Invertibility Preserving Maps Preserve Idempotents

Matej Brešar \& Peter Šemrl

Introduction and Statement of Main Results

Let \mathcal{A} and \mathcal{B} be unital Banach algebras. A linear map $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is called unital if $\phi(1)=1$ and is called invertibility preserving if $\phi(a)$ is invertible in \mathcal{B} for every invertible element $a \in \mathcal{A}$. Similarly, ϕ preserves idempotents if $\phi(p)$ is an idempotent whenever $p \in \mathcal{A}$ is an idempotent; it is called a Jordan homomorphism if $\phi\left(a^{2}\right)=(\phi(a))^{2}$ for every $a \in \mathcal{A}$.

In [14, Sec. 9] Kaplansky asked: When must unital surjective linear invertibility preserving maps be Jordan homomorphisms? This problem was motivated by the famous Gleason-Kahane-Żelazko theorem [9; 13; 17], which states that every unital invertibility preserving linear map from a Banach algebra to a semisimple commutative Banach algebra is multiplicative, as well as by results of Dieudonné [8] and Marcus and Purves [15] stating that every unital invertibility or singularity preserving linear map on a matrix algebra is either multiplicative or antimultiplicative. The case of a nonunital invertibility preserving mapping can be reduced to the unital case by considering θ defined by $\theta(a)=$ $\phi(1)^{-1} \phi(a)$.

The answer to Kaplansky's question is not always affirmative. Some historical remarks on this problem can be found in [1, pp. 27-31], where the first noncommutative extensions of the Gleason-Kahane-Żelazko theorem were mentioned. Having in mind all known results and counterexamples, it is tempting to conjecture that the answer to Kaplansky's question is affirmative if \mathcal{A} and \mathcal{B} are semisimple Banach algebras [3;10;16].

Let X be a Banach space, and let $\mathcal{B}(X)$ be the algebra of all bounded linear operators on X. By $\mathcal{F}(X)$ we denote the ideal of all finite rank operators. For every $x \in X$ and every bounded linear functional f on X, we denote by $x \otimes f$ a rank-1 operator defined by $(x \otimes f) y=f(y) x$. Following Chernoff [7], we call a subalgebra $\mathcal{A} \subset \mathcal{B}(X)$ a unital standard operator algebra on X if it is closed and contains I and $\mathcal{F}(X)$. We will prove that the problem of characterizing linear invertibility preserving mappings can be reduced to the problem of characterizing linear maps preserving idempotents if the codomain is a unital standard operator algebra.

Theorem 1. Let \mathcal{A} be a unital Banach algebra and let \mathcal{B} be a unital standard operator algebra on a Banach space X. Assume that $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is a unital surjective linear mapping preserving invertibility. Then ϕ preserves idempotents.

One must be careful when considering the invertibility preserving assumption in Theorem 1. Namely, it is possible that $B \in \mathcal{B} \subset \mathcal{B}(X)$ is an invertible bounded linear operator on X but is not invertible in the algebra \mathcal{B}.

In [16], Sourour proved that if H is a separable Hilbert space and Y a Banach space then every unital surjective invertibility preserving linear mapping $\phi: \mathcal{B}(H) \rightarrow \mathcal{B}(Y)$ is a Jordan homomorphism. Using Theorem 1, we will not only extend this result but also provide a considerably shorter proof.

Corollary 1. Let \mathcal{A} be a von Neumann algebra and \mathcal{B} a unital standard operator algebra on a Banach space X. Assume that $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is a unital surjective linear mapping preserving invertibility. Then ϕ is a Jordan homomorphism.

Using Theorem 1, we can also obtain a new proof of the following result of Sourour, which is the main object of [16] (see also [12]).

Corollary 2 [16]. Let X and Y be Banach spaces and let $\phi: \mathcal{B}(X) \rightarrow \mathcal{B}(Y)$ be a unital bijective linear mapping preserving invertibility. Then ϕ is either an isomorphism or an anti-isomorphism.

Proofs

For the proof of Theorem 1 we will need several lemmas. The first one is an immediate consequence of [4, Lemma 7].

Lemma 1. Let \mathcal{A} be a unital Banach algebra and $p \in \mathcal{A}$ a nonzero idempotent. Then there exists a norm $\|\cdot\|_{p}$ on \mathcal{A} such that $\left(\mathcal{A},\|\cdot\|_{p}\right)$ is a Banach algebra with $\|p\|_{p}=1$.

In the next three lemmas we will assume that \mathcal{A} and \mathcal{B} are unital Banach algebras and that $\phi: \mathcal{A} \rightarrow \mathcal{B}$ is a surjective unital linear mapping preserving invertibility. Therefore, $\sigma(\phi(a)) \subset \sigma(a)$ for every $a \in \mathcal{A}$, where $\sigma(a)$ denotes the spectrum of a. In each of these three lemmas we will also assume that $e \in \mathcal{A}$ is an idempotent and that $\phi(e)=E+Q$ with $E, Q \in \mathcal{B}$ satisfying $E^{2}=E, E Q=Q E$, and $\sigma(Q)=\{0\}$.

Lemma 2. Suppose that $A \in \mathcal{B}$ satisfies $A^{2}=A(E+Q) A=0$. Then

$$
\sigma\left(Q^{2}+2 E Q-Q+A(E+Q)+(E+Q) A-A\right)=\{0\}
$$

Proof. Because of the surjectivity of ϕ we can find $a \in \mathcal{A}$ such that $\phi(a)=A$. For an arbitrary $\alpha \in \mathbf{C}$ we have

$$
\begin{aligned}
& \sigma\left(\alpha(e a+a e-a)+\alpha^{2} a^{2}\right) \\
& \quad=\sigma\left((e+\alpha a)^{2}-(e+\alpha a)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\lambda^{2}-\lambda: \lambda \in \sigma(e+\alpha a)\right\} \supset\left\{\lambda^{2}-\lambda: \lambda \in \sigma(E+Q+\alpha A)\right\} \\
& =\sigma\left((E+Q+\alpha A)^{2}-(E+Q+\alpha A)\right) \\
& =\sigma\left(Q^{2}+2 E Q-Q+\alpha[A(E+Q)+(E+Q) A-A]\right)
\end{aligned}
$$

It follows that $r\left(B_{1}+\alpha B_{2}\right) \leq r\left(\alpha a_{1}+\alpha^{2} a_{2}\right)$, where r denotes the spectral radius and $B_{1}=Q^{2}+2 E Q-Q, B_{2}=A(E+Q)+(E+Q) A-A, a_{1}=e a+a e-a$, and $a_{2}=a^{2}$.

For every complex number λ satisfying $|\lambda| \leq 1$ we have

$$
r\left(\lambda B_{1}+B_{2}\right) \leq\left\|B_{1}\right\|+\left\|B_{2}\right\| .
$$

If $|\lambda|>1$ then $r\left(\lambda B_{1}+B_{2}\right)=|\lambda| r\left(B_{1}+(1 / \lambda) B_{2}\right) \leq|\lambda| r\left((1 / \lambda) a_{1}+(1 / \lambda)^{2} a_{2}\right)=$ $r\left(a_{1}+(1 / \lambda) a_{2}\right) \leq\left\|a_{1}\right\|+\left\|a_{2}\right\|$. Hence the function $\lambda \mapsto r\left(\lambda B_{1}+B_{2}\right)$ is bounded. Because $\lambda \mapsto r\left(\lambda B_{1}+B_{2}\right)$ is a subharmonic function [2, p. 52], it follows by the Liouville theorem for subharmonic functions that it is constant. This yields together with $B_{2}^{3}=0$ that $r\left(\lambda B_{1}+B_{2}\right)=r\left(B_{2}\right)=0$ for every complex λ. In particular, $r\left(B_{1}+B_{2}\right)=0$, which is the desired conclusion.

Let us mention that a similar subharmonicity argument has also proved to be useful in the study of linear mappings preserving the spectral radius [6].

Lemma 3. Let \mathcal{B} be a unital standard operator algebra on a Banach space X. Assume further that $x \in X$ satisfies $E x=x$. Then $Q^{3} x=0$.

Proof. Assume on the contrary that there exists $x \in X$ such that $E x=x$ and $Q^{3} x \neq 0$. Since Q is a quasinilpotent, the vectors $x, Q x, Q^{2} x, Q^{3} x$ are linearly independent. Indeed, if this were not true then the linear span of $x, Q x, Q^{2} x, Q^{3} x$ would be invariant for Q. Then the restriction of Q to this subspace would be nilpotent, which would yield $Q^{3} x=0-$ a contradiction. Thus, we can find a bounded linear functional f on X such that $f(Q x)=1$ and $f(x)=f\left(x-Q x-Q^{2} x\right)=$ $f\left(x-2 Q^{2} x-Q^{3} x\right)=0$. Obviously, $A=\left(x-Q x-Q^{2} x\right) \otimes f \in \mathcal{F}(X) \subset \mathcal{B}$ satisfies $A^{2}=0$. Applying $E x=x$ and $E Q=Q E$ one gets that $E Q^{j} x=Q^{j} x$ for $j=1,2, \ldots$ It follows easily that $A(E+Q) A=0$. Hence, by Lemma 2 we have

$$
\sigma\left(Q^{2}+2 E Q-Q+A(E+Q)+(E+Q) A-A\right)=\{0\}
$$

Note that here σ denotes the spectrum of an operator with respect to \mathcal{B} (which in general is not the same as the spectrum with respect to the whole algebra $\mathcal{B}(X))$. On the other hand, a straightforward computation gives

$$
\left(Q^{2}+2 E Q-Q+A(E+Q)+(E+Q) A-A\right) x=x
$$

which obviously yields

$$
1 \in \sigma\left(Q^{2}+2 E Q-Q+A(E+Q)+(E+Q) A-A\right)
$$

This contradiction completes the proof.
Lemma 4. Let \mathcal{B} be unital standard operator algebra on a Banach space X. Suppose that $\|e\|=1$ and that $x \in X$ satisfies $E x=x$ and $Q x \neq 0$. Then $\left\{Q^{n} x\right.$: $n=0,1,2, \ldots\}$ is a linearly independent set.

Proof. Assume on the contrary that $\left\{Q^{n} x: n=0,1,2, \ldots\right\}$ is a linearly dependent set. Since Q is a quasinilpotent, there is an integer $n>1$ such that $Q^{n} x=0$ and the set $\left\{x, Q x, \ldots, Q^{n-1} x\right\}$ is linearly independent. Because \mathcal{B} contains all finite rank operators in $\mathcal{B}(X)$, we can find $A \in \mathcal{B}$ such that $A Q x=x$ and $A x=$ $A Q^{2} x=\cdots=A Q^{n-1} x=0$. Choose $a \in \mathcal{A}$ such that $\phi(a)=A$. For every $\lambda \in \mathbf{C}$ we have

$$
\begin{aligned}
\sigma\left(A+\lambda^{2}(E+Q)\right) & \subset \sigma\left(a+\lambda^{2} e\right) \\
& \subset D\left(0,\|a\|+|\lambda|^{2}\right)
\end{aligned}
$$

Here, $D(0, t)$ denotes the closed disk in the complex plane of radius t centered at the origin.

On the other hand,

$$
\begin{aligned}
&\left(A+\lambda^{2}(E+Q)\right)\left(x+\lambda Q x+\cdots+\lambda^{n-1} Q^{n-1} x\right) \\
&=\left(\lambda^{2}+\lambda\right)\left(x+\lambda Q x+\cdots+\lambda^{n-1} Q^{n-1} x\right)
\end{aligned}
$$

which yields that $\lambda^{2}+\lambda \in \sigma\left(A+\lambda^{2}(E+Q)\right)$ for every complex number λ. Hence, for every $\lambda \in \mathbf{C}$ we have $\left|\lambda^{2}+\lambda\right| \leq\|a\|+|\lambda|^{2}$. This contradiction completes the proof.

Note that Lemma 4 is true not only for unital standard algebras but for all dense algebras of linear operators.

We are now in a position to prove our main result.
Proof of Theorem 1. Since ϕ is a unital linear mapping preserving invertibility, we have $\sigma(\phi(a)) \subset \sigma(a)$ for every $a \in \mathcal{A}$. Let e be any nonzero idempotent in \mathcal{A}. Because of Lemma 1, there is no loss of generality in assuming that $\|e\|=$ 1. We know that $\sigma(\phi(e)) \subset\{0,1\}$. Hence, by [5, p. 36] we have $\phi(e)=E+Q$ with $E^{2}=E, E Q=Q E$, and $\sigma(Q)=\{0\}$. We have to prove that $Q=0$. Assume on the contrary that $Q \neq 0$. Then we can assume with no loss of generality that $E Q \neq 0$, since otherwise we would consider $1-e$ instead of e. Hence, there exists $y \in X$ such that $E Q y \neq 0$. Set $x=E y$. Then $E x=x$ and $Q x=Q E x=$ $Q E y=E Q y \neq 0$. It is now easy to obtain a contradiction by applying Lemmas 3 and 4.

Proof of Corollary 1. Let $P_{1}, P_{2} \in \mathcal{A}$ be orthogonal Hermitian idempotents. Since $P_{1}+P_{2}$ is a projection, we have $\left(\phi\left(P_{1}\right)+\phi\left(P_{2}\right)\right)^{2}=\phi\left(P_{1}\right)+\phi\left(P_{2}\right)$. This yields $\phi\left(P_{1}\right) \phi\left(P_{2}\right)+\phi\left(P_{2}\right) \phi\left(P_{1}\right)=0$. It follows that if $H \in \mathcal{A}$ is of the form $H=$ $\sum_{j=1}^{n} t_{j} P_{j}$, where $t_{j} \in \mathbf{R}$ and P_{j} are Hermitian idempotents such that $P_{i} P_{j}=0$ if $i \neq j$, then $\phi\left(H^{2}\right)=\phi(H)^{2}$. By [2, Thm. 5.5.2], ϕ is continuous. The set of all Hermitian elements that can be represented as finite real-linear combinations of mutually orthogonal projections is dense in the set of all Hermitian elements in \mathcal{A}. Therefore, we have $\phi\left(H^{2}\right)=(\phi(H))^{2}$ for every Hermitian element H in \mathcal{A}. Now, replacing H by $H+K$ where H and K are both Hermitian, we get $\phi(H K+K H)=\phi(H) \phi(K)+\phi(K) \phi(H)$. Since an arbitrary $A \in \mathcal{A}$ can be
written in the form $A=H+i K$ with H, K Hermitian, the last two relations imply that $\phi\left(A^{2}\right)=(\phi(A))^{2}$.

Proof of Corollary 2. We will prove that ϕ maps every operator of rank 1 into an operator of rank 1 . Every operator of rank 1 is either a scalar multiple of an idempotent or a square-zero operator. Assume first that $P \in \mathcal{B}(X)$ is an idempotent of rank 1 and that its image has rank greater than 1 . By Theorem $1, \phi(P)$ is an idempotent. Therefore, it has the following matrix representation:

$$
\phi(P)=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & Q
\end{array}\right]
$$

where Q is an idempotent. Define $B \in \mathcal{B}(Y)$ by

$$
B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],
$$

and find $A \in \mathcal{B}(X)$ such that $\phi(A)=B$. We can also find a complex number λ such that $\lambda+A$ is invertible. The operator $\lambda+A+\alpha P$ is invertible if and only if $I+\alpha(\lambda+A)^{-1} P$ is invertible. As $(\lambda+A)^{-1} P$ has rank 1 , this operator is invertible for all but at most one complex number α. But $\phi(\lambda+A+\alpha P)=\lambda+B+\alpha \phi(P)$ is singular for $\alpha=-\lambda$ and $\alpha=-\lambda-1$. This contradiction shows that $\phi(P)$ must be of rank 1 .

Almost the same argument as in the proof of Corollary 1 shows that the restriction of ϕ to $\mathcal{F}(X)$ is a Jordan homomorphism. Since $\mathcal{F}(X)$ is a locally matrix algebra, a result of Jacobson and Rickart [11, Thm. 8] tells us that $\left.\phi\right|_{\mathcal{F}(X)}=$ $\varphi+\theta$, where $\varphi: \mathcal{F}(X) \rightarrow \mathcal{B}(Y)$ is a homomorphism and $\theta: \mathcal{F}(X) \rightarrow \mathcal{B}(Y)$ is an antihomomorphism. Pick an idempotent $P \in \mathcal{B}(X)$ of rank 1. Then $\phi(P)$ is the sum of idempotents $\varphi(P)$ and $\theta(P)$; therefore, as $\phi(P)$ also has rank 1, it follows that either $\varphi(P)=0$ or $\theta(P)=0$. Thus, at least one of φ and θ has a nonzero kernel. Since the kernels of homomorphisms and antihomomorphisms are ideals, and since the only nonzero ideal of $\mathcal{F}(X)$ is $\mathcal{F}(X)$ itself, we have $\varphi=$ 0 or $\theta=0$. Thus, the restriction of ϕ to $\mathcal{F}(X)$ is either a homomorphism or an antihomomorphism.

Take now an arbitrary square-zero operator N of rank 1 . Then one can find an idempotent P of rank 1 such that $N=P N$. If the restriction of ϕ to $\mathcal{F}(X)$ is a homomorphism then $\phi(N)=\phi(P) \phi(N)$ and hence rank $\phi(N)=1$. Similarly we prove that $\phi(N)$ has rank 1 in the case that the restriction of ϕ to $\mathcal{F}(X)$ is an antihomomorphism.

Sourour's proof of Corollary 2 has two steps. The first and more difficult one shows that ϕ maps operators of rank 1 into operators of rank 1 . In the second step this fact is used to conclude that ϕ is a Jordan isomorphism. Hence, we have obtained a new proof of the first step of Sourour's proof. To complete the proof of Corollary 2 we can now follow the second step of his proof, which can even be slightly shortened using our observation that the restriction of ϕ to $\mathcal{F}(X)$ is either
a homomorphism or an antihomomorphism. We will omit the details since the main idea remains unchanged.

References

[1] B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math., 735, Springer, Berlin, 1979.
[2] ——, A primer on spectral theory, Springer, New York, 1991.
[3] B. Aupetit and T. Mouton, Spectrum-preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100.
[4] F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Ser., 2, Cambridge Univ. Press, Cambridge, 1971.
[5] ——, Complete normed algebras, Springer, Berlin, 1973.
[6] M. Brešar and P. Šemrl, Linear maps preserving the spectral radius, J. Funct. Anal. 142 (1996), 360-368.
[7] P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289.
[8] J. Dieudonné, Sur une généralisation du groupe orthogonal à quatre variables, Arch. Math. (Basel) 1 (1949), 282-287.
[9] A. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172.
[10] L. A. Harris and R. V. Kadison, Affine mappings of invertible operators, Proc. Amer. Math. Soc. 124 (1996), 2415-2442.
[11] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502.
[12] A. A. Jafarian and A. R. Sourour, Spectrum-preserving linear maps, J. Funct. Anal. 66 (1986), 255-261.
[13] J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
[14] I. Kaplansky, Algebraic and analytic aspects of operator algebras, Amer. Math. Soc., Providence, RI, 1970.
[15] M. Marcus and R. Purves, Linear transformations on algebras of matrices: The invariance of the elementary symmetric functions, Canad. J. Math. 11 (1959), 383-396.
[16] A. R. Sourour, Invertibility preserving linear maps on $\mathcal{L}(X)$, Trans. Amer. Math. Soc. 348 (1996), 13-30.
[17] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83-85.

Matej Brešar
PF, University of Maribor
Koroška 160
2000 Maribor
Slovenia

Peter Šemrl
Faculty of Mechanical Engineering
University of Maribor
Smetanova 17
2000 Maribor
Slovenia
peter.semrl@uni-mb.si

