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1. Introduction

Throughout this articleD is a proper subdomain of the complex plahpossess-
ing at least two finite boundary points, usually termdd/perbolicdomain. Each
suchD carries constant negative curvature metrics, and wejetenote the scale
factor or density for the maximal constant curvatwr® metric. We call.p, the
Poincaré hyperbolic metritor D; it can be defined by

Ap(@) = (/1P (O] =2/A— [ZP)p'©)I,

wherez = p(¢) andp: B — D is any holomorphic covering projection from the
unit diskB = {|¢] < 1} onto D. See [BP; HM; M1; M2] and their references for
basic properties of the Poincaré metric.

An elementary exercise using Schwarz’s lemma shows.thastisfies adomain
monotonicity property, from which we easily conclude that

Ap(z) dist(z, aD) < 2 1.1

for all pointsz € D for any hyperbolic domaiD. In the opposite direction, an
application of Koebe’s one-quarter theorem [P3, 1.4, p. 9] yields

Ap(z) dist(z, 0D) > 1/2 1.2)

forall z e D whenD is simply connected. Thus we see fr¢hi) and (1.2jhat, in
simply connected hyperbolic domaify the Poincaré metric and the Euclidean
distance to the bounda@D of D are approximately reciprocals; however, for
general hyperbolic domains there are no universal lower bounds as in (1.2).

It is well known that equality holds ifL.1) (resp., (1.2)) at some pointif and
only if D is a disk centered at (resp.,D is the complement of a ray andies
on the ray of symmetry). Our purpose here is to investigate when strict inequal-
ity holdsuniformlyin (1.1) or (12). We exhibit geometric conditions that provide
estimates for the quantities
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supAd = supid = supip(z) dist(z, D)
D zeD

and
inf Ad = inf Ad = inf Ap(z) dist(z, aD).
D zeD

More precisely, in this note we characterize the hyperbolic domains for which
suprd < 2 (see 4.2), and we present estimates foiohf{see 3.3, 3.5, and 3.10)
and use them to describe the simply connected hyperbolic domains satisfying
infAd > 1/2 (see 3.11). We shall discover that whether or notaglip: 2 or
inf Ad > 1/2 depends in an essential way on the geometg/of

After studying infAd and sup.d in Sections 3 and 4 (respectively), we apply
our results in Section 5 to confirm that both kd > 1/2 and sup.d < 2 hold for
nonround quasidisks. In addition, we characterize unbounded convex quasidisks
in terms of precise estimates on id and sup.d.

The quantity Idist(z, aD) is the density for the so-calleglasihyperbolienet-
ricin D. Hencelp(z) dist(z, aD) can be viewed as the ratio of the hyperbolic and
guasihyperbolic metrics at the pointso sup,d and infid yield sharp upper and
lower bounds for the values of this ratio.

2. Preliminaries

We letB(z;r) = {¢ : |¢ — z| < r} denote the open disk of radiuscentered at
the pointz. We writec = ¢(a, . . .) to indicate a constantthat depends only on
a, .. .; typically, ¢ will depend on various parameters, and we try to make this as
clear as possible, often giving explicit values.

We make extensive use of Hejhal’s result [He], which describes the behavior of
the Poincaré metric with respect to Carathéodory kernel convergence.

2.1. Fact. Suppose that a sequence of hyperbolic domgihg converges to a
hyperbolic domairD with respect to a poindp, in the sense of kernel convergence.
Thenip,(zo) — Ap(zo) asn — oo.

In order to certify statements regarding equality of Poincaré metrics, we utilize the
following, due to Minda [M1, Cor., p. 63].

2.2. Fact. Let D and G be hyperbolic subdomains @ with D N G # 0.
Suppose thakp(z) < Ag(z) for all z in some neighborhood of a poiap €
DN G. If equality holds at = zo, thenD = G.

We require knowledge of the Poincaré metric in some special domains. To calcu-
late Ap(z), we utilize its conformal invarianceip(z)|dz| = Ap(w)|dw| when-
everz — w is a conformal change of variables mappibgonto D’. We denote

the infinite wedge with apex angler, 0 < « < 1, by

Qo ={re'? :r >0, 10| <anr).

An easy calculation, using = zY/?¢, yields
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ra,(re'’) = 1/[2ar cog6/2a)], (2.3)
from which we deduce that, whenfa <1/2andg =1— «,

suprd = sin(awr)/ 2, infid=1=suprd, infid=1/28.
Qg Qg Qp Qp

Fora = 0, Q, is replaced by the infinite strig = {x + iy : |y| < 1}. The
conformal change of variables = exp((r/2)z) produces

As(x +iy) = m/[2co(r/2)y)], (2.4)

and we observe that infAd = 1 and sug Ad = /2.
Now we compute the Poincaré metric for duenular wedge

—m

A(m,(p):{reigie <r<1 10l <¢},
with angle/radius modulusgm, wherem > 0 and O< ¢ < 7.

2.5. LEMMA. At the “center point”zo = e="/? of A = A(m, ¢), we have
K K’
lzolha(zo) = —(A+k) = — 1+ k).
(7} m

Here0 < k = k(m, ¢) < lischosensothat/m = K/K'; K = K(k); andK' =

K'(k) = KWI-k2).
Proof. Recall that (for O< k& < 1) the mappingv = F(¢) = F(¢, k), given by
¢
F(@)=F@ b = / [A—z2)(A— k%2 V24,
0

defines a conformal homeomorphism of the upper half-pkare {J(¢) > 0} onto
the rectanglé¢|N(w)| < K, 0 < J(w) < K’} and the pointg = —1/k, —1,1, 1/k
correspondtaw = —K +iK’, — K, K, K +iK’, respectively, wher& = K (k) =
F(L k) andK’ = K(+/1—k2) [N, p. 280] (F~* is the Jacobian elliptic sine
function).

Now A4 can be computed using any conformal mappfitgH — A. Letting
k = k(m, @) be defined as indicated, we see that a formulaffes

z=f() = EXp<nI;—{F(C)).
Since|z|Aa(z) = Ax I f(O/f' (O] andry (2) = 1/3(¢), we find that
K’ K
|zolAa(zo) = —(A+k) = —A+k)
m @

atzo = f(i/vk), as desired. O

3. The Infimum

The canonical simply connected domain for whichiidf= 1/2 is the complement
of a ray—for example, iD = C\(—o0, 0] = Q4, then
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Ap(2) =1/(2|z| cogarg(z)/2))

and henceé p(x) dist(x, 0D) = 1/2forallx > 0. Beardon and Pommerenke [BP]
exhibit a geometric characterization of hyperbolic domdinsith inf 1.d positive,
however, their lower bound is always strictly less thA? see also [HM; P1]. Em-
ploying Carathéodory’s kernel convergence theorem, Pommerenke [P2, Lemma 4]
established a necessary and sufficient condition fokdhf 1/2 to hold in a sim-
ply connected domain, albeit in a disguised form. In addition to applying solely to
simply connected domains, Pommerenke’s result fails to provide any quantitative
information about inf.d. Here we offer a different geometric characterization for
these simply connected domains that, in addition, furnishes estimates fat inf
as well as supplying some information about the multiply connected case.

We begin by mentioning the following due to Hilditch [Hi, Thms. 2.1, 2.2]; see
also Minda [M1, Thm. 4], Meija and Minda [MM, Thms. 2, 3] and Harmelin and
Minda [HM, Thm. 4].

3.1. Fact. For any hyperbolic domai, inf Ad < 1, and equality holds if and
only if D is convex.

To verify the inequality, let; approach a closest boundary point. Convex do-
mains possess supporting half-planes, so the equality is a necessary condition for
convexity; that it is also sufficient follows from a result of Keogh's [K].

Next we examine domains that enjoy a certain arcwise connectivity property.
We declareD to bec-quasiconvexyrovided each pair of pointg, z, in D can be
joined by an ar¢z in D whose Euclidean arclength satisfies

L(y) < clza— z2| (3.2)

for some constant > 1. We record the following observation, in part because of
the explicit lower bound it furnishes for ifd. Blevins establishes a similar re-
sult fork-domains [B, Thm. 2.2], and Meija and Minda produce such an estimate
for k-convex domains [MM, Thm. 1]. Notice that, when= 1 we recover the
Hilditch—Minda result for convex domains.

3.3. ProposSITION.  SupposeD is simply connected angdquasiconvex. Then
Ap(z)dist(z,dD) > 1/28 > 1/2 forall ze D,

whereg = 1 — « and ar = arcsinl/c). Moreover, equality holds at a single
pointz € D if and only if there is a similarity transformatiop mappingD onto
the infinite wedge&2s with ¢(z) > 0.

Proof. First we note that the hypotheses Brensure that eitheb is a bounded
Jordan domain or th&tD consists of a finite number of distinct infinite Jordan
curves (cf. [P3, 5.6]). Fixo € D. Assume that 0= 9D and thatzg = 1 =
dist(zo, aD). Let C be the component dfD containing 0 and leG be the com-
ponent of the complement ¢6f that lies in the complement @. Next letI" be an
arc joining 0 toco in G.
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Fix r > 0. Let w be the “first” point wherd™ meets the circléz| = r, let A be
the subarc of|z| = r} N G containingw, and letw;, w, be the endpoints of.
We claim that the angular measureAfs at least &z. Choose pointg; € D on
|z| = r close enough ta; so that the smaller subaresbetweery; andw; lie in
D. Let y be an arc inD joining z3, z2 and satisfying (3.2). Sincg cannot meet
T, the origin must lie inside the cuns#é U k1 U y U K, SOL(y) > 2r. Thus

2r/c < |z1—z2| = 2rsinG/2) or 6 > 2am,

wheref is the angle between andz,. Lettingz; approachw; yields our assertion.

Now let D* be the circular symmetrization @ with respect to the positive real
axis (cf. [W] or [Ha, p. 69]). TherD* is a domainzg = 1€ D* 0¢€ dD* and
(since each circl¢z| = r contains a subarga c C\ D of angular measured2r)
we see thaD* C Qg. Thus, by [W] and (2.3),

: 1
Ap(zo) dist(zo, dD) = Ap(z0) = Ap+(z0) = Ag,(z0) = 25’

as desired. According to Fact 2.2, equality forées= D* = Q5. O

3.4. REMARKS. (@) The punctured unit disk* = B\{0} is c-quasiconvex for

all ¢ > 1, yet infg- Ad = 0. Thus, the simple connectivity hypothesis is essen-
tial. (b) The domainD = {1 < |z| < 2, |arg(z)| < =} has infad > 1/2 (by
3.11), but is not quasiconvex. (c) An analog of Proposition 3.3 holds with the arc-
length ofy replaced by its diameter, although in this situation we only obtain the
nonsharp lower bound infd > 7/[2(w — arcsinl/2c¢))]. However, there are do-
mains that satisfy such a diameter condition but not the corresponding length con-
dition. Another alternative arises if instead of joining interior points we just re-
quire that boundary points be joinable; but then we must insist/ha¢ Jordan,

or we must consider prime ends. (d) Finally, we mention that one can obtain this
result by way of Holder continuity of conformal mappings; see [NP1, Thm. 2] and
[NP2, p. 439].

We now turn to the problem of characterizing the conditiornidf> 1/2. Roughly
speaking, we show that this holds if and only if the bounda® akar each “closest
boundary point” oscillates with a minimum amplitude (the constas@ind a min-
imum frequency (the constanj. To be more precise, & (w; w1, wz) € [0, 7]
denote the angle between the segmeinta;] and [w, w,] (wherew, w1, w, are
distinct points). Given constants® ¢ < 1and O< 6 < &, we say thatD sat-

isfies an(e, 8)-annular wedge conditioif, whenever; € D andw € aD are such
thatd = |z — w| = dist(z, D), there then exist points,, w, € C\ D with ed <

lw; — w| < dand®(w; wy, wp) > 6. Thus, if D satisfies some annular wedge
condition thenD has no boundary points that are endpoints of internal cusps, and
in fact there is a quantitative estimate describing how far away from being such a
point each exposed boundary point is. Note that our annular wedge condition is
equivalent to Pommerenke’s half-strip condition [P2, Lemma 4].
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We establish that every hyperbolic domain withiaf > 1/2 must satisfy some
annular wedge condition by employing a conformal mapping and domain mono-
tonicity of the Poincaré metric. We verify the converse for simply connected do-
mains by using a result of Kimina [K1]. First we derive an upper bound for
inf Ad in domains that fail to satisfy a specific annular wedge condition.

3.5. THEOREM. Suppose a hyperbolic domaif fails to satisfy the annular
wedge condition for a particular pair of constanis 6) € (0,1) x (0, ). Then
there exists a poing € D such that

1+k
2r — 6’
where0 < k = k(e, 0) < lis chosen so tha2z — 0)/log(1l/e) = 2K/K'; K =
K(k); andK’ = K(v/1—k?).

Ap(z) dist(z, D) < 2K (3.6)

Proof. By definition of the annular wedge condition and similarity invariance of
Ap(2) dist(z, D), we may assume that there exist pougs D andwo = 0€ 9D
with |zg| = 1 = dist(zo, D) and such that eithéfC\ D) N {¢ < |w| < 1} contains
at most one point o® (0; w1, wy) < 6 for any two pointsws, wo € (C\D)N{e <
lw| < 1}. Thus, using a rotation if necessary, we may assume that the annular
wedge

B={re":e<r<1 |t| <m—6/2}
is contained inD. Domain monotonicity of the Poincaré metric in conjunction
with Lemma 2.5 now yields

1+k
2 — 6
at the center point = /¢ of B, which establishes (3.6) since=®D. O

lzIAp(z) < |z|Ap(2) = 2K

It is now easy to demonstrate that a hyperbolic plane dorbaimat does not sat-

isfy some annular wedge condition must haveidf< 1/2. Thus, a necessary
condition for infAd > 1/2 to hold is thatD satisfy an annular wedge condition
for someconstants. More precisely, we obtain the following.

3.7. CoroLLARY. Suppose =inf Ad>1/2. Then, foreacld <6 < (2—1/7)r,
there is ans = ¢(0), 0 < ¢ < 1, such thatD satisfies an(e, 6)-annular wedge
condition.

Proof. First note that, for fixed, the right-hand side of (3.6) tends#Ag(27 — 6)
ase — 0 becausé(e,0) — 0 andK — m/2. Nowwhen0< 0 < (2—1/7)7
we see thatr/(27 — 0) < t, so Theorem 3.5 guarantees tliamust satisfy an
(g, 8)-annular wedge condition from some<Qe < 1. O

We now prove that the annular wedge condition is sufficient fortht- 1/2 to
hold, providedD is simply connected. It inot sufficient even in the doubly con-
nected case. For example, the domair= {z : |arg(z)| < 3m/4}U{z:e %" <
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|z| < 1} satisfies afie, 37/8)-annular wedge condition whern> 0 is sufficiently
small, but at the poing = ¢~ we find thati p () dist(z, D) < 1/2.
We require the following result of Kumina [K1, Thm. 1].

3.8. Fact. Let f be univalent inB and normalized byf(0) = 0. Supposef
does not assume the valli@or the valuew = a~2%¢%“, where0 < g < 1and
|| < /2. Then| f'(0)| < 1/h(a, ), and this bound is sharp.

The function:(a, «) is defined via theta functions, other elliptic functions, and var-
ious parameters determined by a nonlinear system of equations invelaimgd.
Since these equations provide no direct information regavdimgx), we refer the
interested reader to [K1, p. 55] (and to [K2, pp. 77-80], where a detailed analysis
is presented); here one also finds information regarding the extremal cases. How-
ever, we mention that(a, «) can be realized as the logarithmic capacity (or trans-
finite diameter) of the extremal continuum that contains the poiritsd0 2%«
and has minimal capacity; see [K2, Chap. 1].

We make a few remarks concerning certain properties of this function. First,
defineh (0, o) = 1/4 for |«| < m/2; thenh is continuous on [Q1] x [—n/2, /2]
with 1/4 < h(a, @) = h(a, —a) < 1/2. Next, since Fact 3.8 is sharp(a, @) =
1/4 if and only if eithera = 0 ora = 0. Thus, for(b, B) € (0,1) x (0, 7/2) we
have

Hb,B) =min{h(a,a) : (a,|a|) €[b,1] x [B,7/2]} > 1/4. (3.9
We are now in position to announce a converse to Theorem 3.5.

3.10. THEOREM. Given (g, 0) € (0,1) x (O, ), there existh = b)) € (0,1)
and 8 = B(e,0) € (0, 7/2) such that, ifD is a simply connected hyperbolic
domain satisfying arte, 6)-annular wedge condition, theinf Ad > 2H(b, B),
whereH (b, B) is defined by3.9).

Proof. Fix z € D and choosev € aD so that|z — w| = dist(z, aD). By similar-
ity invariance we may assume that= 0 andw = 1. Thenip(z) = 2/|f'(0)],
wheref: B — D is conformal withf(0) = z = 0.

Suppose) satisfies arge, 6)-annular wedge condition. This guarantees the ex-
istence of pointaw; = 1+ rje’% € C\D c C\B such thatt < r;, < 1and
O (w; wy, wp) > 6. Sincew; ¢ B, we may choos®; with |9;] < 27/3. As
O (w; wy, wp) > 6, one of they; (say,0,) satisfieg6s1| > 6/2. By symmetry, we
may assumeé; > 6/2.

Next we exhibit constants = b(0) andg = B(e, 6) that satisfy

O<b<a=|w)Y?2<1 and 0< B <« = |argJ/wi| < /2.
The bounds oi; andr; yield
1< |wil < 14 ¢"/?| = 2cog6/4);

consequently, the first inequality holds for= b(9) = [2cog6/4)]~Y2. Also,
sincea = arg/w; > arg((1+ e¢'%?)Y/2), we find that the second inequality is
valid wheng = (e, 0) = ; arctar{e sin(¢/2)/[1 + ¢ cos(6/2)]).
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Finally, Fact 3.8 and (3.9) now permit us to assert
Ap(z) dist(z, dD) = 2/|f'(0)| > 2h(a, @) > 2H (D, B),

which completes the proof. O

3.11. CoroLLARY. For a simply connected hyperbolic domdn inf Ad > 1/2
if and only if D satisfies some annular wedge condition.

Proof. The necessity follows from Corollary 3.7. The sufficiency is a consequence
of Theorem 3.10 and (3.9). O

We close this section with an example illustrating the usefulness of Theorem 3.10.
ConsiderD = C\F, where F is a fractal constructed as follows. Start with

[0, +00) U,cz[2"(A — i), 2"(1+i)]. Add appropriate horizontal segments to the
“end” of each vertical segment, and so on. In the limit we obtain a “feathery”
closed connected sét consisting of [0 +o00) together with many vertical and
horizontal line segments. We see tliasatisfies some annular wedge condition,
and thus infid > 1/2.

4. The Supremum

First we verify that supd > k for any hyperbolic domaitD, wherek > 0 is an
absolute constant. Hilditch [Hi] conjectures that we can lake%/\o,l(%), where
Xo1 = Aqq, andQg1 = C\{0, 1}. We exhibit precise values afthat are valid in
certain domains.

Recall thatD is aBlochdomain if R(D) = sup, dist(z, aD) is finite. Minda
[M2, Thm. 2] demonstrates that/R(D) > A(D) > 1/R(D), where A(D) =
inf.cp Ap(z); thusD is Bloch if and only if A(D) is positive .

4.1. ProrosiTION. There is an absolute constant- 0 such thatsuprd > k for
any hyperbolic domai®. If D is a Bloch domain, thesuprd > 1. If D is a con-
vex Bloch domain, thesupid > /2 and this estimate is best possible. Ifis
a simply connected hyperbolic domain andD) is attained inD, thensupid >
104176. ..

Proof. The asserted estimate for sughfor simply connected domains in which
A(D) is attained is a consequence of a result due to Minda and Overholt [MO,
Thm. 3]. Suppose thaD is a Bloch domain. Then, according to [M2, Thm. 2],
we have

Ap(z) dist(z, D) > A(D) dist(z, dD) > dist(z, dD)/R(D)

for anyz € D. Letting dist(z, 3D) — R(D) yields sup.d > 1. WhenD is also
convex, [M2, Thm. 3] similarly furnishes sug > n/2; see also [M1, Thm. 5].
The infinite stripX is a convex Bloch domain with sug.d = 7/2; see (2.4).
Now we consider a general hyperbolic domain Suppose first thab has an
isolated boundary pointg, and letw; be any point obD\{wg} closest tavg. Put
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z0 = (wo + w1)/2. Using a similarity transformation, we can assume thgt=
0 andw; =1, sozp = 1/2. Then we see thad C Q21 = C\{0, 1} and thus

supAd > Ap(zo) dist(zo, dD) = (1/2)r0,1(1/2).

Next assume that no point @D is isolated. Suppose thaty = 0 € aD is the
closest point obD to some point € D. Sincewy is not isolated, there is a point
w1 € dD N B(wo; |zo]), w1 # wo. Letzy = |w1/zolz0. Using a similarity transfor-
mation, we can assume that= —1. Let D* be the circular symmetrization @#
with respect to the positive real axis. ThBri C Q¢ 1 and so (by [Ha, Thm. 4.8]
or [W]) we obtain

supAd > Ap(z1) dist(z1, D) = Ap(z1) > Ap=(z1) = Ao1(—D).
Hence, in all cases sugl > k = Ap1(—1) = 0.22847 . .. O

It is true that equality holds irfl.1) at apoint z if and only if D is the disk
B(z; dist(z, aD)). However, as our next resultindicates, there are plenty of nondisk
domainsD with supid = 2.

4.2. THEOREM. A hyperbolic domairD satisfiessupid < 2 if and only if there
exists a constart > 0 such that, for each point € D, there is a pointz € D
with |¢ — z| = dist(z, dD) < (1/a) dist(¢, dD).

Proof. First, we verify the sufficiency; assume such a consiaaists. Observe
thata < 2. If a = 2then, by taking an increasing union of disks, we deduce that for
eachy € D there is a half-plané with B(z; dist(z, 3D)) ¢ H C D, and therefore
suprd < 1. Supposer < 2. Fix zg € D, setd = dist(zg, D), and choose&y € D

with |¢o — zol = d < (1/a) dist(Zo, dD). ThenB = B(zo; d) U B(¢o; ad) C D.
Similarity invariance oh p (z) dist(z, aD) allows us to assume thag = 0, d = 1,
and¢o = 1 In order to calculate.z(0), we mapB conformally onto the upper
half-plane viez — w, where

i \P
z—e 27 fa
== , =——— and 6 =2arcsin = |.
v (etez—1> P= 3709 r(2)

Then we evaluate

1 |dw
S(w) | dz

to obtainiz(0) = 2p sin(9)/sin(pd) < 2. Domain monotonicity of the Poincaré
metric yieldsi p(0)d < A (0), which, in conjunction with Fact 2.2, produces

Ap(2) = atz=0, w=e"

suprd < 2p sin(@)/sin(pb) < 2;

notice that this (strictly decreasing) bound on &dglepends only on.

In the opposite direction, suppose there exist paipts D with the property
that, for all points; € D with |¢ — z,| = d, = dist(z,, dD), we always have
dist(¢, 9D) < d,,/n. We claim that.p(z,,)d, — 2 asn — oo. SinceD C G, =
C\(D N B(z,; (1+1/n)d,)), it suffices to show that s, (z,)d, — 2 asn — oc.
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Consider the imag#,, of G, under the similarity transformatian = (z —z,,)/d,,.
Observe that the kernel ¢H,} with respect to the origin is the unit didkand,
moreover, thaH, — B. Appealing to Fact 2.1, we obtain

)\Gn(zn)dn = )\H,l(o) - )L]E(O) = 2a

as desired. O

It would be useful to have a quantitative estimate for the constamtterms of
supAd. The difficulty in obtaining such information stems from allowifgto be
a completely arbitrary hyperbolic domain.

With a view toward later applications, we now examine a condition that in some
sense is dual to the quasiconvexity condition (3.2). We consider when itis possible
to join pointszs, z» by a rectifiable arg in D satisfying

min{€(y (£, z1)), €(y (¢, z2))} < cdist(, dD) forall ¢ ey (4.3)

for some constant > 1. Herey (¢, z) denotes the subarc ¢f betweery, z. We
can view (4.3) as describingaurvilinear double wedggining the points, 72
in D.

We also utilize the geometric quantity

. lz — ¢l
b(D) = inf _
(D) zl.re]D gseuz?dist(z, D)

which enjoys the following properties.

4.4. LEmMA. The quantityp = b(D) satisfiesl < b < oo, whereb = oo if and
only if D is unbounded and = 1if and only if D is a disk.

Proof. We verify the last assertion. Assunieis bounded, but suppose that for
each positive integer there exists a poind, € D with D C B(z,; 1+ 1/n)d,),
whered,, = dist(z,,, D). Note that diandD) < 2(1+1/n)d, for all n. Passing to
subsequences, we can assume ghat- zo andd, — dgp asn — oo. Appealing
to the continuity of distz, dD), we find that distzg, dD) = do > diam(D)/2 >

0, so in particulazg € D. We assert thab = B(zg; do). Forif z € D ande > 0,
then forn sufficiently large we obtain

|z —zol = A+1/n)d, + |za — 20l = A+ &)(do+ &) + &
lettinge — 0 yields|z — zo| < do, whenceD C B(zo; do). O
Here is an analog of Proposition 3.3.

4.5. PropPOSITION.  Suppose there exists a constant 1 such that each pair of
pointszs, zo € D can be joined by an arg C D satisfying(4.3). Then eitherD
is a disk orsuprd < o < 2, whereo depends only on and possibly o (D).

Proof. We assume thab is not a disk, s& = b(D) > 1. Fix a pointz; € D and
setd = dist(z1, aD). Select a point, € D with |z, — z1| > bd. According to
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[NV, 2.19], there is an arg C D joining z; andz, with (4.3) valid. Pick a point
£ €y NoB(z1;d). Now

=Ly z1))=d and {=4L(y(5 z2) = (b —1Dd,

so employing condition (4.3) we obtain distoD) > ad, wherea = min{l,
b —1}/c. Thus Theorem 4.2 yields sup < o(c, b) < 2. O

5. Quasidisks

Here we apply Propositions 3.3 and 4.5 to verify that nonround quasidisks sat-
isfy both infAd > 1/2 and sup.d < 2. Then we characterize unbounded convex
guasidisks in terms of sharp estimates onidifand sup.d.

Vaisdla [V, 2.21] demonstrates that condition (4.3) describes the clakthof
domains(see also [NV, 2.14; P3, pp. 96-102]). An especially important proper
subclass of the John domains aredh&ormdomains, which also enjoy the quasi-
convex property (3.2). Martio and Sarvas coined this terminology to describe con-
cepts introduced by John. In general, a simply connected hyperbolic John domain
D need not satisfy infd > 1/2. However, a simply connected hyperbolic do-
main is uniform if and only if it is a quasidisk; see [NV, 9.2; P3, Chap. 5]. Thus
we obtain the following consequences of Propositions 3.3 and 4.5.

5.1. CoroLLARY. Every John or uniform domaib is either a disk or satisfies
supAd < 2. In addition, every quasidisk satisfiesnf Ad > 1/2.

In particular, everyunboundedjuasidisk enjoys both/a < inf Ad and sup.d <

o, wherep = p(c) < 2 andc is the constant in (3.2) and (4.3). We conclude
this work by further investigating this situation. We shall wiiefor the inverse

of the functionF(#) = sin(9)/6, 0 < 6 < m/2. Notice that® decreases from
O®2/r) = n/2t0O(1) = 0. Our description for unbounded convex quasidisks is
in terms of the following estimate on the hyperbolic metric:

1< Ap(z)dist(z,dD) <o forall ze D. (5.2)

We leave the proof of the following to the interested reader.

5.3. Lemma. If Disunboundedand convex, then each poinba$ the endpoint
of some infinite ray irD.

5.4. THEOREM. Suppos€5.2) holds witho < /2. ThenD is an unbounded
convex domain and each point &f is the vertex of an infinite wedge in with
apex angled > ®(20/7) (sosin@®)/0 < 2c0/m). Conversely, ifD is an un-
bounded convex domain and each point/ofs the vertex of an infinite wedge in
D with apex angled, then(5.2) holds witho = ¢(0) < ¢(0) andsin(9)/0 <
20/ < 1/6.

5.5. REMARKs. (&) For unbounded convex domains, the infinite wedge condi-
tion is equivalent to the domain being a quasidisk. (b) The infinite strip example
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shows thatr/2 is sharp for the wedge condition (of course, 1 is sharp for convex-
ity); see (2.4). (c) According to (2.3), the estimate(8ii6 < 20/m gives best
possible lower bounds both férin terms ofc and foro in terms ofg. (d) The
constanir (9) is simply i, (0), whereA,, is the convex hull oB U Q, andd =

ar. Also, Ag =BU{x +iy:x >0, |y] <1}, and we see that asdecreases

to 0,0(0) increases te(0) and, sinceAy C X, Fact 2.2 forces(0) > n/2 =
Ax(0). (e) For the second half of 5.4, equality holds at some poin{(5.2) if and
only if either D is a half-plane oD is affine equivalent t®2,.

Proof of Sufficiency We assume that the hyperbolic metridirsatisfies (5.2) with
o < m/2. ThenD is convex by Fact 3.1 and hence non-Bloch (so unbounded) ac-
cording to Proposition 4.1. Next, we verify existence of the infinite wedges. Last,
we estimate the apex angles.

Fix an arbitrary pointg € D. Assumezg = 0 and distzg, dD) = 1; thusB C
D. By Lemma 5.3,D contains an infinite ray fromg, which we assume to be the
positive real axiR ; so D contains the convex hull & U R (which is Ag).
Notice that, by convexity, ifv; andw, are points obD with, say, O< R(wj) <
N(wy), then necessarily either@ J(wy) < IJ(wy) or 0> IJ(wg) > IJ(wy).

We proceed to verify thatg is the vertex of an infinite wedge iB. Fix x e R,
and consider the vertical line = {f(z) = x}. If L meets no point 0D in the
upper half-plane, the® contains the first quadrant, which is an infinite wedge; a
similar conclusion holds iL. meets no point 08D in the lower half-plane. Thus
we may assume that there are = y.(x) with x + iy, andx + iy_ points of
L N aD in the upper and lower half-planes, respectively. Sifcis non-Bloch,
we must have

d(x) =maxX{y;(x), —y_(x)} > o0 asx — oo.

Notice thatD contains an infinite wedge if and only if/d(x) is bounded as
X — OQ.
Suppose/d(x) — oo asx — oo. Put

Gy = {N(2) <x,y-(x) <(2) < y+(0)}U{NR(z) > x}
and letz(x) = (x — ah) + iy, where
X Yy — ¥ Yy +y-
d(x)’ 2 2
Under the change of variables = (z — z(x))/h(x), we see that, is mapped
onto a domairf,., z(x) corresponds tw = 0, andx +iy(x) corresponds ta(x).

Sincea(x) — oo asx — oo, we find thatH, converges to the infinite strig
with respect to the origin, in the sense of kernel convergence. (low D, so

Ap(z(x)) dist(z(x), D) > A¢ (z(x)) dist(z(x), dD)
= Ay, (0) dist(z(x), dD)/h(x).

We claim that lim sup_, . dist(z(x), dD)/h(x) > 1, and thus—by Fact 2.1 and
(2.4)—we deduce that swg > 7/2, which contradicts our hypotheses. (To

a=a(x)=log h=h(x)=

y=yx)=



Uniform Estimates for the Hyperbolic Metric 25

check our claim: Assume that = d(x) = y,. Then distz(x),dD) > t =
(x —ad)h/~/x%2 + d?, wheret is the distance from(x) to the line through o and
x + iy (x).)

We have now established thetmust contain an infinite wedge with vertex
it remains to estimate the apex angle of the largest such wedge. Using another ro-
tation, if necessary, we may assume tfigtis the largest wedge containedin
with vertexzg, whered = anr. This means thatre*©+% : r > 0} N 3D # @ for
all smalle > 0. We show that, as — oo, Ap(x) dist(x, dD) is asymptotically
equal torg, (x) dist(x, 02,) = (;r/2)(Sin6/0) (see (2.3)).

Takee = n/n, and letu, andv, be the “first” points ofdD N { re=i@+7/m .
r > 0}anddD N {re!®+™/m . r > 0}, respectively. Put, = max{R(u,), R(v,)}
andy, = max{—3(u,), J(v,)}, so tand + n/n) = y,/x, and either,, + iy, =
u, or x, + iy, = v,. We assume that, — oo, for otherwise we easily conclude
thatD = Q,.

Using convexity again we see thatc G,,, where now

Gy =QurynU{x+iy x <x, [yl <y}

Letz, = x2 andd, = dist(z,, dG,); notice that distz,,, dD)/d, — 1asn — oo.
Consider the change of variahle= (z —z,)/d,; G, is mapped onto a domatt,

with z,, andx,, corresponding to 0 angk, — x,f)/dn, respectively. Nowy, /d,, —

0 and(x, — z,)/d, — — csch, from which we deduce that, — Q, — cschd =
{z—csch : z € Q, } with respect to the origin, in the sense of kernel convergence.
All of this in conjunction with Fact 2.1, (2.3), and

Ap(zy) dist(z,, dD) > Ag,(z,) dist(z,, 0D) = Ay, (0) dist(z,, dD)/d,
yields sind/0 < 20/7, as desired. O

Proof of NecessityNow we assume thdd is an unbounded convex domain that
enjoys the infinite wedge condition for some apex arfigie arr. SinceD is con-
vex, the lower bound fok p () dist(z, D) follows from Fact 3.1; we establish an
upper bound and provide the indicated estimates.

Fix zo € D. Assumezg = 0, dist(zg, dD) = 1, and2, is the infinite wedge
joining zo to infinity in D. Then the convex hulh = A, of BU Q,, is contained
in D, and

Ap(zo) dist(zo, D) = Ap(z0) < 2a(0) = 0(0).

It remains to estimate = o(0); for this we utilize a result [MW, Thm. 2] of
Minda and Wright which asserts thatil, is concave on lines ilD when D is
convex. To obtain an upper bound fome write 0= (1—¢)y + tx, where—1 <

y <0,x >0,and O< ¢t < 1 solve fort; and then lety — —1 andx — oo.
SinceA,(x) is asymptotic to [2(x + ¢)] "t asx — oo (use kernel convergence),
we obtain

1 1-+¢ t
> + > 2at(x +¢) > 2a
Aa0) T Aa(y)  Aalx) ( )

and hence 2/7 < 1/6; herec = csch.
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For the lower bound we write¢ = logx = 1—#)0+tx (S0 0< ¢t < 1); let

x — o0o; and again use the fact that(x) is asymptotic to [&(x + ¢)] tasx —
00, Wherec = cscd. We find that

1<1<1_t)_1(x_y>
a0 T 1=t \2a(y)  Aa(x))  x—y\ra(y)  Aalx)

2 <xy+cx xy—i—cy))
X =y q p

1 1 1 1
25D et )
X—=yY\qg P X—=yq X—=YPp
wherep = 2a(x + ¢)Aa(x) andg = 2a(y + c)Aa(y). Sincep andg both tend
tolasx — oo, we see thatA(0) < 2ac and so si/0 < 20/m as desired.

O
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