Geodesic Conjugacies of
Two-Step Nilmanifolds

CAROLYN GORDON & YIPING MAoO

Introduction

Two Riemannian manifold&V, g) and(N, k) are said to hav€ “-conjugate geo-
desic flowsf there is aC* diffeomorphismF : S(M, g) — S(N, h) between their

unit tangent bundles that intertwines their geodesic flows. A compact Riemannian
manifold is said to b& “-geodesically rigidwithin a given class\t of manifolds

if any Riemannian manifol@ in M whose geodesic flow §*-conjugate to that

of M is isometric toM.

Weinstein [W] exhibited a zoll surface of nonconstant curvature whose geodesic
flow is conjugate to that of the round sphere. More recently, Croke and Kleiner
[CK] proved that, on any smooth manifold, there exist infinite-dimensional fam-
ilies of pairwise nonisometric Riemannian metrics with mutugliy-conjugate
geodesic flows. On the other hand, various manifolds are known to be geodesi-
cally rigid—for example, within the class of all Riemannian manifolds, compact
surfaces of negative curvature aré-geodesically rigid ([CFF], see also [C] and
[O] for C1-rigidity) and hyperbolic manifolds ar€*-geodesically rigid [BCG].

In this article, we will consider questions of geodesic rigidity for the class of
compact two-step Riemannian nilmanifolds. kAstep Riemannian nilmanifold
(T\N, g) is a quotient of &-step nilpotent Lie grougs by a (possibly trivial)
discrete subgroup' together with a Riemannian metricwhose lift to G, also
denotedg, is left-invariant. Note that a compact one-step Riemannian nilmani-
fold is just a flat torus. Thus the compact two-step Riemannian nilmanifolds may
be viewed as the simplest generalization of flat tori, yet they have a much richer
geometry. This paper builds on work of Eberlein [E], who studied the length spec-
trum and marked length spectrum of compact two-step Riemannian nilmanifolds
and raised the question of whether such manifolds are geodesically rigid. For
other work concerning geodesic conjugacies of two-step nilmanifolds, see [BM]
and [K].

We are interested in the question of rigidity of geodesic flows in part because
of its relationship to spectral geometry. Two Riemannian manifolds are said to be
isospectraif the associated Laplace—Beltrami operators have the same eigenvalue
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spectrum. A continuous familyf; (—e < t < ¢) of Riemannian manifolds is said
to be anisospectral deformationf My if the manifolds are pairwise isospectral.
Since the Laplacian can be viewed as the quantum analog of the geodesic flow,
one might expect that continuous families of isospectral manifolds would have
conjugate geodesic flows. Wilson and the first author [GW] gave a method for
constructing isospectral compact Riemannian nilmanifolds. The isospectral man-
ifolds in that construction are of the for@'\ N, g) and(® (T")\ N, g), whereg isa
fixed left-invariant metric on the nilpotent Lie grodypand® is an “almost-inner
automorphism” ofG. (See Section 1 for details.) Continuous families of non-
inner almost inner automorphisni$,} give rise to nontrivial isospectral defor-
mations. Next, Eberlein [E] showed that, if a pair of compact two-step nilman-
ifolds haveC°-conjugate geodesic flows, they must then be isometric to a pair
(T\N, g) and(®(I")\ N, g), where againd is an almost inner automorphism. In
particular, compact two-step nilmanifolds with conjugate geodesic flows must be
isospectral. The converse is not true, as we shall see. Moreover, there are no ex-
amples of nonisometric nilmanifolds whose geodesic flows have been proven to
be conjugate.
We will work entirely in the context of compact two-step nilmanifolds. We note
at the outset, however, that any compact nilmanifélgd/ andI"’\ N’ with con-
jugate geodesic flows must have the same step size; in fact, the nilpotent groups
N andN’ must be isomorphic. Indeed, the fundamental group of the unit tangent
bundle S(I"\N) is isomorphic tol, so geodesic conjugacy af\N andT"’\ N’
implies thatl" andI"’ are isomorphic and consequently, by Malcev rigidity, that
N andN’ are isomorphic. Thus, all geodesic rigidity results concerning compact
two-step nilmanifolds will be valid within the space of all compact nilmanifolds.
We first strengthen Eberlein’s result by showing that, if a pair of compact two-
step nilmanifolds have °-conjugate geodesic flows, then the associated almost
inner automorphisnd® must satisfy a stringent additional property. We call such
a ® an almost inner automorphism “of continuous type” (see Definition 1.6). As
a corollary, we obtain Theorem 1.

THeoREM 1. There is a large class of compact two-step Riemannian nilmani-
folds each of which i€ °-geodesically rigid within the class of all Riemannian
nilmanifolds.

The primary class of two-step nilmanifolds that is not covered by Theorem 1 is
the class of so-called “nonsingular” two-step nilmanifolds (see Definition 3.1).
Consequently, in Section 3 we focus on the nonsingular two-step nilmanifolds and
prove Theorem 2.

THEOREM 2. Almost all compact nonsingular two-step Riemannian nilmanifolds
are C?-geodesically rigid within the class of all compact Riemannian nilmanifolds.

We also obtain rigidity results for some special classes of two-step nilmanifolds
with interesting geometric properties. Perhaps the most extensively studied class
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of nilmanifolds are the two-step nilmanifolds of Heisenberg type first introduced
by Kaplan [Kn] (see Definition 3.2). We then prove Theorem 3.

THEOREM 3. Compact two-step nilmanifolds of Heisenberg type@Pegeode-
sically rigid within the class of all compact Riemannian nilmanifolds.

This article is a companion to [GMS], in which itis shown that any pair of compact
two-step nilmanifolds witlsymplecticallyconjugate geodesic flows are isometric.
The proof of that result relies on the results established here in Section 2.

The paper is organized as follows: In Section 1, we review the geometry of
two-step nilmanifolds, define the notion of almost inner automorphism of contin-
uous type and give examples, and review Eberlein’s result. Section 2 establishes a
number of results concernin@’-conjugacies of geodesic flows between arbitrary
compact two-step nilmanifolds and culminates in Theorem 1, restated as Corol-
laries 2.13 and 2.14. Theorem 2 is established in Section 3 along with a rigidity
result for a special class of nilmanifolds. Theorem 3 is proved in Section 4.

The authors would like to thank Patrick Eberlein, Jens Heber, and David Webb
for helpful discussions. They also thank Dorothee Schith for suggesting several
improvements to an earlier version of this paper. Some of the results of this paper
were announced in [GM].

1. Preliminaries

In this section, we give a brief introduction to the geometry of two-step nilpotent
Lie groups. We recommend [E] as a reference.

A Riemannian nilmanifold is a quotieM = I"\ N of a simply connected nilpo-
tent Lie groupN by a discrete subgrou together with a Riemannian metrgc
whose lift toN is left-invariant. We say the nilmanifold has step sizé N is
k-step nilpotent. We will be interested only in compact nilmanifolds and in their
simply connected covering nilmanifold®/, g).

1.1. NoTAaTION AND REMARKS. A Lie group N is said to bewo-step nilpotent
if its Lie algebra\ satisfies [V, [V, N']] = 0; equivalently, [V, '] is central in
N. Let N be a two-step nilpotent Lie group and Jgtbe its Lie algebra. The Lie
group exponential map exp\" — N is a diffeomorphism; we denote its inverse
by log.

The Campbell-Baker—Hausdorff theorem gives the product rule

exp(x) exp(y) = exp(x +y + 3[x, y])

for all x, y e N. Conjugation inN is thus given by

exp(x) exp(y) (exp(x)) ~* = exp(y + [x, y]).

Let g be a left-invariant Riemannian metric &h Theng defines an inner prod-
uct (-, -) on the Lie algebraV of N. Let Z = [N, N], and letV denote the or-
thogonal complement of in A/ relative to(-, -). Note that whileZ is contained
in the center ofV, it does not necessarily coincide with the full center.
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Forz in Z, we can define a skew symmetric linear transformati¢): V —
VY by J(z)x = (ad(x))*z for x € V, where(ad(x))* denotes the adjoint of &sl).
Equivalently,

(J@)x,y) ={[x,y],z) for x,yeV, z€Z. (%)

Conversely, given inner product spadésind Z and a nonsingular linear map
J: Z — s0(V), we can construct a two-step nilpotent Lie algeldfatogether
with an inner product, by setting’ = V @ Z as an inner product space and
defining the Lie bracket so that is central and-[-]: V x V — Z is given by
(x). SinceJ is nonsingular, we hav€ = [N, A/]. The inner product defines a
left-invariant Riemannian metric on the associated simply connected nilpotent Lie
groupN, thus givingN the structure of a two-step Riemannian nilmanifold.

In what follows, for notational convenience we will assume that an inner prod-
uct is given on all two-step nilpotent Lie algebras considered and thusAfrite
V + Z as before, although in some situations (e.g., in 1.3 and 1.6) the inner product
(in particular, the choice of vector space complemeénf Z) is irrelevant.

1.2. ExampPLE. The Heisenberg group of dimension 2- 1 is the simply con-
nected Lie group with Lie algebrt& = sparxy, ..., X, Y1, ..., Yu, 2}, Where

[x;, il = z, 1 < i < n, and all other brackets of basis elements are zero. Giving
N the inner product for which the foregoing basis is orthonormal, we ¥ave
spariz}, V = spafx1, ..., Xy, Y1, - - -» Yu}, @andJ(2)x; = y; andJ(z)y; = —x;.
ThusJ(z) can be viewed as a complex structure on the vector space

1.3. Un1rorM DiscRETE SUBGRoOUPs OF N. We recall some basic facts about
uniform discrete subgroups of a two-step nilpotent Lie grougsee [R] for de-
tails. If " is a uniform discrete subgroup of, then logT") N Z is a lattice of
full rank in the derived algebr& and sy (logl) is a lattice of full rank inV,
wherery,: N' — V is the projection with kerneE. For x, y € logT, we have
exp(x) exp(y) exp(—x) exp(—y) = exp([x, y]) € [, so [x, y] elog(T) N Z. In
particular, if we choose a basis.Af consisting of elements of Idg then the con-
stants of structure are rational. LettiAg denote the rational span of Idyit fol-
lows that\, has the structure of a rational Lie algebra. We will say a subspace
of NV is rational if it has a basis consisting of elements of IbgFor example,
imaggad(x)) is rational for allx € logT".

The concept of almost inner automorphisms of nilpotent Lie groups, defined in
[GW] and generalized in [G], plays a key role in the construction of isospectral
nilmanifolds. After recalling the definition in 1.4, in 1.6 we define a special class
of almost inner automorphisms of two-step nilpotent Lie groups that will arise
naturally in our study of geodesic conjugacies.

1.4. DerFINITION. (&) Letl” be a uniform discrete subgroup of a simply connected
nilpotent Lie groupN. An automorphismd of N is said to b -almost innerif
®(y) is conjugate tey for all y € I'. The automorphism is said to laémost inner

if ®(x) is conjugate to: for all x € N.
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(b) A derivationg of the Lie algebraV is said to ba™-almost inner (resp. almost
inner) if ¢ (x) € imaggad(x)) for all x € logT" (resp. for allx € NV).

1.5. REMARKS. (See [GW].) (&) Th& -almost inner automorphisms and the al-
most inner automorphisms form connected Lie subgroups ofMutIn many
cases, these groups properly contain the groupNnrof inner automorphisms.
The spaces of -almost inner (resp. almost inner) derivations\6fare the Lie al-
gebras of these groups of automorphisms. In particularjsfa(I"-)almost inner
derivation, thenp generates a one-parameter grabpof (I'-)almost inner au-
tomorphisms ofV satisfying®,, = ¢'?. Conversely, if® is a (I'-)almost inner
automorphism ofV, then®,, = ¢? for some(I"-)almost inner derivation of/.

(b) Note that aI"-almost inner derivation satisfiesp(N) < [N, N] and
¢(z) = 0if Z is central. In particular, i\ is two-step nilpotent, then (letting
Z = [N, N] as before) we have (N) € Z and¢(Z) = 0, so¢? = 0. Thus
e’ = 1d +1¢.

1.6. DErFINITION. Let¢ be an almostinner derivation of a two-step nilpotent Lie
algebraV. By Definition 1.4, there exists a m@a N — N such that (x) =

[(x), x] for all x e V. Forx € Z, £(x) is completely arbitrary; only the values
of £ onV are of interest. Even oW, the mapé is not uniquely defined. We will
say ¢ is of continuous typé & can be chosen to be continuous ¥n {0}. We

will also say the almost inner automorphisibsof N generated by asin 1.5 are

of continuous type. We emphasize that this definition is independent of the inner
product onV; the spacé&’ can be taken to be any vector space complemest of

in \V.

1.7. ExampLE. (i) (See [GM] and [GW].) LetV be the six-dimensional simply
connected nilpotent Lie group with Lie algebra

N = spafXy, Xo, Y1, Y2, Z1, Z5}
satisfying
[X1, V1] = [X2, Y2] = Z1, [Xy, V2] = Zo,

and with all other brackets of basis vectors trivial.

The almost inner derivations @ are the linear maps that sex@ andY; to
multiples of Z;, sendX; andY; into spanZ,, Z,}, and sendZ; and Z, to zero.
These form a six-dimensional subspace containing the inner derivations as a four-
dimensional subspace. The derivatigngesp.y) that sendX; (resp.Y>) to Z,
and send all other basis vectors to zero span a two-dimensional space of noninner
almost inner derivations. No noninner almost inner derivatioVaé of contin-
uous type. To see this, we examine the derivatlgrthe other noninner almost
inner derivations behave similarly. For= Zi:lz(x,-xi +v;Y;+z;Z;) € N with
xi, yi,zi €R, we havep (U) = [£(U), U] for all U € NV, where& must satisfy

EWU) = X1 — 21 X, mod spaffiYs, Yo, Z1, Zp} if yo #0.
y2



456 CAROLYN GORDON & YIPING MaAoO

Wheny, = 0, we can takeé& (U) = 0. Thus¢ is an almost inner derivation. How-
ever,& can not be chosen continuously on\ {0} whereV is any complement
of the derived algebr& = spariZi, Z,}. Thus¢ is not of continuous type. See
[GM] for further examples of this type.

(i) If N is a two-step nilpotent Lie algebra with the property ti#at=
imaggad(x)) for all nonzerax € V, then every linear map that send$’ into Z
andZ to {0} is an almost inner derivation. One can show that these almost inner
derivations are all of continuous type. (The authors would like to thank P. Eberlein
for pointing out the latter fact to them.)

The Lie algebras satisfying the property in Example 1.7(ii) are said twhsin-

gular and will be studied in Section 3. Except on nonsingular two-step nilpotent
Lie algebras, examples of noninner almost inner derivations of continuous type
appear to be quite rare. The only examples we have been able to construct are on
Lie algebras which are almost nonsingular in tBat= imaggad(x)) for almost

all x € V, and even in this situation examples seem to be rare. Proposition 1.8 in-
dicates one reason for this apparent scarcity of almost inner derivations of con-
tinuous type. In contrast, there are plentiful examples of noninner almost inner
derivations (not of continuous type) on singular two-step nilpotent Lie algebras.
The reader may find it helpful to compare Proposition 1.8 with Example 1.7(i).

1.8. ProrosiTioN. We use the notation dfl. LetN be a two-step nilpotent Lie
algebra with an inner product., -), and let¢ be an almost inner derivation of
continuous type oW, say¢ (x) = [£(x), x] with & continuous orV \ {0}. In the
notation ofl.1, letz € Z andy € ker(J(z)). Then{¢(x), z) = ([E(¥), x], z) for
all x e V.

Note in particular that ift’ contains a central element(i.e., if the center of\’
properly contains the derived algebra), then Proposition 1.8 states that every al-
most inner derivation of continuous type #his inner. In contrast, central ele-
ments inV are irrelevant in the construction of almost inner derivations that are
not of continuous type.

Proof. Fory andz as in the proposition, far € V and fort € R we have

@Oy +1x),2) =([§(y +1x), y + 1x], 2)
and thus
(@ (), 2) +t{p(x), 2) = ([E(y +1x), ], 2) + 1([E(y + 1x), x]. 2).  (1.8.1)
The first term on the right-hand side of 1.8.1 is zero sin¢e(y) = 0, and the
first term on the left-hand side is zero since
(@), 2) = ([, y],2) = —(J@(),E() =
Consequently, (1.8.1) says that
(P(x),2) = ([E(y +1x),x], 2

for all nonzera e R and allx € V. We lett approach 0 and use continuity ®to
conclude the proof. O
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Almost inner derivations can be used to construct isospectral deformations of nil-
manifolds (of arbitrary step size) as follows.

1.9. ProrosiTION. Let (I'\ N, g) be a compact nilmanifold and leb be ar-
almost inner automorphism &. Then(®(I")\ N, g) is isospectral taT"\ N, g).
Conversely, itV is two-step nilpotent and ifT"; ), is a continuous family of dis-
crete subgroups a¥ such that the family of manifold$;\ NV, g) are all isospec-
tral, then there exists a family®d,} of I'p-almost inner automorphisms af such
thatI', = ®,(Ig) forall ¢.

The first statement is proven in [GW] for almost inner automorphisms and in [G]
for I'-almost inner automorphisms. The converse is given in [OP] and [P].

1.10. REMARK. (See [GW].) If® is an inner automorphism &f (say,® is con-
jugation bya € N), then(®(T')\ N, g) is isometric to(T'\ N, g). The isometry is
induced from the left translatioh, of (N, g). However, if¢ is al’-almost inner
derivation that is not inner ar{@, } is the corresponding family of automorphisms,
then the deformatiod, (I")\ N, g) is nontrivial.

As we will discuss in Section 2, compact nilmanifolds with conjugate geodesic
flows must have the same marked length spectrum. After recalling the definition
of marked length spectrum, we will review Eberlein’s classification of compact

two-step nilmanifolds with the same marked length spectrum.

1.11. NotaTiON AND REMARKS. The fundamental group of a nilmanifolth N

is isomorphic ta". Recall that free homotopy classes of loops in a manifold cor-
respond to conjugacy classes in the fundamental group. In our situation, we will
denote both the conjugacy class of an elemeint I and the associated free ho-
motopy class of loops byr. A unit speed closed geodesicih N of length

[ lies in the free homotopy clasg]r if and only if it lifts to a geodesie in N
satisfyingo(t +1) = yo(¢) for all t e R.

1.12. DerINITION.  Two Riemannian manifolds/; and M, are said to have the
samemarked length spectruifithere exists an isomorphism (callech@arking
®: m1(My) — w1 (M) such that, for eaclhr € m1(M,), the collection of lengths
(counting multiplicities) of closed geodesics in the free homotopy clakssf[A
coincides with the analogous collection in the free homotopy ctagg]] of M.

1.13. ProrosiTiON [E]. Two compact two-step nilmanifoldd™\ N, g) and
(C*\N* g*) have the same marked length spectrum if and only if there exists
a '-almost inner automorphis® of N such that(I"\N*, g*) is isometric to
(®(IM\N, g). In this case, any marking between the length spectralofy, g)
and(I'*\N* g*)isofthe form¥,o ®|r, whereW : (®(I')\N, g) — (I'*\N*, g*)

is an isometry andl,.: ®(I') — I'* is the induced map on fundamental groups.

1.14. REMARKS. The “if” statementin Propositioh13 iselementary and is valid
for compact nilmanifolds of arbitrary step size, but the converse requires a care-
ful study of the geodesics and is, in fact, not valid for higher-step nilmanifolds, as
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examples of Gornet [Gtl; Gt2] illustrate. The paper [Gt2] even gives continuous
families of compact higher-step nilmanifolds which have the same marked length
spectrum but which are not related by almost inner automorphisms in the sense of
Propositionl.13.

In contrast to Propositioh.13, thesecond statement in Proposition 1.9 is valid
only for continuous families, as opposed to pairs, of isospectral two-step nilman-
ifolds. Indeed, there exist many examples of pairs of isospectral two-step nil-
manifolds that are not related by almost inner automorphisms, including many
examples with nonisomorphic fundamental groups.

2. C%-Geodesic Conjugacies

Throughout this sectiori)V, g) will denote an arbitrary simply connected two-step
nilpotent Lie group with left-invariant Riemannian metrtwill denote a uniform
discrete subgroup a¥. We continue to use the notatidi = Z + V introduced

in 1.1 for the Lie algebra oiv.

2.1. NoTATION AND REMARKS. (@) The left-invariant vector fields aN induce
global vector fields o™\ N. Thus the tangent bundles of bathandI'\ N are
completely parallelizable, and the unit tangent bundles may be identified with

S(N,g) =N x S(N),
S(T'\N, g) = T\N x S(N),

whereS(N) is the unit sphere iV relative to the Riemannian inner product. We
will write S(N) for S(N, g) if g is understood.

(b) Forx € N, the left actionL,: N — N induces a diffeomorphisiL, ), of
S(N). Under the identification in (a),

(Lx)s«(n,u) = (xn, u)

forne N andu € S(NV).
(c) Now suppose thal"*\ N*, g*) is another compact two-step nilmanifold and
that

F:S(I\N, g) — S(I'\N*, g")
is @ homeomorphism intertwining the geodesic flows. By (a) we can write
F:T\N x S(N) = I'\N* x S(N*).

Consider the universal coverings: N x S(N) — T'\N x S(N) andn*:
N* x S(N*) — I'*\N* x S(N*). Choose an arbitrary liff: N x S(N) —
N*x S(N'*) of F, thatis, a map satisfying* o F = F ox. Note that the group of
deck transformations af consists of the left translatiods.,, : (n, U) — (yn, U)
with y € " and similarly forz*. Thus for everyy €I there is a unique* e I'*
suchthatF odL, = dL,+o F, andy > y* is an isomorphism that we denote by
F.: T — I'*. Note thatF intertwines the geodesic flows @V, g) and(N*, g*)
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sinceF does so on the quotients. This, together WithdL, = dLp,,, o F, im-
plies that the isomorphisi, induces a marking of the length spectrg Bi N, g)
and(I"*\N* g*) (see Definitiorl..12). Since the fundamental group ST\ N)
is isomorphic ta, F induces an isomorphism

F.: T —T*
Propositionl.13 and thaliscussion in 2.1(c) give us the following lemma.

2.2. LemMma. Supposethal"\ N, g) and(I'*\ N*, g*) are compact two-step nil-
manifolds and that : S(I'\N) — S(I'*\N*) is a homeomorphism intertwining
their geodesic flows. Then there exisis-almostinner automorphisih of N (see
Definition 1.4 such that(T'*\ N*, g*) is isometric to(® (I")\ N, g). Moreover the
isomorphisn¥, : I' — I'*is given byF, = W, o ®|r, where¥: (®(I")\N, g) —
(T*\N*, g*) is an isometry andb,.: ®(I") — I'* is the induced map on funda-
mental groups.

2.3. NoTATION AND REMARKS. (@) In view of Lemma 2.2, we will assume
throughout the rest of the paper that we are given a compact two-step nilman-
ifold (I"\ N, g), aT'-almost inner automorphisr® of N, and a geodesic conju-
gacy F: S(T\N, g) — S(®(I)\N, g) such thatF, = ®|r. Our ultimate goal
is to show thatd is an inner automorphism, so th@ (I")\ N, g) is isometric to
(T'\N, g) (see Remark.10). At various times, additional hypotheses will be im-
posed on(T"\ N, g) and various regularity conditions will be imposed Bnin the
current section, we consider arbitrary compact two-step nilmanifolds and prove
(Theorem 2.12) that thE-almost inner automorphish must be an almost inner
automorphism of continuous type (see Definition 1.6).

(b) Let

F: S(N)— S(N)

be a lift of F. In the notation of 2.1(b), we have
FodL, =dLe,) o F
forall y e I'. Also, denoting byG' the geodesic flow ofN, g), we have
FoG'=G'oF.

(c) (See Remark 1.5.) There exist§-almost inner derivation of/, which we
denote byg, such that the differentiab,: N/ — N is given by®, = Id + ¢.
We havep (Z) = 0 andg (V) C Z. Note thatd (x) = exp((Id + ¢) (log(x))) for
x€eN.

2.4. THE RIEMANNIAN VERSUS THE LIE GROUP EXPONENTIAL MaPS. Given an
arbitrary left-invariant Riemannian metric on a Lie groGp the integral curves
of the left-invariant vector fields are in general not geodesics. xkor, andz
left-invariant vector fields, the covariant derivative is given by

(Vey. 2) = 3{([x, y]. 2) + ([z. x]. y) + ([z, ] )}
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In particular,
(Vx-xv Z) = ([Z7 x]v -x>'

Thus, fora € G, the integral curves exp(tx) of x are geodesics if and only if
x 1 imaggad(x)).

In the case of a two-step nilpotent Lie grol¥p this condition holds for alk €
Y and for allx € Z and, more generally, for any of the formv + z withv € V
andz € Z and withz L [v, N]. If, moreover,y = exp(x) € log(T"), whereT is
a uniform discrete subgroup &f, then the geodesic exg(x/|x|)) and suitable
left translates of this geodesic (those translatesp(z (x/|x|)) for whichaya=1 e
[¥]1r) descend to closed geodesicdinN in the free homotopy clasy]r.

2.5. LEemma [E]. (@) Let (I"\ WV, g) be a compact Riemannian two-step nilman-
ifold. Supposer e ' andy = exp(v + z) with0 # v € V andz € Z. Write
z = zo + z1 With zo L imaggad(v)) andz; € imaggad(v)). Then all the longest
geodesics in the free homotopy clgg$r are projections td"\ N of geodesics of
the formn exp(ru) whereu = (v + zo)/|v + zol.

(b) Letv + z be a unit vector withy € V andz € Z and withz L [v, N]. Let
x € N and letn = exp(x) € N. Then the geodesicexpt (v + z) descends to a
(not necessarily primeclosed geodesic iff\ N of length! if and only if

expl(v +[x,v] +z) €T.

The second statement follows easily from the multiplication formuthin The

first statement sounds surprising at first glance; one might expect these geodesics
to be the shortest ones. In case 0, these geodesics are actually the only onesin
their respective free homotopy classes, and they minimize length not only in their
free homotopy classes but also in their homology classes. On the other hand, when
v = 0 so thaty is central, there are many shorter geodesics in the free homotopy
class y]r.

2.6. LemmMa [E]. Asin 1.3, letry,: N/ — V be the projection with kernek.
Givenv € my(logTl') and e > 0, there exists a positive integérand an element
z¢ € Z with |z,| < e such thatkv + z, €logT.

2.7. ProprosITION. In the notation of 1.1 and 2.3, if
F: (S(T\N), g) — (S(®(T)\N), g)
is a C%-geodesic conjugacy, then
(@) F:T\N x {z} > ®(I")\N x {z} forall z € Z.
(b) F: T\N x {v} - ®(I)\N x {v} forall ve V.

Proof. We use the notation df.1, 1.11 an.3.
(a) Let
Z,={z€eZ, |z| =1}
and
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Zr ={ze€ Z,|rzelog(l') for somer > 0}.

Sincerl is a uniform lattice Zr is dense inZ, (see 1.3). Thus we need only prove
(a) forz e Zr.

The almost inner automorphist restricts to the identity on the center uf
and, in particular, on the central subgronp [N, N]. Thus, by 2.3(a), foy €
' N[N, N] = ' nexp(2), the geodesic conjugacy maps closed orbits of the
geodesic flow in the free homotopy clasg [ of S(I"'\N) to orbits in the free
homotopy classy] ey in S(®(T)\N).

Let zg € Zr and letrg £ 0 satisfyy = exp(rozo) € I'. By Lemma 2.5, the
longest geodesics in the free homotopy clags [are precisely the projections to
'\ N of exp(tzp) and all its left translations. Thus the submanifélgV x {zo}
of S(I'\N) is foliated by all the longest periodic orbits of the geodesic flow in
the free homotopy class[r (viewed now as a free homotopy class of curves in
S(I'\N)). Similarly, ®(I")\N x {zo} is foliated by the longest periodic orbits of
the flow in the class)] o) of S(®(I)\N). Hence the geodesic conjugagy
must mapC'\N x {zo} onto®(I")\ N x {zo}. This proves (a).

(b) The proof of (b) is similar but more complicated. Let

Vi={veV|l=1}

and
Vr ={veV, | rvemy(logl) for somer > 0},

whereny,: N — V is the orthogonal projection. Sindgis a uniform lattice,
Vr is dense inY, (see 1.3) and we need only prove (b) foraé Vr.

For a fixedv € Vr, there is arr > 0 such thatv € 7y, (logT"). According to
Lemma 2.6, fore > 0 there is a positive integés, and an elemens, € z with
|z¢] < € such that

kerv + z. elog(T). (2.7.1)

We temporarily fixe and drop the subscripts in 21). Write z = zo + 21
with z; € imaggad(v)) andzo L imagead(v)). Setvo = krv and letu =
(vo+zo)/lvo+ zol. Let

No = {n =exp(x) e N : expl(vg + [x, vo] + z0) €T for somel e R™ }.
(2.7.2)

Forn = exp(x) € No, Lemma 2.5 says that the geodesiexp(tu) descends to
a closed geodesic iR\ of lengthl|vg + zo|. This closed geodesic is of maxi-
mal length in the free homotopy clasg [ wherea = exp(lvg + [ x, vo] + Iz0).
ThusF sends this geodesic to a closed geodesi i)\ N of maximal length in
the free homotopy clas®{(a)]or).-

By 2.3(c) and Definition 1.4¢ () = exp(lvg + I[x + &, vo] + Izp) for some
& € V. Again by Lemma 2.5, a maximal length geodesicdr(¢)] ¢y must have
the formn* exp(ru) for somen* € N, with u as before. ThusF(n, u) = (n*, u)
and we have

F: Nox {u} - N x {u}. (2.7.3)
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We next show thatVy is dense inV. First, Ng is nonempty: by the definition
of z3, there existy € V such that j, vo] = z; and 2.7.1 implies that

exp(vg + [y, vo] +z0) €T. (2.7.4)

Thus exfy) € No.
Let Z, be the rational span & Nlog(I"); thatis,Z, = Z N N in the nota-
tion of 1.3. Let
A(wo) ={xeV:[x,v0]l € Zq}. (2.7.5)
We claim that
exp(x + y) € No forall x € A(vy), (2.7.6)

wherey is defined as in the previous paragraph. To verify 2.7.6, observe that for
x € A(vo) there exists g € Z such that

q[x,vo] €log(l" N Z. (2.7.7)
We then have

expg (vo + [x + y, vo] + z0) = €xpg(vo + [y, vo] + zo0) €Xpg[x, vo]  (2.7.8)

by 1.1,since [x, vo] € Z. Equations 2.7.4, 2.7.7, and 2.7.8 imply that the left-hand
side of 2.7.8 belongs tb and hence that eXp + y) € No, verifying 2.7.6.

Now, by 1.3, Zg N imag&gad(vg)) is dense in imagadvg)). Since advo)
is linear and sinceA(vo), as defined in 2.7.5, is the inverse image&§ N
imaggad(vp)) under advy), it follows that A(vg) is dense inV. By 2.7.6 and
the fact that: exp(Z) c No whenevem € Ny (as can be seen from 2.7.2), we
conclude thaiVg is dense inV.

Equation 2.7.3 thus implies th&t: N x {u} — N x {u}. Recall thatt, as de-
fined just after equation 21, depends or. As ¢ goes to Q u converges to the
unit vectorv. Consequently, we have: N x {v} — N x {v} whenevew € Vr.
As noted previously, this completes the proof of Proposition 2.7. O

2.8. NOTATION AND REMARKS. By Proposition 2.7 and the fact thetcommutes
with the geodesic flovG’ of S(N), we see thaf carries orbitgn exp(rv), v) of
G' to orbits of the same form whane V; that is, it simply left-translates such
orbits. Hence there exists an elemgiitz, v) € N such thatF (n exp(tv), v) =
(f(n, v)nexp(tv), v). A similar statement holds with replaced by; € Z. For
later use (Section 3), we extend the definitiorfas follows. Definef: S(N) —

N andg: S(N) — N by the condition

F(n,u) = (f(n, u)n, g(n, u)).
In particular, foru € V oru € Z, the previous statement implies that

f(mexptu,u) = f(n,u) and gn,u)=u.
Write
log(f(n, u)) = A(n, u) + B(n, u)

with A(n, u) € Z andB(n, u) € V.
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2.9. ProposiTiON. In the notation of 2.3 and 2.8, fan, u) € S(N) andy € T’
we have

@) gn,u)=uifueVoruecZ,

(b) f(G'(n,u)) = f(n,u) if u € Voru e Z (in particular, A(G'(n,u)) =
A(n,u) and B(G'(n, u)) = B(n, u) in this case;

(c) glyn,u) = g(n, u;

(d) f(yn,u) = ®(y)f(n,u)y~t (in particular, B(yn,u) = B(n,u) and
A(yn,u) = A(n,u) + ¢(logy) — [B(n, u), logy]).

Proof. (a) and (b) are a restatement of Proposition 2.7 and the comments in 2.8.
(c) and the first equation in (d) are a restatement of the equaftie)dLV =
dLo(y) © F, noted in 2.3; see also 2.1(b). To obtain the last two equations in (d),
note that by 2.3(c) and the fact that\) C Z (see 1.5(b)) we have

(y) =exp(logy + ¢(logy)) = y exp(¢(logy))
with exp(¢ (log y)) central inN, so
O (y) f(n,w)y ™ = yf(n,u)y " exp(¢(logy)).
By 1.1 and the first statement in (d), we thus have that

log(f(yn,u)) = log(f(n,u)) + [log(y), log(f(n, u))] + ¢ (log(y)).

The last two equations in (d) now follow from the Definition 2.840&nd B and
the fact that V, V'] = Z. O

2.10. NotATION AND REMARKS.  The derived groupy, N] of N is a simply con-
nected central subgroup with Lie algebys([N'] = Z, and exp:Z — [N, N]is
a vector space isomorphism. By 1(&, N[N, N]))\[N, N]is a torus; we denote
it by 7. Note thatT acts isometrically o™\ N by left translations.

By Proposition 2.9B8(yn, u) = B(n,u) forally e T, andA(yn, u) = A(n, u)
for y €[N, N] N T. Thus we can define the following averages over

B(n, u) =fB(z-n,u)dz,
T

An, u) = / Az -n,u)dz
T
for (n,u) € S(N). Heredz is the Haar measure dh of total volume one.

2.11. ProprosITION. In the notation ofl.1,2.3, 2.8, and 2.10,
¢(v) =[B(n,v),v] and B(n,v) = B(e, v)
forall (n,v) e S(N) withv e V.

Proof. Let wy,: NV — V be the orthogonal projectionN/[N, N] is a simply
connected abelian Lie group. Letting: N — N/[N, N] be the projection,
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7(I)\7(N) is a torusT . The Lie algebra otN/[N, N]is N/Z. Under the iden-
tification of N/ Z with V, the exponential map — N/[N, N] carriesry (logI')
isometrically torr (I'). Thus the torug is isomorphic tary, (log ') \V.
By 2.8 and 2.10,
A(n exp(tv), v) = A(n, v),
_ _ (2.11.1)
B(nexp(tv), v) = B(n, v)
forallr e R andv e V.

We first prove that3(n, v) = B(e, v) for all (n, v) € S(N) with v € V. Since
B(yn v) = B(n,v) for y € [N, N] by Definition 2.10, and sinc&(yn, v) =
B(n, v) for y € T by Proposition 2.9(d), the maR(-, v) may be viewed as a map
on the torusT . In particular, ifv € V is a unit vector such that the projection of
v to the torus(y (logM))\V = T is a generator of the torus—that is, if the pro-
jection of {rv | r € R} is dense in the torus—theB(n, v) = B(e, v) for all n
by (2.11.1). ByKronecker’s theorem, the generators form a dense set in the torus.
HenceB(n, v) = B(e, v) for all unit vectorsv € V and alln € N. (Remark: We
can’t expect to havel(n, v) = A(e, v), sinceA(yn, v) # A(n, v) for general
yel)

We now turn to the expression fgi(v). By Proposition 2.9(d), for alk € N
andu € V with |u| = 1 andy €T, we have

¢(logy) = A(yn,u) — A(n, u) + [B(n, u), logy];
therefore,
¢(logy) = A(yn,u) — A(n, u) + [B(n, u), logy]. (2.11.2)
Recalling thatp (£) = 0, (2.11.2) withn = e implies forn € 7y, (log(I")) that
¢ (n) = A(exp(n), u) — A(e, u) + [B(e, u), n]. (211.3)
It suffices to provep (v) = [B(n, v), v] for those unit vectors of the formv =

rn with n € my(log(I")) andr € R, since such vectors form a dense subset of
the unit sphere in. For v of this form, we have

¢ () = re(n) = r(AExp(m), u) — Ale, u)) + [B(e, u), v]. (2.11.4)
Settingu = v in equation (2.11.4), recalling thatis a real multiple ofv, and
applying (2.1.1), weobtaing (v) = [B(e, v), v] as desired. O

2.12. THEOREM. SuUppos€l’\ N, g) and(I'*\N*, ¢g*) are compact two-step nil-
manifolds whose geodesic flows &ré-conjugate. Then there exists an almost-
inner automorphismd of N of continuous typgsee Definition 1. such that
(T*\N*, g*) is isometric to(®(IM)\ N, g).

The theorem follows immediately from 2.3 and 2.11 sifcis continuous. Theo-
rem 2.12 and Remark10yield the following corollary.

2.13. CoroLLARY. LetN be atwo-step nilpotent Lie group that does not admit
any noninner almost inner automorphisms of continuous type. Then any associ-
ated compact nilmanifoldI"\ N, g) is C°-geodesically rigid within the class of

all compact nilmanifolds.
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The conclusion thatl"\ N, g) is C °-geodesically rigid within the class of all com-
pact nilmanifolds, and not just in the class of two-step nilmanifolds, follows from
the remarks in the introduction.

2.14. CoroLLARY. There existcompact two-step nilmanifolds, &, g) that sat-

isfy the following conditions.

(a) Any compact nilmanifold whose geodesic flowr sconjugate to(I"\ N, g)
must be isometric toI'\ N, g).

(b) (T'\N, g) is isospectrally deformable. That is, there exists a continuous fam-
ily {M,} of two-step compact nilmanifolds witlo = (T"\ N, g) such that/,
is isospectral but not isometric t, for all 7.

Proof. In Example 1.7, we exhibited a nilmanifold™\ N, g) such that (i) every
almost inner derivation afV" of continuous type is inner and (ify” admits ar -
almost inner derivatio that is noninner. By Corollary 2.13, condition (i) im-
plies (a). By 1.9 and.10,condition (ii) implies (b). O

3. Special Classes of Nilmanifolds

3.1. DerFINITION.  In the notation ofl.1, asimply connected two-step Riemann-
ian nilmanifold (N, g) is said to benonsingularif J(z) is a nonsingular linear
transformation for alt € Z, 7 # 0. Equivalently, imagéd(x)) = Z for all x €

V. (Note that this definition is independent of the choicgpi.e., it is a property

only of the Lie algebra structure.) We will also say that the associated Lie algebra
and any associated compact nilmanifdlgN are nonsingular in this case.

The rigidity results of Corollary 2.13 are not applicable to nonsingular nilmani-
folds. Indeed, by Example 1.7(ii), the space of almost inner derivations of a non-
singular two-step nilpotent Lie algebra has dimension(@iydim(Z), whereas
the space of inner derivations has dimension only@im Thus, exceptin the case
in which dim(Z) = 1, the Lie algebra admits many noninner almost inner deriva-
tions. Moreover, as noted in Example 1.7(ii), all these almost inner derivations
are of continuous type. Thus PropositibA3 says that every nonsingular com-
pact two-step nilmanifold can be continuously deformed through-garameter
family of pairwise nonisometric nilmanifolds all having the same marked length
spectrum, where: = dim(V)(dim(Z) — 1), and the results of Section 2 do not
rule out the possibility that these nilmanifolds hav®-conjugate geodesic flows.

Nonetheless, we shall see (in Theorem 3.10) that generic compact nonsingular
two-step nilmanifolds (defined in Definition 3.2(a)) are at le@étgeodesically
rigid within the space of all compact nilmanifolds. We will also establish rigid-
ity results for some special classes of nonsingular compact two-step nilmanifolds
(those in Definition 3.2(c,d)).

3.2. DEFINITION. Let (N, g) be a simply connected two-step Riemannian nil-

manifold. We use the notation @fl.

(a) (N, g) is said to barrational if, for z in a dense set of, the sef1, 61(2), . . .,
0,(2)} is linearly independent over the field of rational numbers, where
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{(£v=10:(z), i =1,2,..., p(z)} are the distinct eigenvalues d{z). (We
choosed;(z) > 0 and are allowing the eigenvalues to have arbitrary multi-
plicities.)

(b) (N, g) is said to ban resonancef for all 0 # z € Z, every ratio of nonzero
eigenvalues of/ (z) is rational; equivalently, for each € Z, there exists a
constant such thae'/© = Id, wherer may depend on.

(c) (N, g) is said to bestrongly in resonanc, for eachz € Z, there exists a con-
stantr such that’/® = —Id, wherer may depend on. Equivalently, every
ratio of nonzero eigenvalues is of the fopylg with p andg odd integers.

(d) (N, g) is said to be oHeisenbergype if (J(z))? = —|z|?Idy, forall z € Z.

If (N, g) has any of the properties defined in (a)—(d), we will also say that any
associated compact nilmanifold\ N, g) has the respective property.

3.3. REMARKS. The notion of Lie group of Heisenberg type is due to Kaplan
[Kn]. These groups have a surprisingly rich and varied geometry and have been
studied by many authors (e.g. [E; Rm]). The noncompact rank-one symmetric
spaces are solvable extensions of certain of the Lie groups of Heisenberg type.
More generally, Damek and Ricci [DR] showed that similarly defined solvable
extensions of all the Lie groups of Heisenberg type are harmonic manifolds.
The horospheres in these harmonic manifolds are isometric to the Lie groups
of Heisenberg type.

Eberlein [E] defined the term “in resonance”. The condition of resonance of
(N, g) is closely connected with the condition that the set of vectors tangent to
closed geodesics in any associated compact nilmariifoM be dense itS (I'\ V)

(see [E; LP; M]). The nilmanifolds of Heisenberg type are in resonance—in fact,
strongly in resonance. Mast [M] gave the first examples of nilmanifolds in reso-
nance which are not of Heisenberg type. We give an additional example as follows.

3.4. ExampLE. LetV and Z be inner product spaces with orthonormal bases
{X1, ..., Xg} and{Z1, Z,}, respectively, and defing: Z — so(V) so that, for

Z = 72171+ 7272, J(Z) has the following matrix representation with respect to
the foregoing basis df:

0 0 —M21 —A122 0 0 0 0

0 0 MZ2  —MZ1 0 0 0 0
171 —A122 0 0 0 0 0 0
MZ2 M2 0 0 0 0 0 0

0 0 0 0 0 0 —X271 —A222

0 0 0 0 0 0 A2Z2 —A2z1

0 0 0 0 A2Z1 —A222 0 0

0 0 0 0 A2Z2 A27a 0 0

The distinct eigenvalues of(Z) are{t+/—1x11|Z|, £v/—11>|Z|}.

As in 1.1, thedata(V, Z, J) defines a simply connected two-step nilpotent Lie
groupN with a left-invariant Riemannian metric If, say, A, = 2X,, then(n, g)
is in resonance but not strongly in resonance. If, gay= 31, then (W, g) is
strongly in resonance but is not of Heisenberg type.
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We next show that generic nonsingular compact two-step nilmanifolds are irra-
tional in the sense of Definition 3.2. First recall the following facts concerning
the behavior of eigenvalues under perturbations of linear maps (see [Kt] for de-
tails). AsT varies over a subspad® of linear transformations dR”, the num-

ber of distinct eigenvalues @f is a constant except on a nowhere dense get

of measure zero iV where eigenvalues coalesce, resulting in a smaller number
of distinct eigenvalues. (Heremay be less tham.) Moreover, the eigenvalues
constitute branches of analytic functions with singularities only/oMore pre-
cisely, we may define continuous functionsy, . . ., «,, on W which are locally
analytic offU and such that, for all € W, a1(T), . . ., «,.(T) are the eigenvalues

of T with «;(T) < «;+1(T), except possibly o/ where equality may occur.

3.5. NotaTioN. Let (N, g) be a nonsingular simply connected two-step Rie-
mannian nilmanifold. We let 2 be the maximum number of distinct eigenvalues
of J(z) asz varies overZ, and we define continuous functioas, . . ., «, on Z

so that, except on a nowhere denseS$ef measure zero where some of these
functions may coincide4+/—1a;(z), i =1, 2, ..., p} are the distinct eigenval-

ues ofJ(z). Moreover, these functions are continuous and consist of branches of
analytic functions with singularities only af. Note that we allow 2 < m =
dim(V).

3.6. LEMmMma. Let (N, g) be a nonsingular simply connected two-step nilmani-
fold. In the notation of 3.5, eithg®V, g) is irrational or else there exist rationals
ai, . . ., ap such that

a1+ - +apa, =0

onZz.
Proof. Let
Zr={z€eZ: {1, a1(2), ..., a,(2)} is rationally dependent
If ay, .. ., apy4q are rational numbers, then the map

Z— a]_()ll(Z) +---+ ClpOlp(Z) + ap+1

is continuous and locally analytic B\ S, so its zero set is either nowhere dense
or elseis all ofZ. In caseu,1 is nonzero, the latter possibility cannot occur since
a;(sz) = sa;(z) for s € RT. Consequently either there exist rationals. . ., a,
such that

a4 -+ apa, =0

or elseZ; is a countable union of nowhere dense sets. In the latter £ade,0of
the first category, and its complement is densg&;ithat is,(N, g) isirrational. O

3.7. REMARK. Viewingso(m) as a vector space with the Lebesgue measure, the
setM of matricesA in so(m) for which the distinct eigenvalues af are rationally
independent is a dense set of full measure. Consider the set of all nonsingular sim-
ply connected two-step nilmanifold®/, ¢) for which Z is k-dimensional and’ is
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m-dimensional. By Lemma 3.6, the irrational ones are associatedvitiines in
so0(m) that are not entirely contained in the complement¢f Relative to the Rie-
mannian volume form on the Grassmaniart-gflanes in the vector spase(m),

it is not difficult to see that the set of suéhplanes is a dense set of full mea-
sure in the Grassmannian. This shows that gersémiply connectedionsingu-

lar two-step Riemannian nilmanifolds are irrational. By Definition 3.2, a compact
Riemannian nilmanifold is nonsingular if and only if its universal covering is non-
singular. However, only certain simply connected nilpotent Lie groups (hamely,
those for which the associated Lie algebra has a basis with rational structure con-
stants) admit uniform discrete subgroups. Thus we cannot immediately conclude
that genericompactnonsingular two-step Riemannian nilmanifolds are nonsin-
gular. To reach this conclusion, we will show that &y given simply connected
nonsingular two-step nilpotent Lie group generic left-invariant metrics oN

are irrational.

3.8. NoTaTiON AND REMARKS. Let N be a simply connected nonsingular two-
step nilpotent Lie group. A choice of left-invariant Riemannian megran N
(equivalently, of an inner product ok’) depends on (i) a choice of inner product
on the derived algebr&, (ii) a choice of a vector space complemehof Z in

N (to be the orthogonal complement s, and (iii) a choice of inner product on
N/Z (which then defines an inner product Brvia the canonical identification).
We claim that the third choice alone determines whether) is irrational. The
irrelevance of the choice (ii) of is an elementary consequence of Definitions 1.1
and 3.2(a) and the fact thatis central. Fix a choice of inner produgt -) onA/Z
and((-, -}) on Z. These choices give rise to a linear mapzZ — so(N/Z, (-, )
asin1.1. Here we are identifyingv/Z with a vector space complemenpf Z in
N)) Let S(N/Z) (resp.S(Z2)) denote the set of positive-definite symmetric lin-
ear transformations af\/Z, (-, -)) (resp., of(Z, ({-, -)))). Given an arbitrary in-
ner producg onV, there exists a uniquk € S(Z2) suchthag(z, w) = {{(z, Bw))

for all z, w € Z as well as a uniqué € S(N/Z) such that the inner product in-
duced on\/Z by g is given by(-, A-). The linear map/’ associated witly as in
1.1 (after identifyingZ+ with \//Z) is given by

J'(z) = A YJ(B2)
since

(AJ'(2)x,y) = g(J'(D)x,y) = {{[x, y], Bz)) = (J(B2)x, y)

for all x, y e N/Z andz € Z. SinceB is an isomorphism, the question of irra-
tionality of (N, g) depends only od—that is, on the choice (iii) of inner product
onA/Z, and the claim is proved.

The sefZ of all inner products oV (i.e., of all left-invariant metrics oW ) may
be identified with the collection of all x n positive-definite symmetric matrices
and hence with an open subsetR)f"+9/2 wheren = dim(\). The Lebesgue
measure oR”"*+Y/2 thus defines a measure @n Similarly, S(N/Z) may be
viewed as an open subsetRf*™+Y/2 wherem = dim()), with the Lebesgue
measure.
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3.9. ProposiTION. Let N be a simply connected nonsingular two-step nilpotent
Lie group, and letZ denote the set of all left-invariant metrics @h as in 3.8.
Then the set of in Z for which (&, g) is irrational is a dense subset & of full
measure.

Proof. We first prove that the irrational metrics are dense. ¢ &t Z. Choose
any nonzero elementof Z. There exists an orthonormal ba$i,, . . ., X;, 13,
..., Y1} of V,, the orthogonal complement &fin \V, such that/ (z) X; = +/—16,Y;
andJ(z)Y; = —/—16;X; for somed; € R. By perturbing the norms of th&;
and otherwise leaving the metric unchanged, we perturh;thé/e can find arbi-
trarily small perturbations that result in values &(z) for which {04, . . ., 6;} is
rationally independent. The resulting left-invariant metrics\oare irrational by
Lemma 3.6.

For the second statement of the proposition it suffices to show that, under the
mapping fromZ to S(N/Z) described in 3.8, the image of the set of irrational
metrics has full measure ifi(N/Z). Let J be as in 3.8. Fix a nonzero element
z of Z and consider the eigenvalues 4§ (z) as A varies overS(N/Z). By the
proof of the first statement of the proposition, there exists a choidefof which
the eigenvalues ol J(z) are all distinct and rationally independent. Asaries,
we can write the eigenvalues At/ (z) as++/—1a1(A), . . ., £/ —1a;(A), where
thea;(A) are continuous and consist of branches of analytic functions with singu-
larities only on a set of measure zero where different eigenvalues coalesce. Here
[ = %dim(V). By Lemma 3.6, a sufficient condition for the left-invariant met-
rics associated with to be irrational is that the;(A) be rationally independent.
Letay, ..., a, be rationals. The functiomo(A) + - - - + aa,, (A) ONS(N/Z)
is locally analytic. Since we know it is not identically zero, the zero set must be
a nowhere dense set of measure zer§@\V/Z). Since there are only countably
many choices of the;, it follows that the set ofA for which thew;(A) are ratio-
nally independent has full measureSiA/Z). This completes the proof. [J

The primary goal of this section is to prove the following theorem.

3.10. THEOREM. lIrrational compact two-step nilmanifolds a@?-geodesically
rigid within the class of all compact nilmanifolds.

This theorem, together with Proposition 3.9, yields Theorem 2 in the introduction.
Our proof of Theorem 3.10 will also yield the following result.

3.11. THEOREM. Compact two-step nilmanifolds that are strongly in resonance
are C?-geodesically rigid within the class of all compact nilmanifolds.

The results in Section 2 used the behavior of only those geodesics that were or-
bits of one-parameter groups of isometries. In our study of nonsingular two-step
nilmanifolds, we will need to use all the geodesics.

3.12. LemMma [E]. Let (N, g) be a two-step nilpotent Lie group with a left-
invariant metric. Foru € N, let o (-, u) denote the geodesic M witho (0, u) = e
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ando’(0, u) = u, whereo'(-, u) denotes the time derivative. Write= x + z
withx € V andz € Z and writeo (¢, u) = exp(x(¢) + z(¢)) with x(¢) € V and
z(t) € Z (sox’(0) = x andz(0) = z). Write J~1(z) for (J(z))~*. Then

(a) under the usual identification of the tangent space at any poim with the
Lie algebraN, we haves'(t, u) = ¢/@x 4z forall r e R;

(b) x(t) = tx1+ (@ —id)JL(2)x, for t € R, wherex; € Ker(J(z)), x» €
(Ker(J())*, andxy + x» = x.

Observe that, in the nonsingular case, we have 0 andx, = x in (b).

Eberlein also computed the (somewhat long) formulaziey. We will only
need that formula in the special case ttt g) is of Heisenberg type, in which
case the formula simplifies considerably (see 4.1).

3.13. NotATION. We continue to use the notation of 2.3 and 2.8. In addition, we
write

g(n,u) = H(n,u) + I(n, u)
with H(n, u) € Z andI(n, u) € V.
3.14. ProrosiTION. Let(T"\ N, g) be an arbitrary compact two-step nilmanifold.

In the notation of 2.3, 2.8, 3.12, and 3.13Fif (S(T'\N), g) — (S(®(T)\N), g)
is a C%-geodesic conjugacy, then

(@) I(G'(n, u)) = eHOO (1, u);
(b) H(G'(n,u)) = H(n, u);
(c) B(G'(n,u)) = B(n,u) + x(t, g(n,u)) — x(t, u).

Proof. Statements (a) and (b) follow from Lemma 3.12(a) and the fact khat
commutes with the geodesic flo@" of (N, g). For (c), note that, since the left
translations orV are isometries, we have that

G'(n,u) = (no(t,u),c'(t, u))
in the notation of 3.12 and, in the notation of 2.8 and 3.13, that
(f(G'(n,u))no(t,u), g(G'(n, u))

= F(G'(n, )

=G'(F(n,u))

=G'(f(n,wn, g(n, u))

= (f(n,uw)no(t, gn,u)), Hn, u) + e HD 1@ u)).
In particular,

(G, w) = fn,wyno(t, g(n, u))(o(t,u)) n "

The expression (c) foB(G'(n, u)) now follows from the fact that logyn 1) =
log(y) modZ foranyy € N (seel.l). O
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Asin 2.3, we assume we are given a compact two-step nilmanifold/, g), al-
almost inner automorphisih of N, and a geodesic conjugaéy. S(I'\N, g) —
S(®(T)\N, g) such that the induced map on fundamental groups is given by

®|r. We want to show thad is an inner automorphism. Observe thabiis indeed
inner—say,® is conjugation by: € N—then, since the metrig is left-invariant,

the left translationL,: S(N) — S(N) given byL,(n,u) = (an,u) commutes
with the geodesic flow ofN, g) and induces a map froS(T"'\N) to S(®(T")\N)
intertwining the geodesic flows. Of course, composing this geodesic conjucacy
with any flow translationG'® gives another geodesic conjugacy. For such conju-
gacies, the mapf defined in 3.13 satisfieB (n, v + z) = z forall v € V and

z € Z (see Lemma 3.12(a)). Proposition 3.14 then impliesdl&I(n, v + z) =
I(no(t,v+z2), e’@v + 7), wheret — o(z, v + z) is the geodesic itV with ini-

tial tangent vectote, v + z). In Section 4 we will see that these conditionsi@n
and! hold for arbitrary geodesic conjugacies whHexV is of Heisenberg type;
this fact will be the key lemma in obtaining geodesic rigidity for such nilmani-
folds. The following technical lemma gives a weak version of these conditions for
arbitraryC2-conjugacies whei\ N is only assumed to be nonsingular. Observe
that we already know from Proposition 2.7 ttfatn, z) = z.

3.15. LEmMA. We use the notation of 2.3, 2.8, and 3.13. Assume(thaw, g)
is a nonsingular compact two-step nilmanifold and that

F: S(T\N, g) = S(®(I\N, g)

is a C?-geodesic conjugacy. Then, fere N and for unit vectors € V andz €
Z we have

@ lim H(n, coqs)v + sin(s)z) _ i H(n, cos(s)v + sin(s)z) = z:
s—0 N ds =0
(b) im i(H(”’ cogs)v + sin(s)z)) _o
s—0ds N

(c) e”@di I(n, cog(s)v + sin(s)z)

Sls=0

d I (na(E cogs)v + Sin(s)z) e’ @ cog)v + Sin(k)z).
2=0 s

whereo (¢, v + z) is the geodesic itV with 6(0) = e ando’(0) = v + z.

The proof of Lemma 3.15 will be given at the end of this section.

Our approach to proving geodesic rigidity for the generic and the special classes
of nonsingular compact two-step nilmanifolds is suggested by the following prop-
osition, which is valid for arbitrary two-step nilmanifolds.

3.16. ProrosiTION. Let (T'\ N, g) be a compact two-step nilmanifold and et
be an almost inner derivation of the associated Lie algektarhen there exists
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amapé: VYV — Vsuchthatp(x) = [£(x), x] forall x e V. If & can be chosen so
that£(e’/@x) = &(x) forall x e V andz € Z, theng is an inner derivation.

Proof. Pickv; € V and denote by the subspace df spanned by all vectors

(!l /@y | 70,20, ., k€2, k=0,1,2,...}.
Then, pickv, € V such that, L V;. Denote byV; the subspace af spanned by
{ej(zl)ej(ZZ) ses ej(z")vg | 21,22, ..., 2k € Z, k= O, 1, 2, .. }

We claim that
ViLV, and [V, V] =0. (3.16.1)

In fact, letx = /@) ... /Gy e Vyandy = /@ ... /@y, e V,. Then
(x,y) = (eJ(Zl) .. eJ(Zk)v17 el . 61(21)v2>

_ (ej(,zl) . 6‘1(721)61(11) - e/(Zk)vl’ U2>

:o’

sincev, L Vi. ThereforeV; L V,. Next, forx € V4, y € V,, andz € Z, we have
(e’ @x, y) = 0 sincee’’@x e V4. Taking the derivative with respect toatt =
0 in this identity, we getJ(z)x, y) = 0, thatis,{z, [x, y]) = 0. Sincez € Z is
arbitrary, we conclude thaik[ y] = 0. Therefore, we have confirmed the claim
(3.16.2).

Repeating this process, we can find a finite sequence of vegtars . . ., v, €
Y such that

V=VioVo® - -®V,,

whereV; is the subspace spanned{ay Ve’ ... /@y, | 24,25, ..., 2k € Z,
k=0,1,2,...}. Moreover,V; L V;and [V;, V;] =0fori # j.

Sinceg is linear and sincé(e’@v) = £(v) for all z € Z andv € V by hypothe-
sis, we see that(x) = [£(v;), x] for all x € V;. Thus, lettingg; be the orthogonal
projection ofé(v;) to V;, (3.16.1) implies that

o(x) =[&,x] forall xeV;. (3.16.2)

Seté =&+ &+ +§,. Forx eV, writex = x1+x2+ - -+ x, With x; € V;.
By (3.16.1) and (3.16.2),

d(x) = Zip(x;)
= Xi[&, xi]
= Zi[&, xi]
=[&, x].
This proves thap is an inner derivation al/. O

Proof of Theorems 3.10 and 3.1As remarked in the introduction, it is enough to
prove rigidity within the class of all compact two-step nilmanifolds. (I8t N, g)
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be a compact two-step nilmanifold that is either nonsingular or strongly in reso-
nance, and letl"*\N* g*) be a compact two-step nilmanifold whose geodesic
flow is C2-conjugate to that of '\ N, g). By Theorem 2.12, we may assume that
(T*\N* g*) = (®(I")\N, g) for some almost inner automorphisinof N. We
only need to show that the corresponding almost inner derivatisnnner. We
use the notation of 2.3, 2.8, 2.10, and 3.13.

According to Proposition 2.11,

¢(v) = |:l_3<e, |—Z|>, v] for 0£veV.
On the other hand, sinegis linear,
$() = —¢(—v)

Therefore, writing

B(v) = %(é <e, |Z—|> + B(e, —|—Z|>) (3.10.1)

d() =[B(v),v] for 0 £veV.
According to Proposition 3.16, we need only show that
B(e’Pv) = B(v)

we have

forallze Zand O£ ve V.
Note that, under the hypotheses of either theorgns,nonsingular. By Lemma
3.12 and Proposition 3.14, for, v 4+ z) € S(N) we have

B(Gt/s(n, cogs)v + Sin(s)z) — B(n,co9s)v + Sin(S)Z)

_ (exp[tj<H(n’ cos(s)sv + Sin(s)z))} B Id)

x J7YH(n, cogs)v + sin(s)z)) I (n, cos)v + Sin(s)z)

- (exp[tJ( sints) z)] — Id> JY(sin(s)z) cogs)v

N

_ (exp[tj<H(n’ cos(s)sv + sin(s)z)ﬂ B Id)

y J_l( H(n, coqs)v + Sin(s)z> I(n, coqs)v + sin(s)z)

N

N

—(exp[t](sm(s) z)] 3 Id> J_l<sin(s)z) coqs) 0.
S A S
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The last equality follows from the fact that(z/s) = sJ~1(z). (Recall we are
writing J~1(z) for (J(z))™L)

Define the averagg of I over the torug’ = (I' N[N, N]\[N, N]in the same
way thatA andB were defined in 2.10. On the left-hand side of the identity above,
first take the average ovér as in 2.10 and then let — 0, using the second as-
sertion of 2.11 to see that the limit makes sense. On the right-hand side, first let
s — 0 and then average ov&r (The bounded convergence theorem assures that
this procedure is equivalent to averaging first o¥eand then taking the limit.)
Using Lemma 3.15(a) and (b) and Proposition 2.7, we obtain

_ _ d - .
B(n, e”@v) — B(n,v) = (¢"’® — Id)J_l(z)d— I(n, cogs)v + Sin(s)z).
S ls=0
_ (3.10.2)
By Proposition 2.11B(n, v) is independent at; thus, so is

I(n, cos(s)v + sin(s)z).

ds s=0
Therefore, by Lemma 3.15(c),
d| - . d| - ,
e’@ 1 I(n,coxs)v +sin(s)z) = —| 1(n, e’ cogs)v + Sin(s)z).
ds|,_g ds|,_g
(3.10.3)
If N is strongly in resonance, we can pick auch thae’/@ = —Id. If N is
irrational, there is a sequenég} such that lim_, ., ¢/@ = —Id. In either case,

(3.10.3) implies that

- I(n, —cod(s)v + sin(s)z).
ds s=0 s=0

S~ubstituting~this identity into (3.10.2) with= 1 and recalling (3.10.1), we have
B(e’@v) — B(v) = 0. This completes the proofs of Theorems 3.10 and 3.I1.

I(n, cogs)v + sin(s)z) = di
S

Proof of Lemma 3.15(a) The first equality in (a) follows from Proposition 2.7. In
particular, the limit exists. According to Proposition 3.14(a),

I(no(t, cOs)v + Sin(s)z, e/ M9 cogs)v + sin(s)z)
— el.](H(H,COSS)U'FSin(S)Z))I(n’ Coss)v + Sln(S)Z).
Replacing by ¢/s in this equality yields
sin(s)z

I(na(é, coss)v + sin(s)z>, exp[t]( . )} cogs)v + sin(s)z>
_ exp[t]( H(n, cogs)v + sin(s)z)

N

)]I(n, cogs)v + sin(s)z). (3.15.1)

Sincel'\ N is compact we see that, for an arbitrary sequence 0, there exists

a subsequence, such thato(t/s,,, COLsy,)v + SiN(sy,)z) — n* modT") for
some element* in N (n* may depend on the subsequence). Therefore, since
I(yn,v+z) = I(n,v+7) fory eT (see Proposition 2.9(c)), we have
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lim [ <n0<L, cog(sy,)v + Sin(snl.)z>,

i—00 Sp;
exp[t](smiﬂ)} Cog(sp, )V + sin(sni)z>

ni

= I(n* ") =V y,

where the last equality follows from Proposition 2.7. Therefore,

. t . sin(s)z .
!|Ln01<na<;, cogs)v + SIn(s)z), exp[t]( . )} cogs)v + S|n(s)z>

="y, (3.15.2)
Using first Proposition 2.7 and then (3.15.1) and (3.15.2), we see that

I,imo exp[tJ( H(n, cos(s)sv + sin(s)z) )}v
= lim exp[t]( Hin, cos(s)sv + SIn(s)Z))] I(n, cog(s)v + sin(s)z) = e’/ @v,

SO

o .
exp[t]( jim H (1 CoSs)v + S'n(s)1)>]v _ oM@y
s—0 Ky
for all r. Therefore,
J( im H(n, cogs)v + sin(s)z)

s—0 N

)v = J(@)v;
that is,

J( im H(n, cog(s)v +sin(s)z) z)v _o.

s—0 N

SinceN is nonsingular, lim_, o H(n, cos)v + sin(s)z)/s = z.
(b) First, we show that lim. o %(H(n, cogs)v + Sin(s)z)/s) exists.
By Proposition 2.7H(n, v) = 0 and by (a),

fim H(n, cogs)v + sin(s)z) — .

s—0 S
Temporarily writingh(s) = H(n, cogs)v + sSin(s)z), we have

im i H(n, cod9s)v + sin(s)z) _ i sh'(s) — h(s)
s—0ds ) s—0 52
l "
= Eh 0
142 .
= Eﬁ SZOH(}’I, cogs)v + sin(s)z),

where the third line follows from L'Hdpital’s rule.
Now, taking the derivative with respect toin the identity (3.15.1) and then
lettings — 0, we obtain (again using part (a) and the fact that v) = v)
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d t . 1G2) .

— I{no| —, coqs)v + sin(s)z ), e coqs)v + sin(s)z
ds|,_o s

ey i H(n, coqs)v + sin(s)z) ;
ds|_g s
tJ(2) d H
+ M — I(n, cogs)v + sin(s)z).
ds s=0

(Note: For ease of notation, here and in the sequel Weiutsedenotew.)
Equivalently,

( d H(n, cogs)v + Siﬂ(s)z))
J| — v
ds

s=0 s

I(n, cogs)v -+ sin(s)z)
s=0

+ }e*tf(z)i

t ds

I(no(z, cogs)v + Sin(s)z),
s=0 s

769 cog(s)v + sin(s)z>, (3.15.3)

Extend the domain of the functidnfrom S(N, g) = N x S(N)t0T(N) —0 =
N x (N — 0) by requiring that/ be homogeneous of degree one in the second
factor. Now, by Proposition 2.7 and (3.15.2),

i r i 1J(52) i
7 I{no| -, cogs)v +Sin(s)z ], e cogs)v + Sin(s)z
S s=0 S

1 t . 1G .
=lim = I(na(—, cogs)v + Sln(s)z>, 69 cogs)v + Sln(s)z)
s

s—0§
_ etJ(z)vi|

1 t . 1G .
=lim = 1<na(—, cogs)v + Sln(s)z>, 69 cogs)v + Sln(s)z)
s

s—0 5§

— 6D Cos(s)v]

1 t . 1G .
=lim = 1<na(—, cogs)v + Sln(s)z>, €69 cogs)v + Sln(s)z)
s s

s—0

t . .
-1 (na(;, cogs)v + Sln(s)z), e 9 COS(S)U)}

d I (na(f cogs)v + Sin(s)z) €9 cog(s)v + Sin(k)z)
A=5 s
(3.15.4)

where 0< § <.
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Using this equality and the facts thetyn, v + z) = I(n, v + z) andF is C?,
we see that

d

ds

1 <no<§, cogs)v + Sin(s)z), 69 cogs)v + Sih(s)z)
s=0

is bounded for alk € R. This, together with the fact that thé’ are unitary
operators, shows that the right-hand side of (3.15.3) goes to zeromwhemo.
Therefore, the identity (3.15.3) becomes

J(di H(n,co9s)v + sm(s)z)>v —0.
A

s=0 s
SinceN is nonsingular, we gef- | _ [H(n, cos(s)v + sin(s)z)/s] = 0.
(c) To derive (c), first pui (4| _ [H(n, cos(s)v +sin(s)z)/s])v = 0 back into
the identity (3.15.3). Then use (3.15.4) and the fact g?ﬁt:o cogs) = 0. O

4. Nilmanifolds of Heisenberg Type

Because the compact nilmanifolds of Heisenberg type (as defined in 3.2) are
strongly in resonance, Theorem 3.11 shows that they'anggid within the class
of all nilmanifolds. We will now strengthen this result @-rigidity.

4.1. LemMma [E]. Suppos€N, g) is of Heisenberg type. Let(z, u) denote the
geodesic iV with (0, u) = e ando’(0, u) = u. Writingu = x + zwithx €V
andz € Z and writingo (¢, u) = exp(x(¢) + z(¢)) withx(t) € V andz(t) € Z as
in Lemma 3.12, we have

X2\ sinGlzDlxl?
21:2)° 2:p

z(t) = t<1+

4.2. LEMMA. Inthe notation of 2.8 and 3.13, {fV, g) is of Heisenberg type then
Hn,v+2z) =z

forall (n,v+2z)e S(N), whereveV andz € Z.

Proof. Fory e ' N[N, NJ, let

C(y)={(n,v+z)€S(N):v+#£0and
G(n,v+z)=dL,(n, v+ z) forsometo > 0}  (4.2.1)

and let
c= |J cwm.

yelN[N,N]

Note thatC(y) is the set of lifts of noncentral vectors §{T"\N) tangent to
closed geodesics in the free homotopy clags By Lemma 2.7z must be nonzero
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wheneveln, v+z) € C(y). We will show thatH (n, v+z) = zforall (n, v+2) €
C and thatC is dense inS(N), thus proving the theorem.
By Lemmas 3.12 and 4.1 and (4.2.4), v + z) € C(y) if and only if

(yn,v+2z)
=G"(n,v+2)
= <n eXp[(e"’”Z) —1d)J Y v +1¢ <1+ |v|2 )Z 3 Siﬂ(lo|z|)|v|zz]
T 2P 2

e’y + z) (4.2.2)

for sometq > 0. In particular, when(n, v + z) € C(y) we must have’o’/@y =
v. Sincev # 0, we see from Definition 3.2(d) of nilmanifolds of Heisenberg type
thatto must satisfy

B 27k

to = (4.2.3)

|z]

for some positive integerand that’/@ = Id. Equation (4.2.2) and the fact that
|v]? + |z|? = 1 then imply that

_ |vl? _ |z1* +1
y _exp[t0(1+ 2|Z|2)z} = exp[to< 2122 z |- (4.2.4)

Conversely, an elemeltt, v + z) € S(N) with v andz nonzero lies inC(y) if
there exists a positive integersuch that (4.2.4) holds withy defined by (4.2.3).
Thus,

Cz{mw+@eﬂN%v¢Omd

am(uﬁ+1

T2 222 )ZG log(I" N[N, N]) for some positive integek},
z z

(4.2.5)

An elementary argument using (4.2.5) and the fact, mentioned in 1.3, that the

rational sparf, of log(I' N[N, N]) is dense inZ shows that is dense ir§(N).
DefineF: S(N) — S(N)and® asin 2.3(a). Writé"(n, v+2z) = (n1, vi+2z1).

By Proposition 2.7, we have; # 0 whenevew = 0. Also from 2.3 and the fact

that®(y) = y wheny e N[N, N], we see thaF commutes both witdL, and

with G' for all € R. Consequently, by (4.2.1); leavesC(y) invariant. More-

over, for(n, v+z) € C(y), both(n, v+ z) and(ny, v1 + z1) satisfy the condition

of (4.2.1) for the same choice of. Thus (4.2.4) implies that

<|z|2 +1)Z B <|z1|2 + 1)2
2122 212 )
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Consequently,

H(n,v+2) (=2z1) = A(z)z witheitherA(z) =1 or A(z) = % (4.2.6)
Z

In summary, we have shown that (4.2.6) holds wheneéver+z) € C. Because
C is dense inS(N), to complete the proof of the lemma we need only show that
the functiona in (4.2.6) is identically one. By continuity dff, A is independent
of n and, in view of (4.2.5), also af. SinceC is dense inS(N ), the continuity of
H, in particular wheny = 0, yieldsA = 1 O

4.3. THeoreM. Compact nilmanifolds of Heisenberg type @ré-geodesically
rigid within the class of all compact nilmanifolds.

Proof. We use the notation of the first two paragraphs of the proof of Theorems
3.10 and 3.11. As in that proof, we need only show &t/ v) = B(v) for all
z € Z and all nonzera € V.
By Proposition 3.14, Lemma 3.12, and Lemma 4.2,(farv + z) € S(N) we
have

B(G'(n,v+2)) = Bn,v+2) + (’® —1d)J M )U(m,v+2) —v) (43.2)
and
B(G'(n, —v +2))
=B, —v+2) + (P —1d)J @)U, —v +2) +v). (43.2)
By Proposition 3.14 and Lemma 4.2,
I(G'(n,v+2)) = e“OUm, v+ z).

Takingr = n/|z| and using Lemma 3.12(a) and the fact tiRt N, g) is of
Heisenberg type, we obtain

I(no(%,v%—z),—v—{—z) =—-I(n,v+2), (4.3.3)
Z

whereo (¢, v + z) is the geodesic iV with 0(0) = ¢ ando’(0) = v + z.
By (4.3.1)—(4.3.3), we have

B(G'(n,v+2))+ B<G’(na(|:—|, v+ Z>, —v 4 z))

b4
=Bn,v+2) + B<na<|—, v+z), —v+z).

z|
Hence, in the notation of 2.10,

B(G'(n,v+12)) + B(Gt(na(r;—', v +z>, —v +z>>

_ _ b4
=B(n,v+2) + B(na(m, v—}—z), —v—l—z).
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After replacingv by cogs)v, z by sin(s)z, andz by 7/sin(s) in this equality, re-
calling thatB(n, v) is independent o& (Proposition 2.11), and applying Lemma
3.12(a), by lettingg — 0 we obtain

B(e, ¢”@v) + B(e, —e"'Dv) = B(e, v) + B(e, —v).

Thatis,B(e’@v) = B(v), thus completing the proof of Theorem 4.3. O
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