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1. Introduction

Throughout this article,D is a proper subdomain of the complex planeC possess-
ing at least two finite boundary points, usually termed ahyperbolicdomain. Each
suchD carries constant negative curvature metrics, and we letλD denote the scale
factor or density for the maximal constant curvature−1 metric. We callλD the
Poincaré hyperbolic metricfor D; it can be defined by

λD(z) = λB(ζ)/|p′(ζ)| = 2/(1− |ζ|2)|p′(ζ)|,
wherez = p(ζ) andp : B→ D is any holomorphic covering projection from the
unit diskB = {|ζ| < 1} ontoD. See [BP; HM; M1; M2] and their references for
basic properties of the Poincaré metric.

An elementary exercise using Schwarz’s lemma shows thatλD satisfies a domain
monotonicity property, from which we easily conclude that

λD(z)dist(z, ∂D) ≤ 2 (1.1)

for all pointsz ∈ D for any hyperbolic domainD. In the opposite direction, an
application of Koebe’s one-quarter theorem [P3, 1.4, p. 9] yields

λD(z)dist(z, ∂D) ≥ 1/2 (1.2)

for all z∈D whenD is simply connected. Thus we see from(1.1) and (1.2)that, in
simply connected hyperbolic domainsD, the Poincaré metric and the Euclidean
distance to the boundary∂D of D are approximately reciprocals; however, for
general hyperbolic domains there are no universal lower bounds as in (1.2).

It is well known that equality holds in(1.1) (resp., (1.2)) at some pointz if and
only if D is a disk centered atz (resp.,D is the complement of a ray andz lies
on the ray of symmetry). Our purpose here is to investigate when strict inequal-
ity holdsuniformly in (1.1) or (1.2). We exhibit geometric conditions that provide
estimates for the quantities
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supλd= sup
D

λd= sup
z∈D

λD(z)dist(z, ∂D)

and
inf λd= inf

D
λd= inf

z∈D
λD(z)dist(z, ∂D).

More precisely, in this note we characterize the hyperbolic domains for which
supλd < 2 (see 4.2), and we present estimates for infλd (see 3.3, 3.5, and 3.10)
and use them to describe the simply connected hyperbolic domains satisfying
inf λd > 1/2 (see 3.11). We shall discover that whether or not supλd < 2 or
inf λd> 1/2 depends in an essential way on the geometry of∂D.

After studying infλd and supλd in Sections 3 and 4 (respectively), we apply
our results in Section 5 to confirm that both infλd> 1/2 and supλd< 2 hold for
nonround quasidisks. In addition, we characterize unbounded convex quasidisks
in terms of precise estimates on infλd and supλd.

The quantity 1/dist(z, ∂D) is the density for the so-calledquasihyperbolicmet-
ric inD. HenceλD(z)dist(z, ∂D) can be viewed as the ratio of the hyperbolic and
quasihyperbolic metrics at the pointz; so supλd and infλd yield sharp upper and
lower bounds for the values of this ratio.

2. Preliminaries

We letB(z; r) = { ζ : |ζ − z| < r } denote the open disk of radiusr centered at
the pointz. We writec = c(a, . . . ) to indicate a constantc that depends only on
a, . . . ; typically, c will depend on various parameters, and we try to make this as
clear as possible, often giving explicit values.

We make extensive use of Hejhal’s result [He], which describes the behavior of
the Poincaré metric with respect to Carathéodory kernel convergence.

2.1. Fact. Suppose that a sequence of hyperbolic domains{Dn} converges to a
hyperbolic domainDwith respect to a pointz0, in the sense of kernel convergence.
ThenλDn(z0)→ λD(z0) asn→∞.
In order to certify statements regarding equality of Poincaré metrics, we utilize the
following, due to Minda [M1, Cor., p. 63].

2.2. Fact. Let D andG be hyperbolic subdomains ofC with D ∩ G 6= ∅.
Suppose thatλD(z) ≤ λG(z) for all z in some neighborhood of a pointz0 ∈
D ∩G. If equality holds atz = z0, thenD = G.
We require knowledge of the Poincaré metric in some special domains. To calcu-
lateλD(z), we utilize its conformal invariance:λD(z)|dz| = λD ′(w)|dw| when-
everz 7→ w is a conformal change of variables mappingD ontoD ′. We denote
the infinite wedge with apex angleαπ, 0< α ≤ 1, by

�α = { reiθ : r > 0, |θ | < απ }.
An easy calculation, usingw = z1/2α, yields
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λ�α(re
iθ ) = 1/[2αr cos(θ/2α)], (2.3)

from which we deduce that, when 0< α ≤ 1/2 andβ = 1− α,
sup
�α

λd= sin(απ)/2α, inf
�α
λd= 1= sup

�β

λd, inf
�β
λd= 1/2β.

For α = 0, �α is replaced by the infinite strip6 = { x + iy : |y| < 1}. The
conformal change of variablesw = exp((π/2)z) produces

λ6(x + iy) = π/[2 cos((π/2)y)], (2.4)

and we observe that inf6 λd= 1 and sup6 λd= π/2.
Now we compute the Poincaré metric for theannular wedge

A(m, ϕ) = { reiθ : e−m < r < 1, |θ | < ϕ },
with angle/radius modulus 2ϕ/m, wherem > 0 and 0< ϕ < π.

2.5. Lemma. At the “center point”z0 = e−m/2 ofA = A(m, ϕ), we have

|z0|λA(z0) = K

ϕ
(1+ k) = K ′

m
(1+ k).

Here0< k = k(m, ϕ) < 1 is chosen so thatϕ/m = K/K ′;K = K(k); andK ′ =
K ′(k) = K(√1− k2 ).

Proof. Recall that (for 0< k < 1) the mappingw = F(ζ) = F(ζ, k), given by

F(ζ) = F(ζ, k) =
∫ ζ

0
[(1− z2)(1− k2z2)]−1/2 dz,

defines a conformal homeomorphism of the upper half-planeH = {=(ζ) > 0}onto
the rectangle{|<(w)| < K, 0< =(w) < K ′ } and the pointsζ = −1/k,−1,1,1/k
correspond tow = −K+ iK ′,−K,K,K+ iK ′, respectively, whereK = K(k) =
F(1, k) andK ′ = K(

√
1− k2 ) [N, p. 280] (F−1 is the Jacobian elliptic sine

function).
Now λA can be computed using any conformal mappingf : H → A. Letting

k = k(m, ϕ) be defined as indicated, we see that a formula forf is

z = f(ζ) = exp

(
mi

K ′
F(ζ)

)
.

Since|z|λA(z) = λH (ζ)|f(ζ)/f ′(ζ)| andλH (ζ) = 1/=(ζ), we find that

|z0|λA(z0) = K ′

m
(1+ k) = K

ϕ
(1+ k)

at z0 = f(i/
√
k ), as desired.

3. The Infimum

The canonical simply connected domain for which infλd= 1/2 is the complement
of a ray—for example, ifD = C\(−∞,0] = �1, then
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λD(z) = 1/(2|z| cos(arg(z)/2))

and henceλD(x)dist(x, ∂D) = 1/2 for allx > 0. Beardon and Pommerenke [BP]
exhibit a geometric characterization of hyperbolic domainsD with inf λd positive,
however, their lower bound is always strictly less than1/2; see also [HM; P1]. Em-
ploying Carathéodory’s kernel convergence theorem, Pommerenke [P2, Lemma 4]
established a necessary and sufficient condition for infλd> 1/2 to hold in a sim-
ply connected domain, albeit in a disguised form. In addition to applying solely to
simply connected domains, Pommerenke’s result fails to provide any quantitative
information about infλd. Here we offer a different geometric characterization for
these simply connected domains that, in addition, furnishes estimates for infλd
as well as supplying some information about the multiply connected case.

We begin by mentioning the following due to Hilditch [Hi, Thms. 2.1, 2.2]; see
also Minda [M1, Thm. 4], Meija and Minda [MM, Thms. 2, 3] and Harmelin and
Minda [HM, Thm. 4].

3.1. Fact. For any hyperbolic domainD, inf λd≤ 1, and equality holds if and
only if D is convex.

To verify the inequality, letz approach a closest boundary point. Convex do-
mains possess supporting half-planes, so the equality is a necessary condition for
convexity; that it is also sufficient follows from a result of Keogh’s [K].

Next we examine domains that enjoy a certain arcwise connectivity property.
We declareD to bec-quasiconvexprovided each pair of pointsz1, z2 in D can be
joined by an arcγ in D whose Euclidean arclength satisfies

`(γ ) ≤ c|z1− z2| (3.2)

for some constantc ≥ 1. We record the following observation, in part because of
the explicit lower bound it furnishes for infλd. Blevins establishes a similar re-
sult fork-domains [B, Thm. 2.2], and Meija and Minda produce such an estimate
for k-convex domains [MM, Thm. 1]. Notice that, whenc = 1 we recover the
Hilditch–Minda result for convex domains.

3.3. Proposition. SupposeD is simply connected andc-quasiconvex. Then

λD(z)dist(z, ∂D) ≥ 1/2β > 1/2 for all z∈D,
whereβ = 1− α and απ = arcsin(1/c). Moreover, equality holds at a single
point z ∈D if and only if there is a similarity transformationϕ mappingD onto
the infinite wedge�β with ϕ(z) > 0.

Proof. First we note that the hypotheses onD ensure that eitherD is a bounded
Jordan domain or that∂D consists of a finite number of distinct infinite Jordan
curves (cf. [P3, 5.6]). Fixz0 ∈ D. Assume that 0∈ ∂D and thatz0 = 1 =
dist(z0, ∂D). Let C be the component of∂D containing 0 and letG be the com-
ponent of the complement ofC that lies in the complement ofD. Next let0 be an
arc joining 0 to∞ in G.
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Fix r > 0. Letw be the “first” point where0 meets the circle|z| = r, letA be
the subarc of{|z| = r} ∩ G containingw, and letw1, w2 be the endpoints ofA.
We claim that the angular measure ofA is at least 2απ. Choose pointszi ∈D on
|z| = r close enough towi so that the smaller subarcsκi betweenzi andwi lie in
D. Let γ be an arc inD joining z1, z2 and satisfying (3.2). Sinceγ cannot meet
0, the origin must lie inside the curveA ∪ κ1∪ γ ∪ κ2, so`(γ ) ≥ 2r. Thus

2r/c ≤ |z1− z2| = 2r sin(θ/2) or θ ≥ 2απ,

whereθ is the angle betweenz1 andz2. Lettingzi approachwi yields our assertion.
Now letD∗ be the circular symmetrization ofD with respect to the positive real

axis (cf. [W] or [Ha, p. 69]). ThenD∗ is a domain,z0 = 1∈ D∗, 0 ∈ ∂D∗, and
(since each circle|z| = r contains a subarcA ⊂ C\D of angular measure 2απ)
we see thatD∗ ⊂ �β. Thus, by [W] and (2.3),

λD(z0)dist(z0, ∂D) = λD(z0) ≥ λD∗(z0) ≥ λ�β (z0) = 1

2β
,

as desired. According to Fact 2.2, equality forcesD = D∗ = �β.

3.4. Remarks. (a) The punctured unit diskB∗ = B\{0} is c-quasiconvex for
all c > 1, yet infB∗ λd = 0. Thus, the simple connectivity hypothesis is essen-
tial. (b) The domainD = {1 < |z| < 2, |arg(z)| < π} has infλd > 1/2 (by
3.11), but is not quasiconvex. (c) An analog of Proposition 3.3 holds with the arc-
length ofγ replaced by its diameter, although in this situation we only obtain the
nonsharp lower bound infλd≥ π/[2(π − arcsin(1/2c))]. However, there are do-
mains that satisfy such a diameter condition but not the corresponding length con-
dition. Another alternative arises if instead of joining interior points we just re-
quire that boundary points be joinable; but then we must insist thatD be Jordan,
or we must consider prime ends. (d) Finally, we mention that one can obtain this
result by way of Hölder continuity of conformal mappings; see [NP1, Thm. 2] and
[NP2, p. 439].

We now turn to the problem of characterizing the condition infλd> 1/2. Roughly
speaking, we show that this holds if and only if the boundary ofD near each “closest
boundary point” oscillates with a minimum amplitude (the constantθ ) and a min-
imum frequency (the constantε). To be more precise, let2(w;w1, w2) ∈ [0, π]
denote the angle between the segments [w,w1] and [w,w2] (wherew,w1, w2 are
distinct points). Given constants 0< ε < 1 and 0< θ < π, we say thatD sat-
isfies an(ε, θ)-annular wedge conditionif, wheneverz ∈D andw ∈ ∂D are such
thatd = |z− w| = dist(z, ∂D), there then exist pointsw1, w2 ∈C\D with εd ≤
|wi − w| ≤ d and2(w;w1, w2) ≥ θ. Thus, ifD satisfies some annular wedge
condition thenD has no boundary points that are endpoints of internal cusps, and
in fact there is a quantitative estimate describing how far away from being such a
point each exposed boundary point is. Note that our annular wedge condition is
equivalent to Pommerenke’s half-strip condition [P2, Lemma 4].
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We establish that every hyperbolic domain with infλd> 1/2 must satisfy some
annular wedge condition by employing a conformal mapping and domain mono-
tonicity of the Poincaré metric. We verify the converse for simply connected do-
mains by using a result of Kuz′mina [K1]. First we derive an upper bound for
inf λd in domains that fail to satisfy a specific annular wedge condition.

3.5. Theorem. Suppose a hyperbolic domainD fails to satisfy the annular
wedge condition for a particular pair of constants(ε, θ) ∈ (0,1) × (0, π). Then
there exists a pointz∈D such that

λD(z)dist(z, ∂D) ≤ 2K
1+ k

2π − θ , (3.6)

where0< k = k(ε, θ) < 1 is chosen so that(2π − θ)/ log(1/ε) = 2K/K ′; K =
K(k); andK ′ = K(√1− k2 ).

Proof. By definition of the annular wedge condition and similarity invariance of
λD(z)dist(z, ∂D),we may assume that there exist pointsz0 ∈D andw0 = 0∈ ∂D
with |z0| = 1= dist(z0, ∂D) and such that either(C\D)∩{ε ≤ |w| ≤ 1} contains
at most one point or2(0;w1, w2) < θ for any two pointsw1, w2 ∈ (C\D)∩{ε ≤
|w| ≤ 1}. Thus, using a rotation if necessary, we may assume that the annular
wedge

B = { reit : ε < r < 1, |t | < π − θ/2 }
is contained inD. Domain monotonicity of the Poincaré metric in conjunction
with Lemma 2.5 now yields

|z|λD(z) ≤ |z|λB(z) = 2K
1+ k

2π − θ
at the center pointz = √ε of B, which establishes (3.6) since 0∈ ∂D.
It is now easy to demonstrate that a hyperbolic plane domainD that does not sat-
isfy some annular wedge condition must have infλd ≤ 1/2. Thus, a necessary
condition for infλd > 1/2 to hold is thatD satisfy an annular wedge condition
for someconstants. More precisely, we obtain the following.

3.7. Corollary. Supposeτ = inf λd>1/2. Then, for each0<θ < (2−1/τ)π,
there is anε = ε(θ), 0 < ε < 1, such thatD satisfies an(ε, θ)-annular wedge
condition.

Proof. First note that, for fixedθ, the right-hand side of (3.6) tends toπ/(2π − θ)
asε → 0 becausek(ε, θ)→ 0 andK → π/2. Now when 0< θ < (2− 1/τ)π
we see thatπ/(2π − θ) < τ, so Theorem 3.5 guarantees thatD must satisfy an
(ε, θ)-annular wedge condition from some 0< ε < 1.

We now prove that the annular wedge condition is sufficient for infλd > 1/2 to
hold, providedD is simply connected. It isnot sufficient even in the doubly con-
nected case. For example, the domainD = { z : |arg(z)| < 3π/4 } ∪ { z : e−2π <
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|z| < 1} satisfies an(ε,3π/8)-annular wedge condition whenε > 0 is sufficiently
small, but at the pointz = e−π we find thatλD(z)dist(z, ∂D) < 1/2.

We require the following result of Kuz′mina [K1, Thm. 1′ ].

3.8. Fact. Let f be univalent inB and normalized byf(0) = 0. Supposef
does not assume the value1 nor the valuew = a−2e2iα, where0 < a ≤ 1 and
|α| ≤ π/2. Then|f ′(0)| ≤ 1/h(a, α), and this bound is sharp.

The functionh(a, α) is defined via theta functions, other elliptic functions, and var-
ious parameters determined by a nonlinear system of equations involvinga andα.
Since these equations provide no direct information regardingh(a, α),we refer the
interested reader to [K1, p. 55] (and to [K2, pp. 77–80], where a detailed analysis
is presented); here one also finds information regarding the extremal cases. How-
ever, we mention thath(a, α) can be realized as the logarithmic capacity (or trans-
finite diameter) of the extremal continuum that contains the points 0,1, a−2e2iα

and has minimal capacity; see [K2, Chap. 1].
We make a few remarks concerning certain properties of this function. First,

defineh(0, α) = 1/4 for |α| ≤ π/2; thenh is continuous on [0,1]× [−π/2, π/2]
with 1/4 ≤ h(a, α) = h(a,−α) ≤ 1/2. Next, since Fact 3.8 is sharp,h(a, α) =
1/4 if and only if eithera = 0 orα = 0. Thus, for(b, β) ∈ (0,1) × (0, π/2) we
have

H(b, β) = min{h(a, α) : (a, |α|)∈ [b,1]× [β, π/2] } > 1/4. (3.9)

We are now in position to announce a converse to Theorem 3.5.

3.10. Theorem. Given (ε, θ) ∈ (0,1) × (0, π), there existb = b(θ) ∈ (0,1)
and β = β(ε, θ) ∈ (0, π/2) such that, ifD is a simply connected hyperbolic
domain satisfying an(ε, θ)-annular wedge condition, theninf λd ≥ 2H(b, β),
whereH(b, β) is defined by(3.9).

Proof. Fix z ∈D and choosew ∈ ∂D so that|z − w| = dist(z, ∂D). By similar-
ity invariance we may assume thatz = 0 andw = 1. ThenλD(z) = 2/|f ′(0)|,
wheref : B→ D is conformal withf(0) = z = 0.

SupposeD satisfies an(ε, θ)-annular wedge condition. This guarantees the ex-
istence of pointswj = 1+ rj eiθj ∈ C\D ⊂ C\B such thatε ≤ rj ≤ 1 and
2(w;w1, w2) ≥ θ. Sincewj /∈ B, we may chooseθj with |θj | ≤ 2π/3. As
2(w;w1, w2) ≥ θ, one of theθj (say,θ1) satisfies|θ1| ≥ θ/2. By symmetry, we
may assumeθ1 ≥ θ/2.

Next we exhibit constantsb = b(θ) andβ = β(ε, θ) that satisfy

0< b ≤ a = |w1|−1/2 ≤ 1 and 0< β ≤ α = |arg
√
w1| ≤ π/2.

The bounds onθ1 andr1 yield

1≤ |w1| ≤ |1+ eiθ/2| = 2 cos(θ/4);
consequently, the first inequality holds forb = b(θ) = [2 cos(θ/4)]−1/2. Also,
sinceα = arg

√
w1 ≥ arg

(
(1+ εeiθ/2)1/2

)
, we find that the second inequality is

valid whenβ = β(ε, θ) = 1
2 arctan

(
ε sin(θ/2)/[1+ ε cos(θ/2)]

)
.
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Finally, Fact 3.8 and (3.9) now permit us to assert

λD(z)dist(z, ∂D) = 2/|f ′(0)| ≥ 2h(a, α) ≥ 2H(b, β),

which completes the proof.

3.11. Corollary. For a simply connected hyperbolic domainD, inf λd> 1/2
if and only ifD satisfies some annular wedge condition.

Proof. The necessity follows from Corollary 3.7. The sufficiency is a consequence
of Theorem 3.10 and (3.9).

We close this section with an example illustrating the usefulness of Theorem 3.10.
ConsiderD = C\F, whereF is a fractal constructed as follows. Start with
[0,+∞)⋃n∈Z[2n(1− i),2n(1+ i)]. Add appropriate horizontal segments to the
“end” of each vertical segment, and so on. In the limit we obtain a “feathery”
closed connected setF consisting of [0,+∞) together with many vertical and
horizontal line segments. We see thatD satisfies some annular wedge condition,
and thus infλd> 1/2.

4. The Supremum

First we verify that supλd ≥ k for any hyperbolic domainD, wherek > 0 is an
absolute constant. Hilditch [Hi] conjectures that we can takek = 1

2λ0,1(
1
2),where

λ0,1= λ�0,1 and�0,1= C\{0,1}. We exhibit precise values ofk that are valid in
certain domains.

Recall thatD is aBlochdomain ifR(D) = supz∈D dist(z, ∂D) is finite. Minda
[M2, Thm. 2] demonstrates that 2/R(D) ≥ 3(D) ≥ 1/R(D), where3(D) =
inf z∈D λD(z); thusD is Bloch if and only if3(D) is positive .

4.1. Proposition. There is an absolute constantk > 0 such thatsupλd≥ k for
any hyperbolic domainD. If D is a Bloch domain, thensupλd≥ 1. If D is a con-
vex Bloch domain, thensupλd ≥ π/2 and this estimate is best possible. IfD is
a simply connected hyperbolic domain and3(D) is attained inD, thensupλd≥
1.04176. . . .

Proof. The asserted estimate for supλd for simply connected domains in which
3(D) is attained is a consequence of a result due to Minda and Overholt [MO,
Thm. 3]. Suppose thatD is a Bloch domain. Then, according to [M2, Thm. 2],
we have

λD(z)dist(z, ∂D) ≥ 3(D) dist(z, ∂D) ≥ dist(z, ∂D)/R(D)

for anyz ∈ D. Letting dist(z, ∂D) → R(D) yields supλd ≥ 1. WhenD is also
convex, [M2, Thm. 3] similarly furnishes supλd ≥ π/2; see also [M1, Thm. 5].
The infinite strip6 is a convex Bloch domain with supλ6d= π/2; see (2.4).

Now we consider a general hyperbolic domainD. Suppose first thatD has an
isolated boundary pointw0, and letw1 be any point of∂D\{w0} closest tow0. Put
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z0 = (w0 + w1)/2. Using a similarity transformation, we can assume thatw0 =
0 andw1= 1, soz0 = 1/2. Then we see thatD ⊂ �0,1= C\{0,1} and thus

supλd≥ λD(z0)dist(z0, ∂D) ≥ (1/2)λ0,1(1/2).

Next assume that no point of∂D is isolated. Suppose thatw0 = 0 ∈ ∂D is the
closest point of∂D to some pointz0 ∈D. Sincew0 is not isolated, there is a point
w1∈ ∂D∩B(w0; |z0|), w1 6= w0. Let z1= |w1/z0|z0. Using a similarity transfor-
mation, we can assume thatz1= −1. LetD∗ be the circular symmetrization ofD
with respect to the positive real axis. ThenD∗ ⊂ �0,1 and so (by [Ha, Thm. 4.8]
or [W]) we obtain

supλd≥ λD(z1)dist(z1, ∂D) = λD(z1) ≥ λD∗(z1) ≥ λ0,1(−1).

Hence, in all cases supλd≥ k = λ0,1(−1) = 0.22847. . . .

It is true that equality holds in(1.1) at apoint z if and only if D is the disk
B(z;dist(z, ∂D)). However, as our next result indicates, there are plenty of nondisk
domainsD with supλd= 2.

4.2. Theorem. A hyperbolic domainD satisfiessupλd< 2 if and only if there
exists a constanta > 0 such that, for each pointz ∈ D, there is a pointζ ∈ D
with |ζ − z| = dist(z, ∂D) ≤ (1/a)dist(ζ, ∂D).

Proof. First, we verify the sufficiency; assume such a constanta exists. Observe
thata ≤ 2. If a = 2 then, by taking an increasing union of disks, we deduce that for
eachz∈D there is a half-planeH withB(z;dist(z, ∂D)) ⊂ H ⊂ D, and therefore
supλd≤ 1. Supposea < 2. Fix z0 ∈D, setd = dist(z0, ∂D), and chooseζ0 ∈D
with |ζ0 − z0| = d ≤ (1/a)dist(ζ0, ∂D). ThenB = B(z0; d ) ∪ B(ζ0; ad ) ⊂ D.
Similarity invariance ofλD(z)dist(z, ∂D) allows us to assume thatz0 = 0, d = 1,
andζ0 = 1. In order to calculateλB(0), we mapB conformally onto the upper
half-plane viaz 7→ w, where

w =
(
z− eiθ
eiθ z−1

)p
, p = 2π

3π − θ , and θ = 2 arcsin

(
a

2

)
.

Then we evaluate

λB(z) = 1

=(w)
∣∣∣∣dwdz

∣∣∣∣ at z = 0, w = eipθ

to obtainλB(0) = 2p sin(θ)/sin(pθ) < 2. Domain monotonicity of the Poincaré
metric yieldsλD(0)d ≤ λB(0), which, in conjunction with Fact 2.2, produces

supλd≤ 2p sin(θ)/sin(pθ) < 2;
notice that this (strictly decreasing) bound on supλd depends only ona.

In the opposite direction, suppose there exist pointszn ∈ D with the property
that, for all pointsζ ∈ D with |ζ − zn| = dn = dist(zn, ∂D), we always have
dist(ζ, ∂D) ≤ dn/n. We claim thatλD(zn)dn → 2 asn→∞. SinceD ⊂ Gn =
C\(∂D∩ B̄(zn; (1+1/n)dn)), it suffices to show thatλGn(zn)dn→ 2 asn→∞.
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Consider the imageHn ofGn under the similarity transformationw = (z−zn)/dn.
Observe that the kernel of{Hn} with respect to the origin is the unit diskB and,
moreover, thatHn→ B. Appealing to Fact 2.1, we obtain

λGn(zn)dn = λHn(0)→ λB(0) = 2,

as desired.

It would be useful to have a quantitative estimate for the constanta in terms of
supλd. The difficulty in obtaining such information stems from allowingD to be
a completely arbitrary hyperbolic domain.

With a view toward later applications, we now examine a condition that in some
sense is dual to the quasiconvexity condition (3.2). We consider when it is possible
to join pointsz1, z2 by a rectifiable arcγ in D satisfying

min{`(γ (ζ, z1)), `(γ (ζ, z2))} ≤ c dist(ζ, ∂D) for all ζ ∈ γ (4.3)

for some constantc ≥ 1. Hereγ (ζ, z) denotes the subarc ofγ betweenζ, z. We
can view (4.3) as describing acurvilinear double wedgejoining the pointsz1, z2

in D.
We also utilize the geometric quantity

b(D) = inf
z∈D

sup
ζ∈D

|z− ζ|
dist(z, ∂D)

,

which enjoys the following properties.

4.4. Lemma. The quantityb = b(D) satisfies1≤ b ≤ ∞, whereb = ∞ if and
only if D is unbounded andb = 1 if and only if D is a disk.

Proof. We verify the last assertion. AssumeD is bounded, but suppose that for
each positive integern there exists a pointzn ∈D with D ⊂ B(zn; (1+ 1/n)dn),
wheredn = dist(zn, ∂D). Note that diam(D) ≤ 2(1+1/n)dn for all n. Passing to
subsequences, we can assume thatzn → z0 anddn → d0 asn→∞. Appealing
to the continuity of dist(z, ∂D), we find that dist(z0, ∂D) = d0 ≥ diam(D)/2 >
0, so in particularz0 ∈D. We assert thatD = B(z0; d0). For if z∈D andε > 0,
then forn sufficiently large we obtain

|z− z0| ≤ (1+1/n)dn + |zn − z0| ≤ (1+ ε)(d0 + ε)+ ε;
letting ε→ 0 yields|z− z0| ≤ d0, whenceD ⊂ B̄(z0; d0).

Here is an analog of Proposition 3.3.

4.5. Proposition. Suppose there exists a constantc ≥ 1 such that each pair of
pointsz1, z2 ∈D can be joined by an arcγ ⊂ D satisfying(4.3). Then eitherD
is a disk orsupλd≤ σ < 2, whereσ depends only onc and possibly onb(D).

Proof. We assume thatD is not a disk, sob = b(D) > 1. Fix a pointz1∈D and
setd = dist(z1, ∂D). Select a pointz2 ∈ D̄ with |z2 − z1| ≥ bd. According to
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[NV, 2.19], there is an arcγ ⊂ D joining z1 andz2 with (4.3) valid. Pick a point
ζ ∈ γ ∩ ∂B(z1; d ). Now

`1= `(γ (ζ, z1)) ≥ d and `2 = `(γ (ζ, z2)) ≥ (b −1)d,

so employing condition (4.3) we obtain dist(ζ, ∂D) ≥ ad, wherea = min{1,
b −1}/c. Thus Theorem 4.2 yields supλd≤ σ(c, b) < 2.

5. Quasidisks

Here we apply Propositions 3.3 and 4.5 to verify that nonround quasidisks sat-
isfy both infλd > 1/2 and supλd < 2. Then we characterize unbounded convex
quasidisks in terms of sharp estimates on infλd and supλd.

Väisälä [V, 2.21] demonstrates that condition (4.3) describes the class ofJohn
domains(see also [NV, 2.14; P3, pp. 96–102]). An especially important proper
subclass of the John domains are theuniformdomains, which also enjoy the quasi-
convex property (3.2). Martio and Sarvas coined this terminology to describe con-
cepts introduced by John. In general, a simply connected hyperbolic John domain
D need not satisfy infλd > 1/2. However, a simply connected hyperbolic do-
main is uniform if and only if it is a quasidisk; see [NV, 9.2; P3, Chap. 5]. Thus
we obtain the following consequences of Propositions 3.3 and 4.5.

5.1. Corollary. Every John or uniform domainD is either a disk or satisfies
supλd< 2. In addition, every quasidiskD satisfiesinf λd> 1/2.

In particular, everyunboundedquasidisk enjoys both 1/ρ ≤ inf λd and supλd ≤
ρ, whereρ = ρ(c) < 2 andc is the constant in (3.2) and (4.3). We conclude
this work by further investigating this situation. We shall write2 for the inverse
of the functionF(θ) = sin(θ)/θ, 0 ≤ θ ≤ π/2. Notice that2 decreases from
2(2/π) = π/2 to2(1) = 0. Our description for unbounded convex quasidisks is
in terms of the following estimate on the hyperbolic metric:

1≤ λD(z)dist(z, ∂D) ≤ σ for all z∈D. (5.2)

We leave the proof of the following to the interested reader.

5.3. Lemma. If D is unbounded and convex, then each point ofD is the endpoint
of some infinite ray inD.

5.4. Theorem. Suppose(5.2) holds withσ < π/2. ThenD is an unbounded
convex domain and each point ofD is the vertex of an infinite wedge inD with
apex angleθ ≥ 2(2σ/π) (so sin(θ)/θ ≤ 2σ/π). Conversely, ifD is an un-
bounded convex domain and each point ofD is the vertex of an infinite wedge in
D with apex angleθ, then (5.2) holds withσ = σ(θ) < σ(0) and sin(θ)/θ ≤
2σ/π ≤ 1/θ.

5.5. Remarks. (a) For unbounded convex domains, the infinite wedge condi-
tion is equivalent to the domain being a quasidisk. (b) The infinite strip example
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shows thatπ/2 is sharp for the wedge condition (of course, 1 is sharp for convex-
ity); see (2.4). (c) According to (2.3), the estimate sin(θ)/θ ≤ 2σ/π gives best
possible lower bounds both forθ in terms ofσ and forσ in terms ofθ. (d) The
constantσ(θ) is simplyλ1α

(0), where1α is the convex hull ofB ∪�α andθ =
απ. Also,10 = B ∪ { x + iy : x > 0, |y| < 1}, and we see that asθ decreases
to 0, σ(θ) increases toσ(0) and, since10 ⊂ 6, Fact 2.2 forcesσ(0) > π/2 =
λ6(0). (e) For the second half of 5.4, equality holds at some pointz in (5.2) if and
only if eitherD is a half-plane orD is affine equivalent to�α.

Proof of Sufficiency.We assume that the hyperbolic metric inD satisfies (5.2) with
σ < π/2. ThenD is convex by Fact 3.1 and hence non-Bloch (so unbounded) ac-
cording to Proposition 4.1. Next, we verify existence of the infinite wedges. Last,
we estimate the apex angles.

Fix an arbitrary pointz0 ∈D. Assumez0 = 0 and dist(z0, ∂D) = 1; thusB ⊂
D. By Lemma 5.3,D contains an infinite ray fromz0, which we assume to be the
positive real axisR+; soD contains the convex hull ofB ∪ R+ (which is10).

Notice that, by convexity, ifw1 andw2 are points of∂D with, say, 0< <(w1) <

<(w2), then necessarily either 0< =(w1) ≤ =(w2) or 0> =(w1) ≥ =(w2).

We proceed to verify thatz0 is the vertex of an infinite wedge inD. Fix x ∈R+
and consider the vertical lineL = {<(z) = x}. If L meets no point of∂D in the
upper half-plane, thenD contains the first quadrant, which is an infinite wedge; a
similar conclusion holds ifL meets no point of∂D in the lower half-plane. Thus
we may assume that there arey± = y±(x) with x + iy+ andx + iy− points of
L ∩ ∂D in the upper and lower half-planes, respectively. SinceD is non-Bloch,
we must have

d(x) = max{y+(x),−y−(x)} → ∞ as x →∞.
Notice thatD contains an infinite wedge if and only ifx/d(x) is bounded as
x →∞.

Supposex/d(x)→∞ asx →∞. Put

Gx = {<(z) < x, y−(x) < =(z) < y+(x)} ∪ {<(z) > x}
and letz(x) = (x − ah)+ iy, where

a = a(x) = log
x

d(x)
, h = h(x) = y+ − y−

2
, y = y(x) = y+ + y−

2
.

Under the change of variablesw = (z − z(x))/h(x), we see thatGx is mapped
onto a domainHx, z(x) corresponds tow = 0, andx+ iy(x) corresponds toa(x).
Sincea(x) → ∞ asx → ∞, we find thatHx converges to the infinite strip6
with respect to the origin, in the sense of kernel convergence. NowGx ⊃ D, so

λD(z(x))dist(z(x), ∂D) ≥ λGx(z(x))dist(z(x), ∂D)

= λHx(0)dist(z(x), ∂D)/h(x).

We claim that lim supx→∞ dist(z(x), ∂D)/h(x) ≥ 1, and thus—by Fact 2.1 and
(2.4)—we deduce that supλd ≥ π/2, which contradicts our hypotheses. (To
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check our claim: Assume thatd = d(x) = y+. Then dist(z(x), ∂D) ≥ t =
(x−ad )h/√x2 + d2,wheret is the distance fromz(x) to the line throughz0 and
x + iy+(x).)

We have now established thatD must contain an infinite wedge with vertexz0;
it remains to estimate the apex angle of the largest such wedge. Using another ro-
tation, if necessary, we may assume that�α is the largest wedge contained inD
with vertexz0, whereθ = απ. This means that{ re±i(θ+ε) : r ≥ 0 } ∩ ∂D 6= ∅ for
all smallε > 0. We show that, asx → ∞, λD(x)dist(x, ∂D) is asymptotically
equal toλ�α(x)dist(x, ∂�α) = (π/2)(sinθ/θ) (see (2.3)).

Takeε = π/n, and letun andvn be the “first” points of∂D ∩ { re−i(θ+π/n) :
r ≥ 0 } and∂D∩{ rei(θ+π/n) : r ≥ 0 }, respectively. Putxn = max{<(un),<(vn)}
andyn = max{−=(un),=(vn)}, so tan(θ + π/n) = yn/xn and eitherxn + iyn =
ūn or xn + iyn = vn. We assume thatxn→∞, for otherwise we easily conclude
thatD = �α.

Using convexity again we see thatD ⊂ Gn, where now

Gn = �α+1/n ∪ { x + iy : x < xn, |y| < yn }.
Let zn = x2

n anddn = dist(zn, ∂Gn); notice that dist(zn, ∂D)/dn→ 1 asn→∞.
Consider the change of variablew = (z−zn)/dn;Gn is mapped onto a domainHn

with zn andxn corresponding to 0 and(xn − x2
n)/dn, respectively. Nowyn/dn→

0 and(xn − zn)/dn→− cscθ, from which we deduce thatHn→ �α − cscθ =
{ z−cscθ : z∈�α }with respect to the origin, in the sense of kernel convergence.
All of this in conjunction with Fact 2.1, (2.3), and

λD(zn)dist(zn, ∂D) ≥ λGn(zn)dist(zn, ∂D) = λHn(0)dist(zn, ∂D)/dn

yields sinθ/θ ≤ 2σ/π, as desired.

Proof of Necessity.Now we assume thatD is an unbounded convex domain that
enjoys the infinite wedge condition for some apex angleθ = απ. SinceD is con-
vex, the lower bound forλD(z)dist(z, ∂D) follows from Fact 3.1; we establish an
upper bound and provide the indicated estimates.

Fix z0 ∈ D. Assumez0 = 0, dist(z0, ∂D) = 1, and�α is the infinite wedge
joining z0 to infinity in D. Then the convex hull1 = 1α of B ∪�α is contained
in D, and

λD(z0)dist(z0, ∂D) = λD(z0) ≤ λ1(0) = σ(θ).
It remains to estimateσ = σ(θ); for this we utilize a result [MW, Thm. 2] of
Minda and Wright which asserts that 1/λD is concave on lines inD whenD is
convex. To obtain an upper bound forσ we write 0= (1− t)y + tx, where−1<
y < 0, x > 0, and 0< t < 1; solve fort; and then lety → −1 andx → ∞.
Sinceλ1(x) is asymptotic to [2α(x + c)]−1 asx →∞ (use kernel convergence),
we obtain

1

λ1(0)
≥ 1− t
λ1(y)

+ t

λ1(x)
≥ 2αt(x + c)→ 2α

and hence 2σ/π ≤ 1/θ; herec = cscθ.
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For the lower bound we writey = logx = (1− t)0+ tx (so 0< t < 1); let
x →∞; and again use the fact thatλ1(x) is asymptotic to [2α(x + c)]−1 asx →
∞, wherec = cscθ. We find that

1

λ1(0)
≤ 1

1− t
(

1

λ1(y)
− t

λ1(x)

)
= 1

x − y
(

x

λ1(y)
− y

λ1(x)

)
= 2α

x − y
(
xy + cx
q

− xy + cy)
p

)
= 2α

[
xy

x − y
(

1

q
− 1

p

)
+ c

(
x

x − y
1

q
− y

x − y
1

p

)]
,

wherep = 2α(x + c)λ1(x) andq = 2α(y + c)λ1(y). Sincep andq both tend
to 1 asx →∞, we see that 1/λ1(0) ≤ 2αc and so sinθ/θ ≤ 2σ/π as desired.

References

[BP] A. F. Beardon and Ch. Pommerenke,The Poincaré metric of plane domains,
J. London Math. Soc. (2) 18 (1978), 475–483.

[B] D. K. Blevins, Conformal mappings of domains bounded by quasiconformal
circles,Duke Math. J. 40 (1973), 877–883.

[HM] R. Harmelin and D. Minda,Quasi-invariant domain constants,Israel J. Math.
77 (1992), 115–127.

[Ha] W. K. Hayman,Multivalent functions,Cambridge Univ. Press, Cambridge,
1958.

[He] D. A. Hejhal,Universal covering maps for variable regions,Math. Z. 137
(1974), 7–20.

[Hi] J. R. Hilditch, The hyperbolic metric and the distance to the boundary in plane
domains,unpublished manuscript, circa 1982.

[K] F. R. Keogh,A characterisation of convex domains in the plane,Bull. London
Math. Soc. 8 (1976), 183–185.

[K1] G. V. Kuz′mina,Estimates of the transfinite diameter of a certain family of
continua and covering theorems for schlicht functions,Proc. Steklov Inst.
Math. 94 (1968), 47–65.

[K2] , Moduli of families of curves and quadratic differentials,Proc. Steklov
Inst. Math. 139 (1980), 000–000.

[MM] D. Mejia and D. Minda,Hyperbolic geometry ink-convex regions,Pacific J.
Math. 141 (1990), 333–354.

[M1] D. Minda, Lower bounds for the hyperbolic metric in convex regions,Rocky
Mountain J. Math. 13 (1983), 61–69.

[M2] , Estimates for the hyperbolic metric,Kodai Math. J. 8 (1985), 249–258.
[MO] D. Minda and M. Overholt,The minimum points of the hyperbolic metric,

Complex Variables Theory Appl. 21 (1993), 265–277.
[MW] D. Minda and D. Wright,Univalence criteria and the hyperbolic metric,Rocky

Mountain J. Math. 12 (1982) 471–479.
[NP1] R. Näkki and B. P. Palka,Lipschitz conditions,b-arcwise connectedness and

conformal mappings,J. Analyse Math. 42 (1982/83), 38–50.



Uniform Estimates for the Hyperbolic Metric 27

[NP2] , Hyperbolic gometry and Hölder continuity of conformal mappings,
Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 433–444.

[NV] R. Näkki and J. Väisälä,John disks,Exposition. Math. 9 (1991), 3–43.
[N] Z. Nehari, Conformal mapping,Dover, New York, 1975.
[P1] Ch. Pommerenke,Uniformly perfect sets and the Poincaré metric,Arch. Math.

(Basel) 32 (1979), 192–199.
[P2] , One-sided smoothness conditions and conformal mapping,J. London

Math. Soc. (2) 22 (1982), 77–88.
[P3] , Boundary behaviour of conformal maps,Springer-Verlag, Berlin, 1992.
[V] J. Väisälä,Uniform domains,Tôkohu Math. J. 40 (1988),101–118.
[W] A. Weitsman,Symmetrization and the Poincaré metric,Ann. of Math. (2) 124

(1986), 159–169.

B. B. Flinn D. A. Herron
National Security Agency Department of Mathematics
Ft. George G. Meade University of Cincinnati
Laurel, MD 20755-6000 Cincinnati, OH 45221-0025

david.herron@math.uc.edu


