Essential Surfaces and Tameness of Covers

HyAaM RUBINSTEIN & MICHAH SAGEEV

Suppose thaM is a closed orientable 3-manifold. Agssential surface in M

is am-injective map of a closed surfaceto M. Throughout this paper, we will
restrict ourselves to the case $being orientable. The surface cov of S is

said to betopologically taméf it is homeomorphic taS x R. Equivalently, there

is a compactification of the surface cover homeomorphi€ to[—1,1]. In this

paper we establish tameness of surface covers for two natural classes of essential
surfaces. The first class we c#tipologically finite. The defining properties of

such surfaces are conditions that are easily seen to be satisfied by quasi-Fuchsian
surfaces in hyperbolic 3-manifolds (cf. [RS1]). Using geometric techniques, it is
straightforward to check that quasi-Fuchsian surfaces in a hyperbolic 3-manifold
have topologically tame surface covers. In fadk, can be compactified by adding

the quotient of the domain of discontinuity by the actionfofz,(S)) at infinity

(see e.g. [Th]). We give an alternate topological proof of tameness by using three
important properties of geometrically finite surfaces. The proof is reminiscent of
an argument in [HRS] that establishes this tameness for the caseSvidarorus.

The second class of essential surfaces that we address arestialiegly filling.
Afilling surfaces is essential and satisfies the condition that every noncontractible
loop in the 3-manifold always intersects every surface in the homotopy class of
This immediately implies that the complementary regionsS afe all simply con-
nected when a least area representative surface is picked in the homotopy class of
S, regardless of the choice of metric. In order to make this into a property that
ensures tameness, we need a notion of strongly filling for an essential stirface
Strongly filling for S means that, in the universal cover Mt all pairs of points
(that are sufficiently far apart) are separated by many disjoint planes lyingover
See Section 2. For quasi-Fuchsian surfaces in hyperbolic 3-manifolds, we show
that it is sufficient to assume that every geodesic line has endpoints separated by
at least one plane in the preimage%fif S is totally geodesic in the hyperbolic
case, we establish that strongly filling and filling are equivalent. Finally, we will
show that if all essential surfaces are either strongly filling or topologically finite,
then topological tameness is always true not only of the surface cover but also of
any cover with finitely generated and freely indecomposable fundamental group.
It is a well-known result of Simon [Si] that this is true for Haken 3-manifolds.
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We would like to thank the referee for a number of helpful comments and in par-
ticular for pointing out that our original proof of the second case, which used only
the filling condition, was incomplete. This led us to the current notion of strongly
filling, which seems to be an interesting condition on essential surfaces.

Topologically Finite Surfaces

Suppose thaM is a closed, orientable, irreducible 3-manifold and tfiatS —

M is an essential surface M. Let H denotef, (71(S)). Following [FHS], we will
assume thaf is a small perturbation of a least-area map, as one always exists in
a given homotopy class of maps fra$rio M. This perturbation is chosen so that

f is in general position and, in the universal covering/ffthe complete inverse
image of (S) consists of embedded planes meeting along lines. By an abuse of
notation we will just say thaf is “least area”, rather than continually referring to
the necessity of choosing a small perturbation. We will often consider the inter-
mediate coveM s associated té/. We letITg denote the collection of lifts of to

M;. Each such lift consists of a map from some co¥eof S to My; we will say

that such aliftis a plane 8’ is a plane and the map 8 does not factor through
any covering maps. Ifly we have a natural compact embedded surface, the lift
of the mapf to Mg, which we will denoteS,. We say thaf is topologically finite

if it satisfies the following three conditions.

(1) For every conjugatéfs of H, H& N H is finitely generated.
(2) There are finitely many lifts ilil g that are not planes.
(3) There is a finite coved; of M in which every lift of S is embedded.

Itis not hard to see that quasi-Fuchsian surfaces in 3-manifolds satisfy these three
properties (see [RS1)).
Our aim in this section is the following.

THeorEM 1.1. If S is a topologically finite essential surface, th&éfy is topolog-
ically tame.

As in the work of Simon [Si], we will make use of the following algebraic result
due to Cohen.

LEmMA 1.2. Supposé; is finitely generated and splits as a graph of groups where
all the edge groups are finitely generated. Then all the vertex groups are finitely
generated.

It follows from Tucker’s criterion for tameness (s8d) that M is topologically
tame if and only if some finite cover @ is topologically tame. So, replacing
Mg by M, we may assume that all the lifts §fto Mg are embeddings.

The main technical lemma is the following.

LemMma 1.3. SupposéP C Il is some collection of lifts of to M. Then

(1) Every component o¥fs \ | ,.» P has finitely generated fundamental group.
(2) All but finitely many components & \ | J,.» P are simply connected.
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Proof. We enumerat® = {P,, P, ...}. LetS; = {Py, ..., P;} andletC; denote
the collection of components &5\ . s, P- Finally, letC denote the set of com-
ponents ofVs \ |J,.» P. We first prove the claim for eac,. Note that, by as-
sumption, only finitely manyP; are not planes. Thus we suppose that. . ., P,
are not planes, and tha&}, is a plane, for anyz > n.

Let £ denote the curves of intersection of the elementB.oAs in [FHS], one
sees that only finitely many elements 6fare closed curves, while the rest are
lines. Otherwise, since there are only finitely many lifts that are not planes but
are of finite type, one could find a pair of double curves bounding annuli on two
different lifts, a possibility ruled out by an area swap argument.

We prove the claim foS; by induction oni. Fori = 1 the claim follows from
Lemmal.2. For > 1, the elements of; are obtained from those 6f_; by cut-
ting a given component a¥/s \ (... , P along a collection of surfaces, all of
which are obtained fron®; cut along double curves and linesfn Thus, if N €
C;_1, one gets a splitting of,(N) as a graph of groups, where the vertex groups
are fundamental groups of element£pfind the edge groups are all finitely gen-
erated. It follows from Lemma 1.2 that all the vertex groups are finitely gener-
ated, establishing part 1 of the claim 8. Since only finitely many of the edge
groups are nontrivial, Grushko’s theorem ensures that only finitely many of the ver-
tex groups are nontrivial; together with the induction hypothesis, this establishes
part 2 of the claim fors;.

We now need to establish the claim for the possibly infinitesé&the elements
of C are obtained from the elements@fby cutting along subsurfaces of the pla-
nar lifts P, 4, . . .. Thus, the fundamental group of every element péplits as a
graph of groups, where the edge groups are trivial and the vertex groups are fun-
damental groups of elements@flt follows from Grushko’s theorem that finitely
many of these vertex groups are nontrivial and that they are all finitely generated.
Since the claim is true fa%,, only finitely many of the elements &%, have non-
trivial fundamental group. It then follows that the claim is truefor O

Proof of Theorem.1. We proceed in a fashion similar to the proof of Theorem 2.1

in [HRS]. Let Ty denote the collection of lifts of to M. It suffices to engulf

each compact regiok in a product region (i.e., a homeomorphic copysof 7 in

Mg for which inclusion is a homotopy equivalence). We first expansb that it

is a compact connected 3-manifold whose boundary is incompressible to the out-
side. Moreover, we can arrange thatX ) surjects ontor;(My) by including S,

in X. Let{Py, ..., P,} denote the collection of lifts intersecting and letll; =

g\ {Py, ..., P;}. If M is Haken then the result follows directly from Simon’s
theorem. IfM is not Haken then, by [HRS], the closures of the complementary
regions ofS in M arems-injective handlebodies. It then follows from Simon’s the-
orem that the closures of all the component3&f\ . ;, P are almost com-
pact. Now one can successively apply Simon’s theorem to obtain that the closure
of each complementary componentM \ [y, P is almost compact. Next
consider the compone of M \ ., P containingX. This N is homeomor-

phic to S x I with a closed set from the boundary removed. One can thus find a
product region containing as required. O
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Strongly Filling Surfaces

As before, we assume th3f is a closed, orientable, irreducible 3-manifold. A
surfaceS may have a finite number of components.

DEerINITION. An essential surfac§ immersed in a 3-manifold/ satisfies the
k-plane propertyfor some positive integek if, when S is represented as a least
area map and given any collectiorkgflanes lying oves in the universal covering
of M, there exists a disjoint pair.

Recall that in [RS1] it is shown that any quasi-Fuchsian surface in a hyperbolic 3-
manifold satisfies the-plane property for somee In [RW], an example is given of

an immersedr;-injective surface in a graph manifold that fails to havelthane
property for anyk.

DEFINITION.  An essential surfacg: S — M is filling if every surface in the
homotopy class of meets every loop i that is homotopically nontrivial.

Note that if a least area representativef the homotopy class of some essential
surfacef is chosen for some metric ¥, then by [HRS] every complementary
region of M \ g(§) is am-injective handlebody. So, if is filling then all the
complementary regions @f(S) are balls—that is, a least area representative of
the surface is (geometrically) filling.

We would like to thank lan Leary for correcting an earlier definition of filling
that did not achieve the correct property. Note that one can always hompsipe
that there are complementary regions that are not balls yet their image34n
are trivial. Assume thaf is least area, so that all the preimagesfof) in the
universal cove of M are embedded planes. An important special case of fill-
ing is if, in M, each nontrivial loop of\/ is homotopic to a curve that lifts to a
line meeting some plane lying ovgi(S) in a single point. In this case, any ho-
motopy of f cannot remove this essential intersection. For examplg(Sf is
hyperbolically totally geodesic and is filling then it has this property. For in this
case, each nontrivial loop can be homotoped to a geodesic curve that lifts to a geo-
desic line meeting the planes ovAtS) in at most single points, or the line lies in
some plane. Indeed, if the loop is homotopic istthen its geodesic representa-
tive lies inS. But then it is easy to see that the filling property implies that all the
complementary regions of the double curvesfof) pulled back taS are disks.
Hence, in the universal covering 81, the loop lifts to a line in some plane over
S that meets other planes in single points. Note we can define that a proper line
L in M has ends separated by a plahéying over S if, in the surface coveMs,
choosingP to map toS, entails that, maps to a line going from one end tfg
to the other.

Based on the discussion in the previous paragraph, we want to define the con-
cept of strongly filling surfaces. To measure distances, we introduce the word met-
ric d on the Cayley grapty of 71(M), embedded in the universal covering of
M. There is a choice of generatorsmf M) involved in the construction, and we
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need to ensure that the definition is independent of this choice. The key idea is
that if two vertices in the Cayley graph are far enough apart then they lie on op-
posite sides of some plarprojecting toS in M. Choose some base poing in

M and letxy, x», . . . be all the translates of the base point by the covering transla-
tions. Choose a generating set fatM ) and use this to define a Cayley graph

for (M) with verticesxo, x1, x2, . . ., one for each element af,(M) and with
edges labeled by the generating set. Then the word méidaefined on pairs

of vertices and it measures the minimal number of edges in any path between the
vertices. Notice that any two choices of generating sets give path métitdd’

such that there exist constaitsandk, satisfying, for any pair of vertices, and

xj, kad'(x;, xj) < d(x, xj) < kod'(x;, x;).

DEFINITION. Suppose thag is an essential surface M with the k-plane prop-
erty for somek. ThensS is strongly fillingif—for any positive integen, for a suit-
able choice of alarge enough constarmtnd any generating set fot(M ), and for
any two pointst; andx; in M—if d(x;, xj) > « then there are at leagtdisjoint
planesPy, . . ., P, lying over S and separating; and.x;.

Clearly the constant depends on a number of choices, including the base point,
a metric onM, and a least area representativeSoBy the previous paragraph,

we see that changing the choice of generators and met#icdoly changes to

a new constant. Given a homotopy frahto any other least area map, there is

ana sufficiently large that the separation property of translations of the base point
for the new surfaces’ is retained. This follows because the distance betwen
and S’ is bounded and there is a lower bound for the distance between disjoint
planes lying ovesS. So, ifn is chosen large enough, then there will still be many
disjoint copies of planes lying ove¥’ and separating; andx;. (Note that ho-
motopic disjoint least area planes remain disjoint, by [FHS].) Similarly, we see
that changing the base point again only moves all the translates by a fixed distance
and, the same argument shows that, by takifegge enough, the separation prop-
erty still works. Hence the definition depends only on the homotopy cla$sas
required.

We investigate a number of issues concerning essential strongly filling surfaces
elsewhere, including the construction of classes of examples satisfying the strongly
filling property. The definition we have adopted is indeed strong and yet is natu-
ral, as we can show that a 3-manifold has such a surface if and only if its funda-
mental group acts freely on a finite-dimensional cubed complex with a metric of
nonpositive curvature. Also, there are other (equivalent) formulations of strongly
filling surfaces that are easier to check in practice (cf. [RS2]).

We observe some properties of the two conditions—filling and strongly filling.

LEMMA 2.1.

(1) Any strongly filling essential surface is filling.
(2) Atotally geodesic surface immersed in a closed hyperi3atianifold that is
filling is also strongly filling.
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(3) Assume thaf is a least area quasi-Fuchsian surface in a closed hyperbolic
3-manifold M. ThensS is strongly filling if and only if every geodesic line in
the universal cover a¥f has ends on either side of some plahbing overs.

REMaRrks. (1) For a totally geodesic surfaddn a hyperbolic 3-manifold, if the
complementary domains are balls then the surface is filling. The reason is that any
least area mag’ homotopic taS will have the same property. This is because any
essential loop can be homotoped to a geodesic that lifts to a geodesic line in the
universal covering. Then the totally geodesic planes lying Sweill separate the

ends of this line and therefore the same is true after any homotopy. Therefore no
essential loop can be disjoint fro.

(2) The conditions of the third part of Lemma 2.1 imply that the collection of
limit quasi-circles ofS separate any two points on the sphere at infisity of
hyperbolic 3-space, which is the universal covenbf Any quasi-Fuchsian sur-
face has two domains of discontinuity, which are the complementary regions of
the limit quasi-circle inS.,. Therefore, the topology ofl,, induced by taking the
domains of discontinuity as basic open sets is just the usual topology, in this case
(see the proof of Lemma 2.1). This is also equivalent to the condition of strongly
filling. The weaker assumption—that only lines which cover circledfirhave
ends separated by planes coverdgclearly implies the filling property.

(3) The proof of the third assertion makes it clear that, for a hyperbolic 3-
manifold and a quasi-Fuchsian surface, the strongly filling property could be given
by assuming that, there is a constarguch that translates of the base point that
are more than distanceapart are separated by a single plane lying aevwe
leave this to the reader as an exercise. In [RS2], we will complete this line of in-
vestigation by using Lemma 2.1 to show that, for quasi-Fuchsian surfaces, filling
is enough to establish strongly filling.

Proof of Lemma 2.1Suppose thaf is strongly filling but not filling. Then we can
assume that there is an essential l@dbm M that is disjoint fromS. Now S lifts

to a lineL in the universal covering a¥7, which does not meet any of the planes
lying overS. Choose a base poinp on L. Now there is a sequence of translates
of xp along L, and it is easy to see that the distance in the Cayley graph between
these translates ang becomes arbitrarily large. Hence we can find such a point
x1 With d(x9, x1) > a. This implies thatcy andx; are separated by some plaRe

lying over S and so clearlyP meetsL, giving a contradiction.

For the second assertion jif is closed and hyperbolic arttis totally geodesic
and filling, then any geodesic linein the universal coved of M must cross at
least one plane lying ove¥. For supposé is disjoint from all such planes. Let
I1 denote all the planes lying ovérin M. Then some closurg of a component
of M \ T1 must be noncompact, since it containsBut by [HRS], the closures of
the complementary regions 8fin M arems-injective handlebodies. One of these
closures is covered bR and so must contain an essential loop missinglence
we conclude that the line must have crossed some plane lying aver
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To complete the proof of the second assertion, it is convenient to go on to the
third assertion. It is obvious that, once we have completed the third part, the sec-
ond assertion follows as well, using the discussion in the foregoing paragraph.
We can start with a least area quasi-Fuchsian surfaoea closed hyperbolic
3-manifold M and a geodesic ling in the universal covering. Assume the con-
dition of the third part—that is, such a line has ends on either side of some plane
P lying over S. Notice that this is the same as saying that the limit quasi-circle
A(P) for P has complementary domaiis andU’ in S, containing the end-
pointsa andb (respectively) ofL. We therefore see that, if all such complemen-
tary domains are taken as a basis for the open sets of a topolagy,ahen this
topology is Hausdorff. (See Remark (2) following Lemma 2.1.)

Suppose now that the strongly filling property fails. Then we have a sequence
of base pointg” and translates’” of these so thai(x", x'*) > n, but there is at
most a bounded number of disjoint planes lying a¥¢hat separate” from x’"
for anyn. By choosing appropriate subsequences, we can arrangé torcon-
verge to a poing in M and forx'" to converge t@ on S... By assumption, there
is a planeP lying over $ with limit quasi-circleA(P) separating from any other
pointd on S.,. The collection of all such planes clearly contains some that have
limit quasi-circlesA(P) with arbitrarily small diameter. Hence we can choose a
sequence of pland with nested complementary domaitisfor A(P;) contain-
ingb so thatU; C U; fori < j and( U; = {b}. Itis now straightforward to show
that, if D; is the complementary domain & in M with U; in its closure, then
() D; = @. We conclude that is not in all D; for i sufficiently large and s@;
separates from b for all suchi.

Moreover since the limit quasi-circles of th are disjoint and converging to
{b}, itis easy to check by the least area property [FHS] that a subsequence of the
planesP; are all disjoint. In fact, the least area plan@smust lie in the convex
hulls of their limit quasi-circles\(P;). These convex hulls will also converge to
{b}, and it is easy to see the convex hulls have a disjoint subsequence. If we sim-
ply separate two such limit quasi-circles by a round circl&gn then the convex
hulls cannot intersect.

However, since:” converges ta andx’” converges ta, it is clear that fom
sufficiently largex” andx'" are on opposite sides &f for arbitrarily manyi. This
gives a contradiction, which completes the proof of the strongly filling property.

To complete the proof of Lemma 2.1 we must show that the strongly filling
property implies the condition of the third part of the lemma. Notice first that, by
[RS1], there are at mot— 1 planes lying ove whose limit circles can contain
any given pointz on the spheré,, in the universal covering/. For the surface
satisfies th&-plane property, and the arguments in [RS1] show that a collection
of more thark planes has a disjoint pair with disjoint limit circles.

Let« andb be any two disjoint points 08,,. We need to find some plane ly-
ing overS that separates these two points. Choose a set of translations of the base
pointx,, for n any integer, such that, converges ta asn — —oo andx, con-
verges tab asn — +o0o. Moreover, we can arrange that the geodesic ray from
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x_, to a makes an angle at with S, that is withine of /2, and likewise for

x, andb. By strong filling, we can find an arbitrarily large collection of disjoint
planes lying overS that separate, andx_, for n large. Suppose that none of
these planes separateandb. We can find a subsequenggof these planes with
limit circles A(P;) converging to a point on S.. If ¢ is neithera norb, we can
find a small round circl& centered at that is disjoint from these limit circles
for i large enough. Moreover, the planBsare then disjoint from the totally geo-
desic planeP with limit circle C, since least area planes lie in the convex hull of
their limit sets. ButC can be chosen small enough ttRaseparates neitherand

b nor, by extensiony, andx_, for n large. Hence we contradict the assumption
that P; separates, andx_, for n large.

Finally, assume that = a (say). ThenA(P;) converges ta asi — oo. It re-
mains to show that the domain of discontinuity &f which is converging ta,
actually containg. Fori large it is obvious that this domain does not contain
and so we would have separatedndb as required. Suppose this never happens.
By assumption, we can find an arbitrarily large number of disjoint planes amongst
the P; that separate, andx_, for n large. The limit circles of these planes are
shrinking toa buta is not contained in the small domain of discontinuity. The
ratio between the diameters of these limit circles must be arbitrarily large, since
there are arbitrarily many of them. Itis easy then to see that the angle between the
geodesic ray fromx_, to a must make a very small angle 8, contrary to as-
sumption. In fact, there must be a large ratio between the distance of the smallest
limit circle to @ and its diameter. There is a small round cir€leenclosing this
limit circle but nota. The totally geodesic plang with limit circle C hasx_,
separated fromr. The distance frona to C is large compared to the diameter of
C and so the angle conclusion follows immediately. This completes the proof of
Lemma 2.1. O

THEOREM 2.2. Suppose thaf: S — M is an essential strongly filling surface.
ThenMjy is tame.

THEOREM 2.3. Assume that any essential surfacenis either topologically fi-
nite or strongly filling. Then any cover @ with finitely generated and freely
indecomposable fundamental group is tame.

ReEMARKS. (1) It follows from a theorem of Simon’s that Theorem 2.3 holds for
Haken manifolds.

(2) A nice class of 3-manifolds satisfying the hypotheses of Theorems 1.1 and
2.2 is those admitting a cubulation of nonpositive curvature (see [AR1]). Itis also
not difficult to verify that, if the manifold is atoroidal, then the collection of canon-
ical essential surfaces in such 3-manifolds are strongly filling, topologically finite,
and satisfy the 4-plane property.

(3) Note that these results apply in the case of geometrically infinite sur-
faces, where the intersections of conjugates of the surface subgroup are infinitely
generated.
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(4) Both Theorems 2.2 and 2.3 need only part of the definition of strongly fill-
ing, as is clear from the following proofs. However, we felt that the full condition
of strongly filling is a natural property for essential surfaces to satisfy.

Proof of Theorem 2.2The strategy is to show that any compactX¥eh Mg can
be engulfed in a product region homeomorphita 7. We may arrange easily
that X is connected and contains the compactdifof S to M. Clearly, sinceX

is compact, it meets finitely many lifts ¢f to M. Consider the remaining lifts
of S in M. We will show that the closur& of the component of the complement
of these lifts that containX¥ is compact and;-injective. In particular, the region
R will also containS,. and hencer;(R) is isomorphic tar(S). So, by standard
results it follows thatR is homeomorphic t& x 1.

We will work in the universal covering/ of M for convenience. LeP be a
choice of plane lying oves,. Now there is a unique lifk of X to M that contains
P. We will examine the familyTy of planes inM that project toS and are disjoint
from X. Our aim is to show that the closufe of the component oM \ | J Iy
that containsX, projects to a compact s@tin M containings,.

Suppose on the contrary th&tis not compact. Choose a base poigtin M
and some Riemannian metrz on My that is a lift of a metric onM/. Let § de-
note the diameter a#/ with this metric. Then a sequence of poiptsin R can
be chosen with the following property: there exists a transiat# the base point
that projects ta; in Mg such thatD(y;, z;) < § andD(y;, S.) > i for eachi.

Now, sinceD(y;, S.) > i, it follows immediately that/(xg, x;) — co asi —
oo. Thus, by our assumption of strongly filling, there will be an arbitrarily large
number of disjoint planes separatiagandx; for i large enough. In particular, by
thek-plane property, we can achieve that arbitrarily many of these planes are dis-
joint from P. However, there is a lower bound for Riemannian distance between
disjoint planes inV, so these planes can be found lying arbitrarily far frBmOn
the other hand, sinck is compact, all points itX are a bounded distance frafn
Therefore we find that some of these planes do not fie@ut then this contra-
dicts our assumption thak is a closure of a component o \ | Iy, since we
now have found planes @1y that separate points @&. This completes the proof
that R projects to a compact s@tin Ms.

Finally, to show thatr is m;-injective, we use [HRS]. Any closur@ of a com-
ponent of the complement of a collection of lifts ®to My must bem;-injective,
since its lift R’ to the universal cover o is simply connected by Lemma 1.2 of
[HRS]. This completes the proof of Theorem 2.2. O

Proof of Theorem 2.3By [S], the coverN of M corresponding to a finitely gen-
erated subgroup has a compact c&teThe boundary ok can be chosen to be
incompressible in the complement & Each componenk of the closure of

the complement oK is then homotopy equivalent t& x R* for some closed
orientable incompressible surfaein the boundary oK. We can now use the
results of Theorems 1.1 and 2.2 to conclude that the surface cover correspond-
ing to S (i.e., My) is tame and so homeomorphic fox R. Then we can liftZ
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homeomorphically tdfs. This shows thaZ is homeomorphic t¢ x R* and so
N is tame as required. O
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