define the con-

cept of strongly filling surfaces. To measure distances, we introduce the word met-
ric d on the Cayley graphG of π1(M), embedded in the universal covering̃M of
M. There is a choice of generators ofπ1(M) involved in the construction, and we
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need to ensure that the definition is independent of this choice. The key idea is
that if two vertices in the Cayley graph are far enough apart then they lie on op-
posite sides of some planẽP projecting toS inM. Choose some base pointx0 in
M̃ and letx1, x2, . . . be all the translates of the base point by the covering transla-
tions. Choose a generating set forπ1(M) and use this to define a Cayley graphG
for π1(M) with verticesx0, x1, x2, . . . , one for each element ofπ1(M) and with
edges labeled by the generating set. Then the word metricd is defined on pairs
of vertices and it measures the minimal number of edges in any path between the
vertices. Notice that any two choices of generating sets give path metricsd andd ′

such that there exist constantsk1 andk2 satisfying, for any pair of verticesxi and
xj, k1d

′(xi, xj ) < d(xi, xj ) < k2d
′(xi, xj ).

Definition. Suppose thatS is an essential surface inM with thek-plane prop-
erty for somek. ThenS is strongly fillingif—for any positive integern, for a suit-
able choice of a large enough constantα and any generating set forπ1(M), and for
any two pointsxi andxj in M̃—if d(xi, xj ) > α then there are at leastn disjoint
planesP̃1, . . . , P̃k lying overS and separatingxi andxj .

Clearly the constantα depends on a number of choices, including the base point,
a metric onM, and a least area representative ofS. By the previous paragraph,
we see that changing the choice of generators and metric tod ′ only changesα to
a new constant. Given a homotopy fromS to any other least area mapS ′, there is
anα sufficiently large that the separation property of translations of the base point
for the new surfaceS ′ is retained. This follows because the distance betweenS

andS ′ is bounded and there is a lower bound for the distance between disjoint
planes lying overS. So, if n is chosen large enough, then there will still be many
disjoint copies of planes lying overS ′ and separatingxi andxj . (Note that ho-
motopic disjoint least area planes remain disjoint, by [FHS].) Similarly, we see
that changing the base point again only moves all the translates by a fixed distance
and, the same argument shows that, by takingn large enough, the separation prop-
erty still works. Hence the definition depends only on the homotopy class ofS, as
required.

We investigate a number of issues concerning essential strongly filling surfaces
elsewhere, including the construction of classes of examples satisfying the strongly
filling property. The definition we have adopted is indeed strong and yet is natu-
ral, as we can show that a 3-manifold has such a surface if and only if its funda-
mental group acts freely on a finite-dimensional cubed complex with a metric of
nonpositive curvature. Also, there are other (equivalent) formulations of strongly
filling surfaces that are easier to check in practice (cf. [RS2]).

We observe some properties of the two conditions—filling and strongly filling.

Lemma 2.1.

(1) Any strongly filling essential surface is filling.
(2) A totally geodesic surface immersed in a closed hyperbolic3-manifold that is

filling is also strongly filling.
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(3) Assume thatS is a least area quasi-Fuchsian surface in a closed hyperbolic
3-manifoldM. ThenS is strongly filling if and only if every geodesic line in
the universal cover ofM has ends on either side of some planeP lying overS.

Remarks. (1) For a totally geodesic surfaceS in a hyperbolic 3-manifold, if the
complementary domains are balls then the surface is filling. The reason is that any
least area mapS ′ homotopic toS will have the same property. This is because any
essential loop can be homotoped to a geodesic that lifts to a geodesic line in the
universal covering. Then the totally geodesic planes lying overS will separate the
ends of this line and therefore the same is true after any homotopy. Therefore no
essential loop can be disjoint fromS ′.

(2) The conditions of the third part of Lemma 2.1 imply that the collection of
limit quasi-circles ofS separate any two points on the sphere at infinityS∞ of
hyperbolic 3-space, which is the universal cover ofM. Any quasi-Fuchsian sur-
face has two domains of discontinuity, which are the complementary regions of
the limit quasi-circle inS∞. Therefore, the topology onS∞ induced by taking the
domains of discontinuity as basic open sets is just the usual topology, in this case
(see the proof of Lemma 2.1). This is also equivalent to the condition of strongly
filling. The weaker assumption—that only lines which cover circles inM have
ends separated by planes coveringS—clearly implies the filling property.

(3) The proof of the third assertion makes it clear that, for a hyperbolic 3-
manifold and a quasi-Fuchsian surface, the strongly filling property could be given
by assuming that, there is a constantc such that translates of the base point that
are more than distancec apart are separated by a single plane lying overS. We
leave this to the reader as an exercise. In [RS2], we will complete this line of in-
vestigation by using Lemma 2.1 to show that, for quasi-Fuchsian surfaces, filling
is enough to establish strongly filling.

Proof of Lemma 2.1.Suppose thatS is strongly filling but not filling. Then we can
assume that there is an essential loopC in M that is disjoint fromS. Now S lifts
to a lineL in the universal covering ofM, which does not meet any of the planes
lying overS. Choose a base pointx0 onL. Now there is a sequence of translates
of x0 alongL, and it is easy to see that the distance in the Cayley graph between
these translates andx0 becomes arbitrarily large. Hence we can find such a point
x1 with d(x0, x1) > α. This implies thatx0 andx1 are separated by some planeP
lying overS and so clearlyP meetsL, giving a contradiction.

For the second assertion, ifM is closed and hyperbolic andS is totally geodesic
and filling, then any geodesic lineL in the universal cover̃M of M must cross at
least one plane lying overS. For supposeL is disjoint from all such planes. Let
5 denote all the planes lying overS in M̃. Then some closureR of a component
of M̃ \5must be noncompact, since it containsL. But by [HRS], the closures of
the complementary regions ofS inM areπ1-injective handlebodies. One of these
closures is covered byR and so must contain an essential loop missingS. Hence
we conclude that the lineL must have crossed some plane lying overS.
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To complete the proof of the second assertion, it is convenient to go on to the
third assertion. It is obvious that, once we have completed the third part, the sec-
ond assertion follows as well, using the discussion in the foregoing paragraph.
We can start with a least area quasi-Fuchsian surfaceS in a closed hyperbolic
3-manifoldM and a geodesic lineL in the universal covering. Assume the con-
dition of the third part—that is, such a line has ends on either side of some plane
P lying overS. Notice that this is the same as saying that the limit quasi-circle
3(P ) for P has complementary domainsU andU ′ in S∞, containing the end-
pointsa andb (respectively) ofL. We therefore see that, if all such complemen-
tary domains are taken as a basis for the open sets of a topology onS∞, then this
topology is Hausdorff. (See Remark (2) following Lemma 2.1.)

Suppose now that the strongly filling property fails. Then we have a sequence
of base pointsxn and translatesx ′n of these so thatd(xn, x ′n) > n, but there is at
most a bounded number of disjoint planes lying overS that separatexn from x ′n

for anyn. By choosing appropriate subsequences, we can arrange forxn to con-
verge to a pointa in M̃ and forx ′n to converge tob onS∞. By assumption, there
is a planeP̃ lying overS with limit quasi-circle3(P̃ ) separatingb from any other
point d on S∞. The collection of all such planes clearly contains some that have
limit quasi-circles3(P̃ ) with arbitrarily small diameter. Hence we can choose a
sequence of planes̃Pi with nested complementary domainsUi for3(P̃i) contain-
ing b so thatUi ⊂ Uj for i < j and

⋂
Ui = {b}. It is now straightforward to show

that, ifDi is the complementary domain of̃Pi in M̃ with Ui in its closure, then⋂
Di = ∅. We conclude thata is not in allDi for i sufficiently large and sõPi

separatesa from b for all suchi.
Moreover since the limit quasi-circles of thẽPi are disjoint and converging to
{b}, it is easy to check by the least area property [FHS] that a subsequence of the
planesP̃i are all disjoint. In fact, the least area planesP̃i must lie in the convex
hulls of their limit quasi-circles3(P̃i). These convex hulls will also converge to
{b}, and it is easy to see the convex hulls have a disjoint subsequence. If we sim-
ply separate two such limit quasi-circles by a round circle onS∞, then the convex
hulls cannot intersect.

However, sincexn converges toa andx ′n converges tob, it is clear that forn
sufficiently large,xn andx ′n are on opposite sides of̃Pi for arbitrarily manyi. This
gives a contradiction, which completes the proof of the strongly filling property.

To complete the proof of Lemma 2.1 we must show that the strongly filling
property implies the condition of the third part of the lemma. Notice first that, by
[RS1], there are at mostk −1 planes lying overS whose limit circles can contain
any given pointa on the sphereS∞ in the universal covering̃M. For the surface
satisfies thek-plane property, and the arguments in [RS1] show that a collection
of more thank planes has a disjoint pair with disjoint limit circles.

Let a andb be any two disjoint points onS∞. We need to find some plane ly-
ing overS that separates these two points. Choose a set of translations of the base
point xn, for n any integer, such thatxn converges toa asn→ −∞ andxn con-
verges tob asn → +∞. Moreover, we can arrange that the geodesic ray from
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x−n to a makes an angle ata with S∞ that is withinε of π/2, and likewise for
xn andb. By strong filling, we can find an arbitrarily large collection of disjoint
planes lying overS that separatexn andx−n for n large. Suppose that none of
these planes separatesa andb. We can find a subsequencePi of these planes with
limit circles3(Pi) converging to a pointc onS∞. If c is neithera nor b, we can
find a small round circleC centered atc that is disjoint from these limit circles
for i large enough. Moreover, the planesPi are then disjoint from the totally geo-
desic planeP with limit circle C, since least area planes lie in the convex hull of
their limit sets. ButC can be chosen small enough thatP separates neithera and
b nor, by extension,xn andx−n for n large. Hence we contradict the assumption
thatPi separatesxn andx−n for n large.

Finally, assume thatc = a (say). Then3(Pi) converges toa asi →∞. It re-
mains to show that the domain of discontinuity ofPi, which is converging toa,
actually containsa. For i large it is obvious that this domain does not containb
and so we would have separateda andb as required. Suppose this never happens.
By assumption, we can find an arbitrarily large number of disjoint planes amongst
thePi that separatexn andx−n for n large. The limit circles of these planes are
shrinking toa but a is not contained in the small domain of discontinuity. The
ratio between the diameters of these limit circles must be arbitrarily large, since
there are arbitrarily many of them. It is easy then to see that the angle between the
geodesic ray fromx−n to a must make a very small angle toS∞, contrary to as-
sumption. In fact, there must be a large ratio between the distance of the smallest
limit circle to a and its diameter. There is a small round circleC enclosing this
limit circle but nota. The totally geodesic planeP with limit circle C hasx−n
separated froma. The distance froma to C is large compared to the diameter of
C and so the angle conclusion follows immediately. This completes the proof of
Lemma 2.1.

Theorem 2.2. Suppose thatf : S → M is an essential strongly filling surface.
ThenMS is tame.

Theorem 2.3. Assume that any essential surface inM is either topologically fi-
nite or strongly filling. Then any cover ofM with finitely generated and freely
indecomposable fundamental group is tame.

Remarks. (1) It follows from a theorem of Simon’s that Theorem 2.3 holds for
Haken manifolds.

(2) A nice class of 3-manifolds satisfying the hypotheses of Theorems 1.1 and
2.2 is those admitting a cubulation of nonpositive curvature (see [AR1]). It is also
not difficult to verify that, if the manifold is atoroidal, then the collection of canon-
ical essential surfaces in such 3-manifolds are strongly filling, topologically finite,
and satisfy the 4-plane property.

(3) Note that these results apply in the case of geometrically infinite sur-
faces, where the intersections of conjugates of the surface subgroup are infinitely
generated.
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(4) Both Theorems 2.2 and 2.3 need only part of the definition of strongly fill-
ing, as is clear from the following proofs. However, we felt that the full condition
of strongly filling is a natural property for essential surfaces to satisfy.

Proof of Theorem 2.2.The strategy is to show that any compact setX in MS can
be engulfed in a product region homeomorphic toS × I. We may arrange easily
thatX is connected and contains the compact liftSc of S toMS. Clearly, sinceX
is compact, it meets finitely many lifts ofS toMS. Consider the remaining lifts
of S inMS. We will show that the closureR of the component of the complement
of these lifts that containsX is compact andπ1-injective. In particular, the region
R will also containSc and henceπ1(R) is isomorphic toπ1(S). So, by standard
results it follows thatR is homeomorphic toS × I.

We will work in the universal coveringM̃ of M for convenience. Let̃P be a
choice of plane lying overSc. Now there is a unique lift̃X ofX to M̃ that contains
P̃ . We will examine the family5X of planes inM̃ that project toS and are disjoint
from X̃. Our aim is to show that the closurẽR of the component ofM̃ \⋃5X

that containsX̃, projects to a compact setR in MS containingSc.
Suppose on the contrary thatR is not compact. Choose a base pointx0 in M̃

and some Riemannian metricD onMS that is a lift of a metric onM. Let δ de-
note the diameter ofM with this metric. Then a sequence of pointsyi in R can
be chosen with the following property: there exists a translatexi of the base point
that projects tozi in MS such thatD(yi, zi) < δ andD(yi, Sc) > i for eachi.

Now, sinceD(yi, Sc) > i, it follows immediately thatd(x0, xi)→∞ asi →
∞. Thus, by our assumption of strongly filling, there will be an arbitrarily large
number of disjoint planes separatingx0 andxi for i large enough. In particular, by
thek-plane property, we can achieve that arbitrarily many of these planes are dis-
joint from P̃ . However, there is a lower bound for Riemannian distance between
disjoint planes inM̃, so these planes can be found lying arbitrarily far fromP̃ . On
the other hand, sinceX is compact, all points iñX are a bounded distance from̃P .
Therefore we find that some of these planes do not meetX̃. But then this contra-
dicts our assumption that̃R is a closure of a component of̃M \⋃5X, since we
now have found planes of5X that separate points of̃R. This completes the proof
thatR̃ projects to a compact setR in MS.

Finally, to show thatR is π1-injective, we use [HRS]. Any closureR of a com-
ponent of the complement of a collection of lifts ofS toMS must beπ1-injective,
since its liftR ′ to the universal cover ofM is simply connected by Lemma 1.2 of
[HRS]. This completes the proof of Theorem 2.2.

Proof of Theorem 2.3.By [S], the coverN of M corresponding to a finitely gen-
erated subgroup has a compact coreK. The boundary ofK can be chosen to be
incompressible in the complement ofK. Each componentZ of the closure of
the complement ofK is then homotopy equivalent toS × R+ for some closed
orientable incompressible surfaceS in the boundary ofK. We can now use the
results of Theorems 1.1 and 2.2 to conclude that the surface cover correspond-
ing to S (i.e.,MS) is tame and so homeomorphic toS × R. Then we can liftZ
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homeomorphically toMS. This shows thatZ is homeomorphic toS ×R+ and so
N is tame as required.
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