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1. Introduction

In this note we consider an analog of the notion of angle between two directions,
possibly based at different points, for a space of curvature bounded above.

The set of all unit tangent vectors of ann-dimensional Riemannian manifold
Mn constitutes asphere-bundleT1(Mn) overMn. In [13; 14], Sasaki introduced a
natural Riemannian metric on a sphere-bundle of a Riemannian space〈Mn, ds2〉,
which now is known as theSasaki metric.Let ξξξ and ξ̃ξξ be a pair of vectors in
T1(Mn) at the nearby pointsx andx̃. Translate the vector̃ξξξ in a parallel way to
the pointx by Levi–Civita parallelism along a minimizing geodesic joiningx and
x̃, and denote the angle between the tangent vector thus obtained and the tangent
vectorξξξ by1θ. Then, by a standard limiting process,

dσ 2 = ds2 + dθ2

specifies the Sasaki metric tensor inT1(Mn). Thus the restriction of the Sasaki
metric to a sphere fiber is the canonical round metric; that is, a sphere fiber is iso-
metric to a unit sphere in a Euclidean space and, for a smooth field of unit vectors
along a smooth curveγ : [a, b] → Mn, the length of the corresponding curve
4(t) = (γ (t), ξξξ(t)) in T1(Mn) is given by∫ b

a

√
‖γ̇ (t)‖2 + ‖∇γ̇ (t)ξξξ(t)‖2 dt,

where ˙γ = γ∗
(
d
dt

)
, ∇ is the Levi–Civita connection, and‖ ·‖ denotes the norm of

a vector relative tods2.

It is natural that an angle measurement should produce the canonical Sasaki met-
ric defined via the Levi–Civita parallel transport for Riemannian spaces. In a met-
ric space it should be sensitive enough to distinguish admittedly nonparallel direc-
tions; in particular, it should agree in a very strong sense with the well-established
notion of the (upper) angle for two directions based at the same point in an Alek-
sandrov space. Finally, as a working hypothesis, directions on a geodesic should
be, up to reversal, at angle zero to each other. We present such a construction and
discuss some natural modifications.
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It is not clear what an ideal theory could be. The simultaneous achievement of
sensitivity and stability may simply be impractical because of the instability of the
exponential map. Indeed, for two fixed directions based at nearby points it appears
unreasonable for such an angle measurement between the two to be a continuous
function of the directions and base points. As an elementary example consider a
graph and a triple of directionsξξξ, ζζζ, andηηη that are tangent to the graph (see Fig-
ure 1). Since the polygonal linesXOT andYOT are minimizing geodesics in the
graph, according to the principles of the angle measurement,ξξξ andζζζ should be
“parallel” toηηη (i.e., in both cases the angle should be zero), whileξξξ is not parallel
to ζζζ since the angle between them equalsπ.

Figure 1

Our major technical apparatus is that of a development of estimates on the met-
ric constructions called quadrilateral cosine and quadrilateral sine. These provide
machinery with which to construct a Sasaki metric and appear to be of interest in
the general context of Aleksandrov spaces. For example, we show that equidistant
cross-bars forming nested isosceles triangles with a fixed vertex are approximately
parallel (Lemma 23).

Recent works [5; 6; 7; 8] show the growing interest of analysts in spaces of cur-
vature≤ K in the sense of Aleksandrov. These spaces give a natural generaliza-
tion of Riemannian manifolds. However, Aleksandrov’s spaces are of much more
general nature.

In the present paper we propose a construction that in a certain sense extends
the notion of the sine of the angleθ to the spaces of curvature bounded above in
the sense of Aleksandrov. We call this generalized sine thequadrilateral sine. In
a metric space a concept ofdirection replaces the notion of a vector in a sphere-
bundle. The quadrilateral sine of a pair of directions makes sense in any metric
space, as does Aleksandrov’s upper angle. However, it can be equal to infinity in
the general case. In our paper we prove that, in an<K domain of a space of cur-
vature≤ K, the quadrilateral sine possesses a stability property. In other words,
it is independent of the choice of the curves specifying a given pair of directions;
the quadrilateral sine is always bounded and, for a pair of directionsξξξ, ζζζ emanat-
ing from one point, the quadrilateral sine coincides with 2 sin(∠(ξξξ, ζζζ)/2). In ad-
dition, [11, Prop. 10] ensures that the quadrilateral sine induces the Sasaki metric
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in the sphere-bundle of a Riemannian manifold. The quadrilateral sine arises in a
natural way from the notion of the quadrilateral cosine.

The basis of the definition of the quadrilateral cosine (notation: cosq) is the
following generalization of the cosine formula inE3:

cos∠
(−→
AX,
−→
BY

) = ∣∣−→AY ∣∣2 + ∣∣−→BX∣∣2 − ∣∣−→AB∣∣2 − ∣∣−→XY ∣∣2
2
∣∣−→AX∣∣ · ∣∣−→BY ∣∣ ,

which is a substitute for the Levi–Civita parallel transport in metric spaces. We
show that the quadrilateral cosine possesses certain additivity properties (Sec-
tion 3.2), which are essential in the proofs of our results.

Though cosq can be infinite in a general metric space, the quadrilateral cosine
possesses a boundedness property in Aleksandrov spaces that depends surprisingly
sharply on Aleksandrov’s curvature (Corollaries11and12), and these boundedness
estimates are equally vital and interesting in their own right. Indeed, in a space of
curvature not greater than zero in the sense of Aleksandrov, 1 is a local bound for
the absolute value of the quadrilateral cosine. Conversely, under reasonably gen-
eral hypotheses that we shall discuss later, a local lower positive bound of Aleks-
androv’s curvature implies that the quadrilateral cosine will exceed 1 for certain
configurations (Proposition 13).

In particular, we establish that a Riemannian space has nonpositive sectional
curvature if and only if 1 is a local bound for the absolute value of the quadrilateral
cosine (Proposition 14).

Along this line we establish an extremal property of the quadrilateral cosine
(Theorem 15): In a geodesic metric space where the absolute value of the quadri-
lateral cosine is bounded by 1, we show that two pairs of distinct points for which
cosq achieves this bound have a convex (geodesic) hull that is either isometric to
a trapezoid inE2 or to a segment of straight line.

In a Riemannian space we can see cos1θ − cosq(ξξξ, ξ̃ξξ) = O(|x − x̃|2). Thus,
one cannot use the quadrilateral cosine directly to construct the Sasaki metric.
However, inE3 we see

2 sin∠
(−→
AX,
−→
BY

)
2

= sup
−→
CZ∈E3

cos
(−→
AX,
−→
CZ

)− cos
(−→
BY,
−→
CZ

)
and, it turns out,

2 sin∠ (ξξξ, ξ̃ξξ)
2
= sup

ηηη∈T1(Mn)

{cosq(ηηη,ξξξ)− cosq(ηηη, ξ̃ξξ)},

which is a basis of the definition of the generalized sine, gives the correct result in
Riemannian spaces.

The quadrilateral cosine is geometrically accessible but, as we see, is inade-
quate even in the Riemannian case for analytic purposes. The quadrilateral sine,
defined by a family of quadrilateral cosines, is harder to compute but it is more sat-
isfactory analytically; for example, it is adequate to define parallel transport in the
Riemannian case. For Aleksandrov spaces of curvature bounded from above it is
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not difficult to show that directions on a geodesic (up to reversal) are “parallel” in
the sense that the quadrilateral sine between them equals zero (Remark 8). One of
our basic results (see Theorem 21 and Corollary 22) states that, in a space of cur-
vature≤K in the sense of Aleksandrov, the quadrilateral sine locally produces the
same distance between a pair of directions stemming from one point as the Alek-
sandrov upper angle does. This result is not quite simple since, in contrast to the
upper angle, computation of the quadrilateral sine involves pairs of points not ly-
ing on the geodesics. Thus we show that the angle measurement specified by the
quadrilateral sine obeys the principles stated at the beginning of this section.

The quadrilateral cosine (under another name) was introduced in [10]. The con-
struction of a generalized sine was developed in [3; 11] and was applied to the prob-
lem of synthetic description of Riemannian geometry. In the present paper we use
a modification of that generalized sine because, in a space of curvature≤ K, the
old definition does not give the correct answer for a pair of directions emanating
from one point.

2. Basic Definitions

In what follows, for a pair of pointsA,B in a metric space(M, ρ) we will denote
byAB = ρ(A,B) the distance betweenA andB.

2.1. Upper Angle between Curves

Let (M, ρ) be a metric space and letL,N be a pair of curves in(M, ρ) ema-
nating from a pointP ∈M. ConsiderX ∈ L andY ∈ N (X,Y 6= P). Define
α0(X,Y ) by means of the equation

cosα0(X,Y ) = PX2 + PY 2 −XY 2

2PX · PY .

Aleksandrov’s upper angle betweenL andN is defined as follows:

cosᾱ(L,N ) = lim
X,Y→P cosα0(X,Y ).

2.2. Space of Directions at a Point

A curveγ starting at a pointP has adirection if ᾱ(γ, γ ) = 0. Consider the set
3P (M) of all curves emanating from the pointP and having a direction at this
point. Letγ1, γ2 ∈ 3P (M). We introduce an equivalence relation:γ1 ∼ γ2 if
ᾱ(γ1, γ2) = 0. Then�P (M) = 3P (M)/(∼) is called aspace of directions.We
denote by5 : 3P (M)→ �P (M) the canonical projection.

Thedistanceᾱ between two directions is the upper angle between any of their
representatives.

2.3. Quadrilateral Cosine

We will keep the notationEu = −→PQ for an ordered pair of points(P,Q) in a metric
space(M, ρ) and|Eu| for the distance between the pointsP andQ, that is,|−→PQ| =
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PQ. Let {P,X,Q,Y } be a quadruple of points in a metric space(M, ρ) such that
P 6= X andQ 6= Y. Thequadrilateral cosine between

−→
PX and

−→
QY is defined as

cosq
(−→
PX,
−→
QY

) = PY 2 +QX2 −XY 2 − PQ2

2 · PX ·QY .

Remark 1. It follows immediately from the definition that

cosq
(−→
PX,
−→
QY

) = − cosq
(−→
XP,
−→
QY

)
.

Remark 2. Let(P,X) and(Q,Y ) be two pairs of distinct points inRn.Observe
that

PY 2 +QX2 −XY 2 − PQ2

= ∣∣−→PY ∣∣2 + ∣∣−→PX −−→PQ∣∣2 − ∣∣−→PY −−→PX∣∣2 − ∣∣−→PQ∣∣2 = 2
−→
PX · −→QY,

whence
cosq

(−→
PX,
−→
QY

) = cos∠
(−→
PX,
−→
QY

)
.

Thus, in a Euclidean space,
∣∣cosq

(−→
PX,
−→
QY

)∣∣ ≤ 1. In a general metric space the
quadrilateral cosine can be as large as one wishes, but we will show that a curvature
bound affords a bound on the quadrilateral cosine.

Example 1 [3]. On the setR2 we specify the norm‖(x, y)‖1 = |x| + |y|. In
the resulting normed space we consider the raysr1(t) = (0,1+ t) andr 2(t) =
(1,1+ t), t ≥ 0. LetP = (0,1), X = (0,1+ s), Q = (1,1), andY = (1,1+ t).
Then

cosq
(−→
PX,
−→
QY

) = 2t + 2s − 2|t − s| + 2st

2st
=
{

1+ 2/t if t ≥ s,
1+ 2/s if s ≥ t.

Thus, cosq
(−→
PX,
−→
QY

)
can be arbitrarily large. By Remark 1, the quadrilateral

cosine of
−→
PX,
−→
QY can be an arbitrarily small negative number.

Remark 3. cosq
(−→
PX,
−→
PY

) = cosα0(X,Y ).

Remark 4. LetL,N be a pair of curves emanating from the pointP in a metric
spaceM. ConsiderX ∈L andY ∈N (X,Y 6= P). Then

cosᾱ(L,N ) = lim
X,Y→P cosq

(−→
PX,
−→
PY

)
.

2.4. Quadrilateral Sine

Let Eu, Ev, Ew ∈M ×M be three ordered pairs of distinct points. We define the
quadrilateral sineof the tripleEu, Ev, Ew as follows:

sinq(Eu, Ev; Ew) = |cosq(Eu, Ew)− cosq(Ev, Ew)|.
In a Euclidean space, supEw 6=0 sinq(Eu, Ev; Ew) = 2 sin(∠(Eu, Ev)/2). This motivates
our definition of the quadrilateral sine in what follows.
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Although the notion of the quadrilateral cosine of two ordered pairs is clearly
very useful and the quadrilateral sine of a triple of ordered pairs is a sensible idea,
we should point out that there are several reasonable notions for quadrilateral sine
of two directionsξξξ, ζζζ, all of which present drawbacks. The question is: What is
the appropriate form in which to choose “test vector”Ew? We will establish that all
sensible choices would coincide for the particular important case of two directions
parting at a point.

Two reasonable choices ofEw are:
(1) all Ew = −→AB with A,B close to a geodesic segment joining pointsP andQ,

whereP is the tail ofEu andQ is the tail ofEv;
(2) all Ew withA,B in the convex hull{X,Y, P,Q} (as defined below), whereX,Y

are points on a pair of curves tangent to directionsξξξ andζζζ that are arbitrarily
close toP andQ.

We remark that even in Aleksandrov spaces of curvature bounded above, the
first case fails to yield that the quadrilateral sine of a pair of directions tangent to
a geodesic equals zero. That is why we choose case (2) to define the quadrilateral
sine of a pair of directions (see Remark 8).

2.5. Quadrilateral Sine of Directions
LetP,Q be a pair of points in a metric space(M, ρ). Assume that any pairP,Q
of points inM can be joined by a geodesic segment. Denote byG[P,Q] the set
of points each of which belongs to a geodesic segment joining the pointsP and
Q. LetA ⊂M. We defineG[A] as follows:

G[A] =
⋃

P,Q∈A
G[P,Q].

DenoteA by G0[A] andG[G[. . .G[A]]]︸ ︷︷ ︸
n times

by G n[A].

Theconvex hullof A is defined as

GC [A] =
∞⋃
n=0

G n[A].

In what follows we assume that any pair of sufficiently close points inM can be
joined by a geodesic segment.

LetL andN be a pair of curves inM emanating from pointsP andQ, respec-
tively. ConsiderX ∈L (X 6= P) andY ∈N (Y 6= Q) such thatPX = QY = h.
Note that if the pointsP andQ are sufficiently close to each other then the convex
hull of the set{P,Q,X,Y } is well-defined.

Thequadrilateral sine ofL andN is defined as

sinq(L,N )
= lim

a→0+
sup

n=0,1,2 ...
lim
h→0

sup
A,B∈Gn[P,Q,X,Y ];AB=ah

∣∣sinq
(−→
PX,
−→
QY ;−→AB)∣∣. (1)

Let ξξξ ∈ �P (M) andζζζ ∈ �Q(M). Thequadrilateral sine of the pair(ξξξ, ζζζ) is
defined as

sinq(ξξξ, ζζζ) = inf
L∈5−1(ξξξ),N∈5−1(ζζζ)

sinq(L,N ).
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3. Quadrilateral Cosine and Sine in a Space of Curvature≤≤≤ K

3.1. Domain<K [1]

For more details, see [1], [2], and [3].
By SK, we denote a complete simply connected 2-dimensional space of curva-

tureK (i.e., a sphere, a plane, or a Lobachevskii plane of curvatureK). For a tri-
angleT = ABC in a metric space(M, ρ), denote byT K = AKBKCK a triangle
onSK that has sides of the same length asT (forK > 0 one must assume that the
perimeter ofT is no greater than 2π/

√
K).

An <K domain, abbreviated by<K, is a metric space with the following prop-
erties.

(i) Any two points in<K can be joined by a geodesic segment.
(ii) Each triangle in<K has nonpositiveK-excess, that is, for the anglesα, β, γ

of the triangle
α + β + γ − (αK + βK + γK) ≤ 0,

whereαK, βK, andγK are the corresponding angles in the triangleT K.

(iii) If K > 0 then the perimeter of each triangle in<K is less than 2π/
√
K.

By a space of curvature≤K in the sense of Aleksandrov we understand a met-
ric space, each point of which is contained in some neighborhood of the original
space, which is an<K domain.

Remark 5. Another term for an<K domain is a CAT(K) space. However, we
will use Aleksandrov’s original notation [1].

We will need the following basic properties of<K, established by Aleksandrov [1].

(a) In an<K domain the geodesic segment joining a pair of points is unique.
(b) Between any two geodesic segments in<K starting from one point there exists

an angle, that is, the limit limX,Y→P α0(X,Y ).

(c) (Angle comparison theorem): The anglesα, β, γ of an arbitrary triangleT in
<K are not greater than the corresponding anglesαK, βK, γK of the triangle
T K onSK.

(d) (K-concavity): LetX andY be points on the sidesAB andAC of the trian-
gle T = ABC in <K, and letX ′ andY ′ be the points on the corresponding
sides of the triangleT K = AKBKCK such thatAKX ′ = AX andAKY ′ = AY.
ThenXY ≤ X ′Y ′.

For a pair of pointsA,B ∈ <K we will denote byAB the (unique) geodesic
segment joiningA andB.

Remark 6. Another name for property (d) is CAT(K)-inequality. In fact, in [1]
Aleksandrov calledK-concavity a property equivalent to (d).

Let Eu = −→PQ and 0≤ t ≤ 1. Denote byt · Eu the ordered pair
−→
PPt , wherePt is

a point on the (unique) geodesic segment
−→
PQ such thatPPt = t · PQ. Define
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(−1) · Eu to be the ordered pair
−→
QP. If −1≤ t ≤ 0 thent · Eu = |t |[(−1)Eu]. Let Ev =−→

QR.We defineEu+ Ev to be the ordered pair
−→
PR . If Ez = −→PR we defineEz− Eu to be

equal to
−→
QR. Observe that, by the definition,t (Eu ± Ev) = t Eu ± tEv. For a vectorEu

we denote by|Eu| the length ofEu, that is, the distance between the pointsP andQ.

3.2. Averaging Property

We now establish an averaging property for cosq, which—together with an a pri-
ori upper bound depending only on curvature—allows us to establish control of
differences of cosqs and hence of sinqs.

Lemma 2. Let Eu = −→PQ, Ev = −→QR, and Ew = −→LM. Then

cosq( Ew, Eu+ Ev) = |Eu|
|Eu+ Ev| cosq( Ew, Eu)+ |Ev|

|Eu+ Ev| cosq( Ew, Ev).

Proof. The foregoing equation is equivalent to

LR2 + PM2 −MR2 − PL2

2 ·ML · PR = PQ

PR
· LQ

2 + PM2 − PL2 −QM2

2 · PQ ·ML

+ QR
PR
· LR

2 +QM2 − LQ2 −MR2

2 ·QR ·ML ,

which is obvious.

Corollary 3. Let Eu = −→PQ, Ew = −→LM, Ez = −→PR, andR 6= Q. Then

cosq( Ew, Eu− Ez) = |Eu|
|Eu− Ez| cosq( Ew, Eu)− |Ez|

|Eu− Ez| cosq( Ew, Ez).

We now express cosq of two segments in terms of averages of cosq of subsegments.
Let Eu = −→PQ and Ew = −→LM. Split the geodesic segmentPQ evenly by the points

P = P0 < P1 < P2 < · · · < Pm−1 < Pm = Q
and the geodesic segmentLM evenly by the points

L = L0 < L1 < L2 < · · · < Ln−1 < Ln = M.
Denote

−−−→
Pi−1Pi by Eui (i = 1, . . . , m) and

−−−−→
Lj−1Lj by Ewj (j = 1, . . . , n). Form =

1 andn = 2, see Figure 2.

Corollary 4.

cosq( Ew, Eu) = 1

mn

∑
i=1,...,m; j=1,...,n

cosq( Ewj, Eui).

In particular,

cosq( Ew, Eu) = 1

m

m∑
i=1

cosq( Ew, Eui).

The following form of averaging is an immediate generalization of Remark 1.



Distance between Directions in an Aleksandrov Space of Curvature≤K 265

Figure 2

Corollary 5. Let Ew1, Ew2, . . . , Ewn form a closed polygon and letEu be arbitrary.
Then

n∑
i=1

| Ewi | cosq(Eu, Ewi) = 0.

3.3. A Priori Bound for the Quadrilateral Cosine

In contrast to the general case, cosq(Eu, Ev) is uniformly bounded in an<K do-
main, with a bound depending on the curvature. These bounds are sharp, thus
establishing that our results are involved with curvature.

We first mention an elementary formula for a limiting value of cosq in a smooth
<K domain.

Lemma 6. Let distinctP,Q,X,Y be given. LetPx be the unique point on the ge-
odesic segmentPX at distancex fromP. LetQy be the unique point on geodesic
segmentQY at distancey fromQ. Let z(x, y) = PxQy so that

h(x, y) = cosq
(−→
PPx,
−−→
QQy

) = z(x,0)2 + z(0, y)2 − z(x, y)2 − z(0,0)2
2xy

.

Then, ifz(x, y)∈C2 in a neighborhood of(0,0), we have

lim
x,y→0+

cosq
(−→
PPx,
−−→
QQy

) = −(zy · zx + z · zxy)|(0,0).
Proof. Letw(x, y) = z2(x, y). Then

[w(x, y)− w(x,0)] − [w(0, y)− w(0,0)]
xy

= [wy(x,0)y + wyy(x, ỹ)(y2/2)] − [wy(0,0)y + wyy(0, ŷ)(y2/2)]

xy
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= wy(x,0)− wy(0,0)
x

+ ywyy(x, ỹ)− wyy(0, ŷ)
2x

= wxy(0,0)+ (wxy(x̄,0)− wxy(0,0))+ y

2x
[wyy(x, ỹ)− wyy(0, ŷ)].

In a similar way one obtains:

[w(x, y)− w(x,0)] − [w(0, y)− w(0,0)]
xy

= wxy(0,0)+ (wxy(0, ȳ)− wxy(0,0))+ x

2y
[wyy(x̃, y)− wyy(x̂,0)].

For the bracketed terms we choose the more convenient estimate. Thus, wherex ≥
y we choose the first bracket, wherey/2x ≤ 1/2 andwyy(x, ỹ) − wyy(0, ŷ)→
0 uniformly in x andy by the continuity ofwyy at (0,0); similarly,wxy(0, ȳ) −
wxy(0,0) → 0 uniformly. Recall that 0≤ ỹ ≤ y, and so on. Of course, where
y > x, we choose the second estimate. Thus,

|h(x, y)+ (zy · zx + z · zxy)|(0,0)|
≤ 3

2
max

0≤s,s ′≤x,0≤t,t ′≤y,i,j=1,2
|wij(s ′, t ′)− wij(s, t)|, (2)

wherew11 denotes∂2w/∂x2 and so on. Therefore,

lim
x,y→0

h(x, y) = −1

2

∂2(z2(x, y))

∂x ∂y
= −(zy · zx + z · zxy)|(0,0).

We observe that, for thisC2 situation, by identifying cosq as a derivative we have
freed ourselves from considering any relationship betweenx andy as they ap-
proach zero. In this note we are concerned with situations much worse thanC2,

but we need someC2 comparisons.

3.3.1. A Priori Bound on a Sphere.In what follows,K = k2 > 0 and

S+K = { (x, y, z)∈R3 : x2 + y2 + z2 = 1/K = 1/k2 andz > 0 }.
We consider a domain in the upper hemisphere of radius properly less thanπ/2k
so that all distances encountered are less thanπ/k and so all geodesic segments
are unique.

Let distinctP,Q,X,Y be given. We first calculate

lim
x,y→0+

cosq
(−→
PPx,
−−→
QQy

) = −(zyzx + zzxy)|(0,0)
as described in Lemma 6. We include a sketch (see Figure 3).

Lemma 7.

lim
x,y→0+

cosq
(−→
PPx,
−−→
QQy

) = kz(0,0)

sinkz(0,0)
sinξx sinξy + cosξx cosξy.

Hereξx denotes∠QPX andξy is π − ∠YQP as sketched.
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Figure 3

Proof. We prove Lemma 7 for the unit sphere. The adjustment fork is trivial. The
second variation formula will yield a calculation; however, direct computation is
particularly neat here.

It is clear that, on a sphere, we may break up the arbitrary geodesic segment
PPx intersectingPQ into a perpendicular meridianPx0Px and a transversal equa-
torial segmentPPx0, and similarly withQQy (see Figure 3). Referring to the
definition of the sum of ordered pairs (Section 3.1), we see that

−→
PPx = −−→PPx0 +

−−−→
Px0Px and

−−→
QQy = −−−→QQy0 +

−−−→
Qy0Qy.

By applying twice the averaging property (Lemma 2), we have∣∣−→PPx∣∣ · ∣∣−−→QQy

∣∣ cosq
(−→
PPx,
−−→
QQy

)
= ∣∣−−−→Px0Px

∣∣ · ∣∣−−−→Qy0Qy

∣∣ · cosq
(−−−→
Px0Px,

−−−→
Qy0Qy

)
+ ∣∣−−→PPx0

∣∣ · ∣∣−−−→Qy0Qy

∣∣ · cosq
(−−→
PPx0,

−−−→
Qy0Qy

)
+ ∣∣−−−→Px0Px

∣∣ · ∣∣−−−→QQy0

∣∣ · cosq
(−−−→
Px0Px,

−−−→
QQy0

)
+ ∣∣−−→PPx0

∣∣ · ∣∣−−−→QQy0

∣∣ · cosq
(−−→
PPx0,

−−−→
QQy0

)
. (3)

In order to compute the limits of these four terms, we will first establish the fol-
lowing special cases of Lemma 7.

Case (I) PPx andQQy are both meridians, andξx = ξy = π/2. We have

cosz(x, y) = sinx siny + cosx cosy cosz(0,0),

wherex andy are measured from the equator along the meridians. Hence, because
z(x, y) is bounded away from 0 andπ/2, differentiation yields

zx(0,0) = zy(0,0) = 0 and zxy(0,0) = − 1

sinz(0,0)
.

Hence limx,y→0 cosq
(−→
PPx,
−−→
QQy

) = z(0,0)
sinz(0,0) as claimed.
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Case (II) If PPx is a meridian andQQy is equatorial(ξx = π/2, ξy = 0), then
cosz(x, y) = cosx cos(z(0,0) + y) and bothzxy(0,0) andzx(0,0) equal zero,
whence

lim
x,y→0

cosq
(−→
PPx,
−−→
QQy

) = 0.

Case (III) PPx andQQy are both equatorial, andξx = ξy = 0. Then

lim
x,y→0

cosq
(−→
PPx,
−−→
QQy

) = 1,

since cosq≡ 1 there.

Let P̃s, Q̃t be unique points on geodesic segmentsPx0Px andQy0Qy at distances
s andt respectively. By (I),

lim
s,t→0

cosq
(−−−→
Px0P̃s,

−−−→
Qy0Q̃t

) = lim
x,y→0

Px0Qy0

sinPx0Qy0

.

By (2) of Lemma 6, the function cosq
(−−−→
Px0P̃s,

−−−→
Qy0Q̃t

)
converges uniformly (rela-

tive tox andy) to its limit ass, t → 0. Therefore

lim
x,y→0

cosq
(−−−→
Px0Px,

−−−→
Qy0Qy

) = lim
x,y→0

Px0Qy0

sinPx0Qy0

= PQ

sinPQ
= z(0,0)

sinz(0,0)
.

In a similar way, by invoking(II) and (2), one can see that

lim
x,y→0

cosq
(−−−→
Px0Px,

−−−→
QQy0

) = 0.

Finally, by(III),
cosq

(−−→
PPx0,

−−−→
QQy0

) = 1.

Observe that

lim
x→0

Px0Px

PPx
= sin∠XPQ = sinξx,

lim
x→0

PPx0

PPx
= cos∠XPQ = cosξx,

and similarly forξy, by the boundedness of curvature. Now we take the limit on

the four terms that summed to cosq
(−→
PPx,
−−→
QQy

)
. This yields

lim
x,y→0

cosq
(−→
PPx,
−−→
QQy

) = sinξx sinξy
z(0,0)

sinz(0,0)
+ cosξx cosξy,

as claimed in Lemma 7.

Finally, in the case of two geodesics joiningPQ at right angles from the same side,
note that

−→
PPx and

−−→
QQy are parallel under parallel transport but that

lim
x,y→0+

cosq
(−→
PPx,
−−→
QQy

) = k(PQ)

sink(PQ)
,

which goes to infinity ask(PQ) → π; hence our curvature dependence for the
bound on cosq is sharp.
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Becausez/(sinz) is nondecreasing, we have the following corollary.

Corollary 8.

lim
X→P,Y→Q

cosq
(−→
PX,
−→
QY

) ≤ kz(0,0)

sinkz(0,0)
.

We will keep the following useful notation:

ẑ = ẑ(−→PX,−→QY ) = sup{ z(x, y) | Px ∈PX , Qy ∈QY }.
Recall thatz(0,0) = PQ = ∣∣−→PQ∣∣ andz(PX,QY) = XY = ∣∣−→XY ∣∣.
Lemma 9. Let z∈ (0, π/k) andx, y ∈ (0, π/2k]. Then∣∣cosq

(−→
PX,
−→
QY

)∣∣ ≤ κẑ

sinκẑ
.

Proof. ForN > 0, split the geodesic segmentsPX andQY by points

P = X0 < X1 < X2 < · · · < Xn−1 < Xn = X,
Q = Y0 < Y1 < Y2 < · · · < Yn−1 < Yn = Y,

so that

xn = Xi−1Xi = PX

n
and yn = Yj−1Yj = QY

n
, i, j = 1,2, . . . , n.

By Theorem 6 and Corollary 8, for anε > 0 there is annε such that

cosq
(−−−−→
Xi−1Xi,

−−−→
Yj−1Yj

) ≤ kẑ

sinkẑ
+ ε, i, j = 1,2, . . . , nε − 1.

By Corollary 4,

cosq
(−→
PX,
−→
QY

) = 1

n2
ε

nε∑
i,j=1

cosq
(−−−−→
Xi−1Xi,

−−−→
Yj−1Yj

)
≤ 1

n2
ε

nε∑
i,j=1

(
kẑ

sinkẑ
+ ε

)
= kẑ

sinkẑ
+ ε.

As ε is an arbitrary positive number, we have established Lemma 9.

3.3.2. General Case.We remark that diam(<K) < π/
√
K if K > 0, since oth-

erwise there is a triangle in<K of perimeter no less than 2π/
√
K.

Lemma 10. LetP,X,Q,Y be a quadruple of points in an<K domain, and let
x = PX andy = QY. Assume thatPQ > 0 and that both

0< x, y < π/2
√
K and x + y + PQ < π/

√
K

if K = k2 > 0. Then there is a convex quadrangleP ′X ′Y ′Q′ onS+K if K > 0, and
on a Euclidean plane ifK ≤ 0, such that

cosq
(−→
PX,
−→
QY

) ≤ cosq
(−−→
P ′X ′,

−−→
Q′Y ′

)
.
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Proof. Lemma 10 is an immediate consequence of a theorem by Reshetnyak [12].
Indeed, consider a closed broken linePXYQP in the domain<K. By the hypoth-
esis of the lemma, the length of the linePXYQP is less than 2π/k if K > 0. This
allows us to apply the results of [12]. By [12, Thm.] there is a convex domainD

on S+K if K > 0, and on a Euclidean plane ifK ≤ 0, as well as a nonexpanding
mapφ : D → <K that is length-preserving on the boundary∂D of the domain
D. Properties of the mapφ ensure that∂D is a geodesic quadrangleP ′X ′Y ′Q′,
wherePX = P ′X ′, XY = X ′Y ′, QY = Q′Y ′ andPQ = P ′Q′. Becauseφ is a
nonexpanding map,

PY ≤ P ′Y ′ and QX ≤ Q′X ′.
Thus,

cosq
(−→
PX,
−→
QY

) = PY 2 +QX2 −XY 2 − PQ2

2 · PX ·QY
≤ P

′Y ′2 +Q′X ′2 −X ′Y ′2 − P ′Q′2
2 · P ′X ′ ·Q′Y ′ = cosq

(−−→
P ′X ′,

−−→
Q′Y ′

)
.

In what follows, by ẑ = ẑ
(−→
PX,
−→
QY

)
we understand̂z

(−−→
P ′X ′,

−−→
Q′Y ′

)
(see Sec-

tion 3.3.1). We will refer toẑ as themaximal distance of the configuration
{P,X,Q,Y }.

Invoking Corollary 4, by Remark1and Lemmas 9 and10 we have the following.

Corollary 11. For K = k2 > 0,∣∣cosq
(−→
PX,
−→
QY

)∣∣ ≤ kẑ

sinkẑ

provided that0< x, y < π/2k andPQ > 0, whereẑ = ẑ(−→PX,−→QY ).
Our next corollary follows by virtue of Lemma 10 and Remarks 1 and 2.

Corollary 12. For K ≤ 0,∣∣cosq
(−→
PX,
−→
QY

)∣∣ ≤ 1.

3.4. Sign of the Curvature and Bounds of the Quadrilateral Cosine

At this point we note that bounds below on the curvature greater thanκ > 0 in
the sense of Aleksandrov guarantee a failure of the bound

∣∣cosq
(−→
PX,
−→
QY

)∣∣ ≤ 1
with very moderate side conditions. We observe that the proof technique does not
require the full hypotheses, but we are not pursuing this line in the present paper
and remark that Riemannian spaces are an easy special case.

LetL,N be a pair of geodesic segments in a metric space(M, ρ) with a com-
mon starting pointP ∈M.OnL andN (respectively) we choose arbitrary points
X andY that are different fromP. Let x = PX, y = PY, andz = XY. Let T κ

be a triangleP κXκY κ in Sκ such thatP κXκ = x, P κY κ = y, andXκY κ = z. Set
γ κLN(x, y) = ∠XκP κY κ .



Distance between Directions in an Aleksandrov Space of Curvature≤K 271

An <+κ domain, abbreviated by<+κ , is a metric space with the following prop-
erties.

(i) Any two points in<+κ can be joined by a geodesic segment.
(ii) (κ-convexity): For any two geodesic segmentsL andN in <+κ emanating

from a common pointP, the angleγ κLN (x, y) is a nonincreasing function of
x andy. That is,

γ κLN (x
′, y ′) ≤ γ κLN (x, y)

whenx ≤ x ′, y ≤ y ′.
The property ofκ-convexity implies:

(A) between any two geodesic segments in<+κ starting from one point there is
an angle—that is, the limitα(L,N ) = lim x,y→0 γ

κ
LN (x, y) exists and is

independent ofκ;
(B) the anglesα, β, γ of an arbitrary triangleT in <+κ of perimeter less than

2π/
√
κ are not less than the corresponding anglesακ, βκ, γκ of the triangle

T κ in Sκ with the same lengths of sides asT

(see [3]).
LetL1,L2,L3 be geodesic segments emanating from the common point, and let

L1 andL3 be branches of the same geodesic segment. Then the angles∠(L1,L2)

and∠(L3,L2) are called theadjacentangles.

(C) The sum of adjacent angles is equal toπ.

A space ofcurvature bounded from belowis a metric space with intrinsic met-
ric each point of which is contained in some neighborhood of the original space,
which is an<+κ domain for someκ. The notion of a space of curvature bounded
from below is due to Aleksandrov [1].

It is useful to note that an analog(K-convexity) of theK-concavity described
in (d) of Section 3.1 for<K domains holds for<+κ domains.

Let (M, ρ) be a metric space and letP ∈M.We say that geodesics arelocally
extendable at the pointP if there is anr > 0 such that each geodesic segment
PX of length less thanr can be extended to a geodesic segmentPX ′ of lengthr
in (M, ρ) for whichX is an internal point.

Proposition 13. Let (M, ρ) be an<+κ domain and letP ∈M. Let geodesics be
locally extendable at the pointP and suppose that there exist triangles in(M, ρ)

with P as a vertex with sidesλ, λ,
√

2λ for sufficiently smallλ > 0. Then, in a
neighborhood of the pointP, there exists a triple{B,C,E} of distinct points such
thatPB > 0 and

cosq
(−→
PB,
−→
CE

)
> 1.

Proof. (I) In a neighborhood of the pointP, construct a triangleT = PBC with
sidesλ, λ,

√
2λ. LetD be the midpoint of the geodesic segmentBC. Assume that

PD <
√

2λ. Extend the geodesic segmentPD through the pointD to a geodesic
segmentPE of length

√
2λ; since geodesics are locally extendable atP, this is

possible ifλ is sufficiently small. Note that, ifPD ≥ √2λ, our extension toPE
is not necessary because then
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cosq
(−→
PB,
−→
CD

) = PD2 + (√2λ)2 − λ2 −
(
λ√
2

)2

2λ

(
λ√
2

) =

(
PD

λ

)2

+ 1

2√
2

≥ 5

2
√

2
> 1.

We claim that, for sufficiently smallλ,

0< BE < λ

(see Figure 4). LetB = E. ThenPD + DB = PD + DE = PB, sincePE is
a geodesic segment. However,PD + DE = √2λ > λ = PB and so we have
reached a contradiction. HenceB 6= E, whenceBE > 0.

Figure 4

Now consider a Euclidean triangleT ′ = P ′D ′B ′ having the same lengths of
sides as the triangleT = PDB. Extend the segmentP ′D ′ through the pointD ′ to
the segmentP ′Ẽ of length

√
2λ, and denote bỹT the Euclidean triangleP ′B ′Ẽ.

We claim that
B ′Ẽ ≤ λ.

Indeed,∠B ′P ′Ẽ < π/2 since∠B ′P ′Ẽ = ∠B ′P ′D ′ andλ2+PD2− 1
2λ

2 > 0.Now
observe thatB ′Ẽ is maximized by the choiceP ′D ′ = (√2/2)λ and soB ′Ẽ ≤ λ.

Next consider a Euclidean triangleT ′′ = B ′D ′E′ having the same lengths of
sides as the triangleBDE. Let α = ∠BDP andβ = ∠BDE. By (B),

α ≥ ακ and β ≥ βκ,



Distance between Directions in an Aleksandrov Space of Curvature≤K 273

whereακ is the corresponding angle in a triangle inSκ having the same lengths of
sides as the trianglePDB. Since the triangleB ′D ′P ′ is nondegenerate,

ακ > α0 = ∠B ′D ′P ′
whenλ is sufficiently small. Since

βκ ≥ β0 = ∠B ′D ′E′,
we arrive at the inequality

α + β > α0 + β0. (4)

By (C),α + β = π and we obtain that

α0 + β0 < π.

Thus, the angle
∠P ′D ′E′ = α0 + β0

in the Euclidean quadrangleP ′B ′E′D ′ composed of the trianglesT ′ andT ′′ is less
thanπ. By rectifying the polygonal lineP ′D ′E′ (preserving all four side lengths),
we obtain a Euclidean triangleP ′′E′′B ′′ with

P ′′E′′ = PE, B ′′E′′ = BE, P ′′B ′′ = PB, and ∠B ′′P ′′E′′ < ∠B ′P ′Ẽ.
The last inequality implies that

BE = B ′′E′′ < B ′Ẽ ≤ λ.
In a similar way, we obtain the inequality

0< CE < λ.

(II) We seethat

cosq
(−→
PB,
−→
CE

) = PE2 + BC2 − PC2 − BE2

2PB · CE = 2λ2 + 2λ2 − λ2 − BE2

2λ · CE .

By (I),
2λ2 + 2λ2 − λ2 − BE2

2λ · CE >
2λ2 + 2λ2 − λ2 − λ2

2λ2
= 1.

Thus,
cosq

(−→
PB,
−→
CE

)
> 1.

This completes the proof.

Remark 7. Note thatCE somewhat resembles the result of a half-step in Car-
tan’s ladder construction of a parallel translate ofPB.We note also that, whenever
geodesics are not bi-point unique, it is easy to realize|cosq| > 1. Indeed, suppose
that a pair of distinct pointsP andQ can be joined by a pair of distinct geodesic
segmentsL andL′. We letC andC ′ denote the midpoints of the geodesic seg-
mentsL andL′, respectively. Without loss of generality, one can assume thatC 6=
C ′. Then

cosq
(−→
PC,
−−→
C ′Q

) = CC ′2 + PQ2 − PQ2/4− PQ2/4

2(PQ2/4)
= 1+ 2

CC ′2

PQ2
> 1.
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We do not bother with this common pathology, which occurs even locally in Alek-
sandrov spaces of positive curvature.

Proposition 14. A Riemannian space〈M , g〉 is of nonpositive sectional cur-
vature if and only if each pointQ ∈ M has a neighborhood such that, for each
quadruple{A,B,C,D} of distinct points in this neighborhood, the absolute value
of the quadrilateral cosine is bounded by1; that is,∣∣∣∣AC2 + BD2 − AC2 − BD2

2AB · CD
∣∣∣∣ ≤ 1.

Proof. (I) It is known [1] that a Riemannian space〈M , g〉 of nonpositive curva-
ture is an Aleksandrov space of curvature≤ 0 (see also [3, Cor. 7.1]). Thus, each
pointQ∈M has a neighborhood that is an<0 domain. Then Corollary 12 implies
that locally the absolute value of the quadrilateral cosine is bounded by 1.

(II) Assume that there exists a pointP ∈M and a 2-dimensional sectionσ ⊂
MP such that the sectional curvatureKσ(P ) > 0.We cannot apply Proposition 13
directly because we do not assume that the sectional curvature ofM is strictly
positive at the pointP for each 2-dimensional section inMP . However, we will
show that a minor modification of arguments of Proposition 13 yields the desired
contradiction. It is obvious that there are unit vectorsX,Y ∈ MP such that, for
sufficiently smallλ > 0,

Span{X,Y } = σ, dist(expP λX, expP λY ) =
√

2λ.

Let B = expP λX andC = expP λY. Then, as in the proof of Proposition 13, we
define the pointsD andE.

LetZ = exp−1
P (D). It is well known that the angle between bivectorsX∧Y and

X∧ Z converges to 0 asλ→ 0. Thus, without loss of generality we can assume
thatKX∧Z ≥ c > 0 for all sufficiently smallλ.

Let
X ′ = exp−1

D (C), Z′ = exp−1
D (E),

and letX ′′ andZ′′ be vectors inMp that are results of the parallel translation of the
vectorsX ′ andZ′ (respectively) along the geodesic segmentDP.Consider bivec-
torsX∧Z, X ′ ∧Z′, andX ′′ ∧Z′′. Define the angle between bivectorsX∧Z and
X ′ ∧ Z′ (notation:α(X ∧ Z, X ′ ∧ Z′)) to be the angle between bivectorsX ∧ Z
andX ′′ ∧ Z′′. We now have (see [9, Lemma 9.8])

lim
λ→0

α(X∧ Z,X ′ ∧ Z′) = 0,

whence
KX ′∧Z′(D) ≥ c/2> 0

for all sufficiently smallλ.
In what follows we will keep the notation of the proof of Proposition 13. By

(29) in [4],

lim
λ→0

α − α0

σλ
= lim

λ→0

β − β0

σ̃λ
= 1

3
KX ′∧Z′(D) > 0,



Distance between Directions in an Aleksandrov Space of Curvature≤K 275

whereσλ is the area of the Euclidean triangleP ′B ′D ′ and σ̃λ is the area of
the Euclidean triangleB ′D ′E′. Thus, inequality (4) holds for sufficiently small
λ. Then we repeat the remaining part of Proposition 13 to prove the inequality
cosq

(−→
PB,
−→
CE

)
> 1.

The proof of the proposition is complete.

3.5. An Extremal Property of cosq
In a space where|cosq| ≤ 1, in particular in an<0 domain, if two geodesic seg-
mentsL andN satisfy cosq(L,N ) = 1 then the convex hull ofL andN is ei-
ther a quadrilateral inE2 or a section of a geodesic. This will be proved with the
averaging and comparison techniques. Theorem 15 is yet another version of the
ubiquitous parallelogram law.

Theorem 15. Let (M, ρ) be a metric space such that every pair of points can
be joined by a geodesic segment. For every quadruple of pointsP,X,Q,Y ∈M
(P 6= X, Q 6= Y ), let ∣∣cosq

(−→
PX,
−→
QY

)∣∣ ≤ 1.

LetA,B,C,D be a quadruple of points inM such thatA 6= B, C 6= D, and

cosq
(−→
AB,
−→
CD

) = 1.

Then the convex hullGC [A,B,C,D] of the set{A,B,C,D} is either isometric
to a quadrilateral in a Euclidean planeE2 or a segment of straight line.

We preface the proof of the theorem by noting that, since|cosq| ≤ 1, any pair of
points inM can be joined by at most one geodesic segment (see Remark 7). The
proof of the theorem will be done in several steps.

In what follows we assume that the set{A,B,C,D} cannot be isometrically
embedded intoR, since otherwiseGC [A,B,C,D] is isometric to a segment of
straight line.

3.5.1. Averaging Principle. LetA,B be the endpoints of a geodesic segmentL,
and letC,D be the endpoints of the geodesic segmentN inM, such thatA 6= B
andC 6= D. Then

cosq
(−→
AB,
−→
CD

) = 1 and |cosq| ≤ 1

imply cosq
(−→̃
AB̃,
−→̃
CD̃

) = 1 for anyÃ, B̃ ∈ L (Ã 6= B̃) andC̃, D̃ ∈ N (C̃ 6= D̃)
such thatAB = AÃ+ ÃB̃ + B̃B andCD = CC̃ + C̃D̃ + D̃D.
Proof. Referring to the definition of the sum of ordered pairs (Section 3.1), we see

that
−→
AB =

−→
AÃ+

−→̃
AB̃ +

−→̃
BB,
−→
CD =

−→
CC̃ +

−→̃
CD̃+

−→
D̃D. By the averaging property

(Lemma 2),

1= cosq
(−→
AB,
−→
CD

) = cosq
(−→
AB,
−→
CC̃ +

−→̃
CD̃ +

−→
D̃D

)
= cosq

(−→
AB,
−→
CC̃

)CC̃
CD
+ cosq

(−→
AB,
−→̃
CD̃ +

−→
D̃D

) C̃D
CD

.
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Since|cosq| ≤ 1 andCC̃/CD + C̃D/CD = 1, it follows that cosq
(−→
AB,
−→̃
CD̃ +−→

D̃D
) = 1. Lemma 2 is used in a similar way to yield cosq

(−→
AB,
−→̃
CD̃

) = 1 and then

cosq(
−→̃
BB,
−→̃
CD̃

) = 1 as claimed.

3.5.2. An Isometric Embedding intoE2 as a Parallelogram

Lemma 16. LetAB = CD, cosq
(−→
AB,
−→
CD

) = 1, and |cosq| ≤ 1. Then the set
{A,B,C,D} can beisometrically embedded intoE2 as a parallelogram;that is,
there is a parallelogramA′B ′C ′D ′ in E2 such that

AB = A′B ′, AC = A′C ′, BD = B ′D ′,
CD = C ′D ′, BC = B ′C ′, AD = A′D ′.

Proof. Since cosq
(−→
AB,
−→
CD

) = 1,

AD2 + BC2 − BD2 − AC2 = 2AB2.

If BD 6= AC thenBD2 + AC2 > 2BD · AC, and so

AD2 + BC2 − 2AB2 > 2BD · AC,
whence cosq

(−→
AC,
−→
BD

)
> 1, a contradiction. HenceBD = AC.

Now we consider a Euclidean parallelogram having verticesA′, B ′, C ′,D ′ with
all distances except possiblyAD preserved; that is,AB = A′B ′, AC = A′C ′, and
BC = B ′C ′. Since evidently

cosq
(−→
AB,
−→
CD

) = 1= cos
(−−→
A′B ′,

−−→
C ′D ′

) = cosq
(−−→
A′B ′,

−−→
C ′D ′

)
andBD = AC = A′C ′ = B ′D ′, we see thatA′D ′ is forced:AD = A′D ′.

3.5.3. Proof of Theorem 15 whenAB = CD. Partition evenly the geodesic seg-
mentsAB andCD into n arcs by pointsA0 = A,A1, . . . , An−1, An = B, and
C0 = C,C1, . . . , Cn−1, Cn = D, respectively. Recall that there is unique geo-
desic segment joining pointsAi andCi. Partition evenly every geodesic segment
A iCi into n arcs by pointsAi,0 = Ai,Ai,1, . . . , Ai,n−1, andAi,n = Ci. Let Sn
denote the set{Ai,j | i, j = 0,1, . . . , n }.

By Lemma 16, the set{A,B,C,D} can be isometrically embedded intoE2 as
a parallelogramA′B ′C ′D ′. In a similar way we construct the setS ′n of pointsA′i,j
(i, j = 1,2, . . . , n) in the convex hullP ′ of the pointsA′, B ′, C ′,D ′, which di-
vide the complete parallelogramP ′ into n2 similar parallelograms. Define the
mapfn : S ′n→ Sn by

fn(A
′
i,j ) = Ai,j .

For a pair of pointsX,Y ∈S ′n, setρE(X,Y ) = |X − Y |.

A. Claim. The mapfn : (S ′n, ρE)→ (Sn, ρ) is an isometry.
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Proof. (I) We first see thatρ(Ai,0, Ai,n) = ρ(A0,0, A0,n) = ρ(A,C). Indeed, by

the averaging principle cosq
(−−−−−→
A0,0Ai,0,

−−−−−→
A0,nAi,n

) = 1 andA0,0Ai,0 = A0,nAi,n,

so by Lemma 16 it follows thatA0,0, Ai,0, Ai,n, A0,n embed as vertices of a par-
allelogram andρ(Ai,0, Ai,n) = ρ(A0,0, A0,n) as claimed. Hence, for everyi, j =
0,1, . . . , n− 1,

ρ(Ai,j, Ai,j+1) = ρ(A0,j, A0,j+1) = ρ(A,C)

n
.

That is, all horizontal distances from edge to edge in Figure 5 are equal. Next,
since cosq

(−−−−−−→
Ai,jAi,j+1,

−−−−−−→
Ak,jAk,j+1

) = 1 andρ(Ai,j, Ai+1,j ) = ρ(Ak,j, Ak,j+1),

we see by Lemma 16 thatρ(Ai,j, Ak,j ) = ρ(Ai,j+1, Ak,j+1). In particular,

Figure 5

ρ(Ai,j, Ai+1,j ) = ρ(Ai,0, Ai+1,0) = ρ(A,B)

n

and similarlyρ(A0,j, An,j ) = ρ(A0,0, An,0) = ρ(A,B). Hence the polygonal
line with verticesA0,k, A1,k, . . . , An,k is a shortest path and thus a geodesic seg-
ment. That is, all slant vertical geodesic segments from baseA0,k to An,k pass
through the division points and are of lengthρ(A,B).

Next we see by Lemma 16 that the set of points{A0,i , An,i , An,i+1, A0,i+1} can

be embedded as a parallelogram intoE2,whence cosq(
−−−−→
A0,iAn,i ,

−−−−−−−−→
A0,i+1An,i+1

) =
1 and, by the averaging principle, cosq

(−−−−→
A0,iAi,i ,

−−−−−−−−−→
A1,i+1Ai+1,i+1

) = 1 (see Fig-
ure 5). Since clearlyA0,iAi,i = A1,i+1Ai+1,i+1, we have by Lemma 16 that
ρ(Ai,i , Ai+1,i+1) = ρ(A0,i , A1,i+1). In a similar way we see that

cosq
(−−−−−→
A0,0A0,i ,

−−−−−−→
A1,1A1,i+1

) = 1, ρ(A0,0, A0,i ) = ρ(A1,1, A1,i+1),
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and, by Lemma 16,ρ(A0,0, A1,1) = ρ(A0,i , A1,i+1). Thus,

ρ(Ai,i , Ai+1,i+1) = ρ(A0,0, A1,1), i = 0,1, . . . , n− 1.

One can likewise see that

ρ(Ai+1,i , Ai,i+1) = ρ(An,0, An−1,1), i = 0,1, . . . , n− 1,

andρ(An,0, An−1,1) = ρ(A1,0, A0,1).

We claim that

ρ(A0,0, A1,1) = ρ(A,D)

n
and ρ(An,0, An−1,1) = ρ(B,C)

n
.

Lemma 16 ensures that, fori = 0,1, . . . , n− 1, the set{Ai,i, Ai+1,i , Ai+1,i+1,

Ai,i+1} can be embedded intoE2 as a parallelogram. However, we do not yet
know if this is the Euclidean parallelogramA′i,iA

′
i+1,iA

′
i+1,i+1A

′
i,i+1 in P ′.

Invoking the classical parallelogram law yields

n2[ρ2(A0,0, A1,1)+ ρ2(An,0, An−1,1)] = n2[ρ2(A0,0, A1,1)+ ρ2(A1,0, A0,1)]

= 2n2[ρ2(A0,0, A0,1)+ ρ2(A0,0, A1,0)].

Hence this law implies that

n2[ρ2(A0,0, A1,1)+ ρ2(An,0, An−1,1)] = ρ2(A,D)+ ρ2(B,C). (5)

By the triangle inequality,

nρ(A0,0, A1,1) =
n−1∑
i=0

ρ(Ai,i , Ai+1,i+1) ≥ ρ(A,D).

If nρ(A0,0, A1,1) > ρ(A,D), then invoking (5) yieldsnρ(An,0, An−1,1) <

ρ(B,C). This is impossible since, by the triangle inequality,nρ(An,0, An−1,1) =∑n−1
i=0ρ(Ai+1,i , Ai,i+1)≥ ρ(B,C). Hence the equalitynρ(A0,0, A1,1)= ρ(A,D)

holds as claimed. Of course our entire argument applies equally well to the cross-
diagonals and sonρ(A1,0, A0,1) = ρ(B,C).

We now have partitioned our “metric parallelogram” (i.e., the four points can be
embedded as a Euclidean parallelogram intoE2) into n2 identical parallelograms
each similar to the parallelogram with verticesA,B,C,D, so we have

ρ(Ai,j, Ai,j+1) = ρE(A′i,j, A′i,j+1) et seq.

That is, the complete parallelogram formed by{Ai,j, Ai+1,j, Ai,j+1, Ai+1,j+1}
is isometric to the Euclidean parallelogram with verticesA′i,j, A

′
i+1,j, A

′
i,j+1,

A′i+1,j+1.

(II) Finally we show that

ρ(Ai,j, Ak,l) = ρE(A′i,j, A′k,l), i, j, k, l = 0,1, . . . , n (6)

by reducing the calculation to a known situation.
The proof is by induction on|k − i| + |l − j |. Equation (6) is clearly true

when|k − i| + |l − j | = 0. Assume (6) holds when|k − i| + |l − j | < m. Let
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|k − i| + |l − j | = m. Since (6) is established when|k − i| ≤ 1 and|l − j | ≤ 1,
it remains to prove (6) when either|k − i| > 1 or |l − j | > 1.

Indeed, assume without loss of generality thatk − i ≥ 2 andk − i + |l − j | =
m. By the assumption of induction,

ρ(Ai,j, Ai+1,j ) = ρE(A′i,j, A′i+1,j ), ρ(Ai+1,j, Ak,l) = ρE(A′i+1,j, A
′
k,l),

ρ(Ak,l, Ak−1,l) = ρE(A′k,l, A′k−1,l), ρ(Ak−1,l , Ai,j ) = ρE(A′k−1,l , A
′
i,j ),

and
ρ(Ai+1,j, Ak−1,l) = ρE(A′i+1,j, A

′
k−1,l).

See Figure 6.

Figure 6

We established in (I) that

cosq
(−−−−−→
A0,jAn,j ,

−−−−−→
A0,kAn,k

) = 1.

By the averaging principle, cosq
(−−−−−−→
Ai,jAi+1,j ,

−−−−−−→
Ak−1,lAk,l

) = 1; moreover,

ρ(Ai,j, Ai+1,j ) = ρE(A′i,j, A′i+1,j ) = ρE(A′k,i , A′k−1,i ) = ρ(Ak,i, Ak−1,i ).

We see by Lemma 16 that the set of points{Ai,j, Ai+1,j, Ak,l, Ak−1,l} can be em-
bedded intoE2 as a parallelogram. Therefore the parallelogram law holds for the
set {Ai,j, Ai+1,j, Ak,l, Ak−1,l} as well as for the set{A′i,j, A′i+1,j, A

′
k,l, A

′
k−1,l}.

By invoking the parallelogram law we obtain

ρ2(Ai,j, Ak,l)

= 2[ρ2(Ai,j, Ai+1,j )+ ρ2(Ai+1,j, Ak,l)] − ρ2(Ai+1,j, Ak−1,l)

= 2[ρ2
E(A

′
i,j, A

′
i+1,j )+ ρ2

E(A
′
i+1,j, A

′
k,l)] − ρ2

E(A
′
i+1,j, A

′
k−1,l)

= ρ2
E(A

′
i,j, A

′
k,l),

as claimed. The proof of the claim is complete.
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B. LetP be the closure of
⋃∞
n=0 Sn. EvidentlyP ′ coincides with the closure of⋃∞

n=0 S
′
n. By invoking Claim A, the isometriesfn : S ′n → Sn can be extended to

an isometryf : P ′ → P. SinceP ′ is the convex hull of the set{A′, B, C ′,D ′}
in E2, P coincides with the convex hull of the set{A,B,C,D} inM. This com-
pletes the proof of Theorem 15 whenAB = CD.
3.5.4. General Case.Let AB 6= CD. Without loss of generality, suppose that
AB < CD. We letU andT be a pair of points on the geodesic segmentCD such
thatAB = CT andAB = UD. By the averaging principle,

cosq
(−→
AB,
−→
CT

) = 1 and cosq
(−→
AB,
−→
UD

) = 1.

By referring to Section 3.5.3,GC [A,B, T, C] is isometric to a complete paral-
lelogramA′B ′T ′C ′ and GC [A,B,D,U ] is isometric to a complete parallelo-
gramA′B ′D ′U ′. Let A′B ′D ′C ′ be a complete Euclidean trapezoid that is the
union of complete parallelogramsA′B ′D ′U ′ andA′B ′T ′C ′, as shown on Fig-
ure 7. Since we decompose the convex hullGC [A,B,C,D] into a union of
complete Euclidean parallelogramsGC [A,B, T, C] (isometric toA′B ′T ′C ′) and
GC [A,B,D,U ] (isometric toA′B ′D ′U ′) coinciding on the overlap (isometric to
the complete trapezoidA′B ′T ′U ′), the convex hullGC [A,B,C,D] is isometric
to the complete Euclidean trapezoidA′B ′D ′C ′.

Figure 7

The proof of Theorem 15 is complete.

3.6. Stability of the Quadrilateral Cosine

The following important lemma is an analog of [11, Lemma 3].

Lemma 17. LetPP1, PP ′1, andQQ1 be geodesic segments in an<K domain.
LetX ∈PP1, X

′ ∈PP ′1, Y ∈QQ1 be points such that
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(1) each of the sets{P,X,X ′,Y } and{Q,X,X ′,Y } consist of distinct points; and
(2) PX = PX ′ = x andQY = y.
Denote byε the angle∠P1PP

′
1. Then

lim
X,X ′→P ; Y→Q

∣∣cosq
(−→
PX,
−→
QY

)− cosq
(−→
PX ′,

−→
QY

)∣∣
≤
{
ε(kẑ/(sinkẑ)) if K = k2 > 0,

ε if K ≤ 0,
(7)

uniformly with respect toQ1. Here ẑ denotes the largest distance in the configu-
rations of the sets{P, P1,Q,Q1} and {P, P ′1,Q,Q1}.
Proof. The statement of the Lemma 17 is obvious ifP = Q. LetP 6= Q.Observe
that

cosq
(−→
PX,
−→
QY

)− cosq
(−→
PX ′,

−→
QY

) = XX ′

x
cosq

(−−→
XX ′,

−→
QY

)
.

Clearly,

lim
x→0

XX ′

x
= 2 sin

ε

2
≤ ε.

Thus, Corollary 11 or 12 yields (7).

We derive with little effort the following extension of Lemma 17.

Lemma 18. Let P,Q,X,X ′,Y,Y ′ be points in an<K domain, and let0 <

ε1, ε2 ≤ 1 such thatPQ > 0, XY = h > 0, XX ′ = ε1h, and YY ′ = ε2h.

Suppose thatPX,PX ′ > 0 andh < π/2
√
K if K > 0. Then necessarily∣∣cosq

(−→
PQ,
−→
XY

)− cosq
(−→
PQ,
−−→
X ′Y ′

)∣∣
≤
{

2(ε1+ ε2)(kz+/(sinkz+)) if K = k2 > 0,

2(ε1+ ε2) if K ≤ 0,

wherez+ = max
{
ẑ
(−→
PQ,
−→
YY ′

)
, ẑ
(−→
PQ,
−−→
X ′X

)}
.

Proof. By Corollary 5,

0= h cosq
(−→
PQ,
−→
XY

)+ ε2h cosq
(−→
PQ,
−→
YY ′

)
+X ′Y ′ cosq

(−→
PQ,
−−→
Y ′X ′

)+ ε1h cosq
(−→
PQ,
−−→
X ′X

)
.

By the triangle inequality,|X ′Y ′ − h| ≤ (ε1+ ε2)h. Thus,

X ′Y ′ = h+ ηh where |η| ≤ ε1+ ε2, (8)

and we have∣∣cosq
(−→
PQ,
−→
XY

)− (1+ η) cosq
(−→
PQ,
−−→
X ′Y ′

)∣∣
≤ ε1

∣∣cosq
(−→
PQ,
−−→
X ′X

)∣∣+ ε2

∣∣cosq
(−→
PQ,
−→
YY ′

)∣∣.
By Corollary 11 or 12,
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(−→
PQ,
−→
XY

)− (1+ η) cosq
(−→
PQ,
−−→
X ′Y ′

)∣∣
≤
{
(ε1+ ε2)(kz+/(sinkz+)) if K = k2 > 0,

(ε1+ ε2) if K ≤ 0.

The last estimate together with (8) yields the statement of the lemma.

3.7. Stability of the Quadrilateral Sine

Lemma 19. Let P,Q,Y be a triple of distinct points in an<K domain and let
L,L′ ∈5−1(ξξξ) be fixed, whereξξξ is a direction atP. Then, givenn = 0,1,2, . . .
and ε > 0, there exists aδ > 0 such that, forX ∈ L and X ′ ∈ L′ where
0 < XP = X ′P = h < δ, the Hausdorff distance betweenG n[P,Q,X,Y ] and
G n[P,Q,X ′,Y ] is finite and is not greater thanε · h.
Proof. (I) We note that, for everyn, the setG n[P,Q,X,Y ] is a compact subspace
of <K, since geodesic segments depend continuously on their ends [1]. Thus,

dH (G n[P,Q,X,Y ],G n[P,Q,X ′,Y ]) < +∞.
(II) Let K ≤ 0. We introduce the following notation:

α0(h) = 2 arcsin
XX ′

2h
.

Our hypothesis thatL andL′ form angle zero atP implies that

lim
h→0

α0(h) = 0.

We claim that, forn = 0,1, . . . ,

sup
Z∈Gn[P,Q,X,Y ]

inf
W∈Gn[P,Q,X ′,Y ]

ρ(Z,W) ≤ 2h sin
α0(h)

2
. (9)

The estimate (9) is obvious whenn = 0. Suppose that (9) is true whenn = k.
LetA∈ G k+1[P,Q,X,Y ].By definition, there exist pointsB,D ∈ G k[P,Q,X,Y ]
such thatA ∈ BD. By (9), for n = k there are pointsB ′,D ′ ∈ G k[P,Q,X ′,Y ]
such that

BB ′,DD ′ ≤ 2h sin
α0(h)

2
.

Let A′ ∈ B ′D ′ andB ′A′ = t · B ′D ′, wheret = BA/BD. The property ofK-
concavity enables us to write the estimate

AA′ ≤ 2h sin
α0(h)

2
(see [1] or [3, Prop. 5.3]), which completes the proof of (9). In a similar way one
can prove that, for eachn = 0,1, . . . ,

sup
Z∈Gn[P,Q,X ′,Y ]

inf
W∈Gn[P,Q,X,Y ]

ρ(Z,W) ≤ 2h sin
α0(h)

2
.

Thus,
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dH (G n[P,Q,X,Y ],G n[P,Q,X ′,Y ]) ≤ 2h sin
α0(h)

2
.

Lemma 19 immediately follows from the last inequality.
The case whenK > 0 is treated in a similar way except that, with each suc-

ceedingn, K-concavity gives us a constant greater than 1. ? [ms p.30]

Lemma 20. LetP andQ be points in an<K domain. Letξξξ ∈�P (<K) andζζζ ∈
�Q(<K). Then, for everyL∈5−1(ξξξ), andN ∈5−1(ζζζ),

sinq(ξξξ, ζζζ) = sinq(L,N ).
Proof. LetL′ ∈5−1(ξξξ). To prove Lemma 20 we need to establish that

sinq(L,N ) = sinq(L′,N ).
First we show that

sinq(L,N ) ≤ sinq(L′,N ). (10)

Let X ∈ L, X ′ ∈ L′, andY ∈N be the points such thatPX = PX ′ = QY =
h > 0. Clearly the last inequality is a corollary of the following claim: Givena >
0, n = 1,2, . . . , andε > 0, there is aδ > 0 such that for each 0< h ≤ δ and
every pair of distinct pointsA,B ∈ G n[P,Q,X,Y ] (AB = a · h) there exists a
pair of distinct pointsA′, B ′ ∈ G n[P,Q,X ′,Y ] such that

A′B ′ = a · h (11)

and ∣∣sinq
(−→
PX,
−→
QY ;−→AB)− sinq

(−→
PX ′,

−→
QY ;−−→A′B ′)∣∣ < ε. (12)

Observe that

sinq
(−→
PX,
−→
QY ;−→AB)− sinq

(−→
PX ′,

−→
QY ;−−→A′B ′) (13)

= {cosq
(−→
PX,
−→
AB

)− cosq
(−→
PX ′,

−→
AB

)}
+ {cosq

(−→
PX ′,

−→
AB

)− cosq
(−→
PX ′,

−−→
A′B ′

)}
− {cosq

(−→
QY,
−→
AB

)− cosq
(−→
QY,
−−→
A′B ′

)}
.

We remark that, by Lemma 19, given pointsA,B ∈ G n[P,Q,X,Y ] there exist
pointsA′, B ′ ∈ G n[P,Q,X ′,Y ] such thatAA′, BB ′ = o(h). By taking an arc of
the geodesic segmentA′B ′ we can always achieve thatAA′, BB ′ = o(h) and (11)
holds.

Inequality (12) then follows easily from Lemmas 19 and 17. Indeed, the first
summand in the right-hand side of (13) can be made less thanε/3 if 0 < h ≤
δ1(ε/3). By Lemma 19, the second and third summands can be made less thanε/3
if 0 < h < δ2(ε/3) by invoking Lemma 18. Thus, we obtain (12) for 0< h ≤
min{δ1(ε/3), δ2(ε/3, a)}.
Remark 8. Letγ be a geodesic segment in an<K domain, and let ˙γ denote the
field of directions tangent toγ. By Lemma 20, one can compute sinq(γ̇ (s), γ̇ (t))
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with the help of the corresponding arcs ofγ. Since the test ordered pair
−→
AB in

the definition of the quadrilateral sine belongs to the convex hull, in our case
pointsA andB belong toγ. An easy computation shows that cosq

(
γ̇ (s),

−→
AB

) =
cosq

(
γ̇ (t),

−→
AB

) = 1. Thus,

sinq(γ̇ (s), γ̇ (t)) = 0.

Therefore, in the definition of the quadrilateral sine we took a test vector from the
convex hull of curvesL,N that specify the directions under consideration to en-
sure that the quadrilateral sine of a pair of directions tangent to a geodesic segment
is zero.

The graph of Figure 1 provides an instantaneous example where

cosq
(
γ̇ (s ′),

−→
OX

)− cosq
(
γ̇ (s ′′),

−→
OX

) = 2.

Indeed, letγ (s) be a normal parameterization of the geodesic segmentT Y.
Takes ′, s ′′ such thatγ (s ′) is an interior point of the geodesic segmentTO and
γ (s ′′) is an interior point of the geodesic segmentOY. Then we readily see that
cosq

(
γ̇ (s ′),

−→
OX

) = 1 and cosq
(
γ̇ (s ′′),

−→
OX

) = −1. Clearly
−→
OX is not an admis-

sible vector since, for1s > 0, X is not in the convex hull of the set of points
{γ (s ′), γ (s ′′), γ (s ′ +1s), γ (s ′′ +1s)}.

3.8. Quadrilateral Sine of Sides of a Triangle
The following theorem tells us that, given two geodesics in an<K domain em-
anating from a point, there is a neighborhood of that point such that, given any
segment in that neighborhood, the quadrilateral sine with arbitrary short segments
of the geodesics tested against this segment is bounded above by approximately
theEn value and, moreover, in that neighborhood segments exist on which the ap-
proximation is itself almost attained, again tested against arbitrarily short geodesic
segments.

For a pair of geodesic segmentsPQ andPR and for

0 ≤ r ≤ min{PQ,PR},
letXr be the point onPQ such thatPXr = r and letYr be the point onPR such
thatPYr = r. Let

ξξξ = 5(PQ), ζζζ = 5(PR).
Theorem 21. Let T = QPR be a triangle in an<K domain and let

0 ≤ h ≤ η ≤ min{PQ,PR}.
Then(1)

lim
η→0

lim
h→0

sup
AP,BP<η

sinq
(−−→
PXh,

−→
PYh;−→AB

) ≤ 2 sin
∠(ξξξ, ζζζ)

2

and (2), for ξ 6= ζ,
lim
η→0

lim
h→0

lim
ν→0

sup
AB≤ν

AB subsegment of XηYη

sinq
(−−→
PXh,

−→
PYh;−→AB

) = 2 sin
∠(ξξξ, ζζζ)

2

(see Figure 8).
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Figure 8

Statement (1) tells us that all test vectors near the vertex yield a sinq, subject to
the desired upper bound given by the actual angle. Statement (2) tells us that at
a fixed small distance we can approximate the desired sinq with arbitrarily short
test vectors chosen from the opposite side of the vertex and with arbitrarily short
segments of the vertex configuration.

We emphasize the order of the limits here because—as the segments that de-
fine the angle shorten—the test segments are not being pushed back to the vertex,
which would be a less interesting result.

Note that, by Lemma 20, it suffices to deal with only geodesic segments rather
than curves specifying a direction. Since in an<K domain the geodesic seg-
ment joining a pair of points is unique,U ∈ PQ ∩ PR\{P } implies thatPU ⊂
PQ ∩ PR; by referring to the first part of Theorem 21, we readily see that in
this case sinq(ξξξ, ζζζ) = 2 sin∠(ξξξ,ζζζ)2 = 0. If PQ ∩ PR\{P } = ∅, we can apply the
second part of Theorem 21. Hence Theorem 21 yields the following corollary.

Corollary 22.
sinq(ξξξ, ζζζ) = 2 sin

∠(ξξξ, ζζζ)
2

.

Remark 9. Corollary 22 remains true if, in the definition of the quadrilateral
sine, we use case (1) rather than case (2) (see Section 2.4). That is,

−→
AB was not

restricted to any convex hull but was any segment nearP in our entire space.

Theorem 21 is obvious if∠(ξξξ, ζζζ) = 0. Hereafter we assume that∠(ξξξ, ζζζ) > 0.

3.8.1. Proof of Statement (1).By Corollary 3 applied to the quadrilateral sine of−−→
PXh and

−→
PYh,
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sinq
(−−→
PXh,

−→
PYh;−→AB

) = XhYh

h

∣∣cosq
(−−→
XhYh,

−→
AB

)∣∣, (14)

where 0< PA,PB ≤ η.
By Corollary 11,

∣∣cosq
(−−→
XhYh,

−→
AB

)∣∣ is bounded above by 1 ifK ≤ 0 and by
kẑ/(sinkẑ) if K > 0. Clearly, ẑ converges to zero and consequentlykẑ/(sinkẑ)
converges to unity asη converges to zero. Thus,

lim
η→0

lim
h→0

∣∣cosq
(−−→
XhYh,

−→
AB

)∣∣ ≤ 1.

Now considerXY/h:

XhYh

h
= X0

hY
0
h

h
= 2 sin

∠X0
hP

0Y 0
h

2
.

Since∠X0
hP

0Y 0
h converges to∠(ξξξ, ζζζ) ash→ 0, we are done.

3.8.2. Auxiliary Lemma. Lemma 23 is of independent interest. In it we see that
segments cutting an isosceles triangle into isosceles subtriangles with the same ver-
tex are approximately parallel in the sense that the quadrilateral cosine between
them is approximately 1.

Lemma 23. LetT = LPM be a triangle in an<K domain such that∠LPM >

0. LetQ,X ∈PL andR,Y ∈PM. LetPQ = PR = t andPX = PY = h. Then

lim
h,t→0

cosq
(−→
QR,
−→
XY

) = 1,

(see Figure 9).

Figure 9

Proof. Without loss of generality we can assume thatt ≥ h.LetK+ = max{0,K}.
Consider a triangleT K+ = PK+XK+YK+. Let T ′ = P ′Q′R ′ be a triangle inSK+
such thatP ′Q′ = PQ, P ′R ′ = PR, and∠Q′P ′R ′ = ∠XK+PK+YK+. Denote by
X ′, Y ′ points on geodesic segmentsP ′Q′ andP ′R′ such thatPX = P ′X ′ and
PY = P ′Y ′, and soX ′Y ′ = XY. We claim that

X ′R ′ ≤ XR and Y ′Q′ ≤ YQ. (15)
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Indeed, byK+-concavity,

∠RK+PK+XK+ ≥ ∠XK+PK+YK+ = ∠X ′P ′Y ′.
SinceP ′X ′ = PK+XK+ andP ′R ′ = PK+RK+, the foregoing inequality yields the
first of inequalities (15). The second inequality of (15) is proved in a similar way.

By (15), cosq
(−→
QR,
−→
XY

) ≥ (Q′R ′/QR) cosq
(−−→
Q′R ′,

−−→
X ′Y ′

)
,which together with

Corollaries 11 and 12 yields

Q′R ′

QR
cosq

(−−→
Q′R ′,

−−→
X ′Y ′

) ≤ cosq
(−→
QR,
−→
XY

)
≤
{
kẑ/(sinkẑ) if K = k2 > 0,

1 if K ≤ 0.
(16)

Observe that

Q′R ′ = 2PQ sin
∠X0P 0Y 0

2
and QR = 2PQ sin

∠Q0P 0R0

2

for K ≤ 0. A similar computation yields that, forK > 0,

Q′R ′ = 2PQ(sin(∠X0P 0Y 0/2)+O(t)).
Since∠(ξξξ, ζζζ) > 0,

lim
h,t→0

∠X0P 0Y 0

∠Q0P 0R0
= 1

and consequently

lim
h,t→0

Q′R ′

QR
= 1.

LetK ≤ 0.Then cosq
(−−→
Q′R ′,

−−→
X ′Y ′

) = 1 (parallel segments in Euclidean space).
Thus, forK ≤ 0, we have established Lemma 23.

To complete the proof of Lemma 23 forK > 0, we need to show that

lim
h,t→0

cosq
(−−→
Q′R ′,

−−→
X ′Y ′

) = 1. (17)

By the Gauss–Bonnet theorem, for an angleα of a sufficiently small spherical
triangleT we have

α − α0 = O(σ(T )),
whereσ(T ) is the area of a Euclidean triangle with the same edge lengths asT .
Recall that we denotePQ by t. Then

Q′Y ′2 = h2 + t 2 − 2ht cos∠Q′P ′R ′ +O(h2t 2);
R ′X ′2 = h2 + t 2 − 2ht cos∠Q′P ′R ′ +O(h2t 2).

Thus,
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cosq
(−−→
Q′R ′,

−−→
X ′Y ′

)
= h2 + t 2 − 2ht cos∠Q′P ′R ′ + h2 + t 2 − 2ht cos∠Q′P ′R ′

2Q′R ′ ·X ′Y ′

− 2(t − h)2 +O(h2t 2)

2Q′R ′ ·X ′Y ′

=
8ht sin2 ∠Q′P ′R ′

2
+O(h2t 2)

2Q′R ′ ·X ′Y ′ =
sin2 ∠Q′P ′R ′

2
+O(ht)

sin
∠Q′0P ′0R ′0

2
· sin
∠X ′0P ′0Y ′0

2

,

which immediately yields (17).

3.8.3. Proof of Statement (2).To prove Statement (2) we need to replace vec-
tor
−→
QR in Lemma 23 with a tangent vector alongQR of sufficiently small length.

Corollary 4 allows us to make this transition. For brevity introduce the following
notation: Eu = −→PX, Ev = −→PY , Ew = −→QR.

By Lemma 23, given anε > 0 there existδ, µ > 0 such that if 0< PQ,PR ≤
δ, and 0< h ≤ ν < PQ then

cosq(Ev − Eu, Ew) ≥ 1− ε/2.

LetQ′R′ be a subsegment of the segmentQR. In what follows, Ewi = −−→Q′R ′. By
Corollary 11 we can assume that for the same choice ofQ andR,

cosq
(Ev − Eu, Ewi) ≤ 1+ ε;

in particular,
cosq(Ev − Eu, Ew) ≤ 1+ ε.

Letn ≥ 5 be a natural number such that 0< h′ = QR/n ≤ h.Split the geodesic
segmentQR by points

Q = A0 < A1 < A2 < · · · < An < An+1= R
into geodesic segmentsA iA i+1 (i = 0, . . . , n) of lengthh′, and consider vectors
Ewi = −−−−→AiAi+1. By Corollary 4,

cosq(Ev − Eu, Ew) = 1

n

n−1∑
i=0

cosq(Ev − Eu, Ewi).

From this it is clear that there is at least one ordered pairEwi0 such that

cosq(Ev − Eu, Ewi0 ) ≥ 1− ε. (18)

We have thus established that, given anε > 0, there existδ, µ > 0 and an or-
dered pairEwε of length less thanh such that, if 0< PQ,PR ≤ δ, and 0< h ≤
ν < PQ,

1− ε ≤ cosq(Ev − Eu, Ewε) ≤ 1+ ε.
The last bound and (14) immediately yield the statement of the theorem.
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Remark 10. In fact, the proof of Theorem 21, by using
√
ε in (18), will show that

all of the Ewi except for a set of proportion order
√
ε will satisfy (18); this yields a

sort of convergence in measure and in integral.
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