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1. Introduction

The hyperbolic derivative of an analytic self-mapϕ : D → D of the unit disk
is given by|ϕ ′|/(1− |ϕ|2). To explain the terminology, we note that integrating
|ϕ ′|/(1− |ϕ|2) over a rectifiable curveγ in D gives the hyperbolic arclength of
ϕ(γ ). This notion of derivative has been used by Yamashita to study hyperbolic
versions of the classical Hardy and Dirichlet spaces; see [Y1] and [Y2]. More re-
cently, in [MM] and [SZ], hyperbolic derivatives have been shown to be pertinent
to the study of composition operators on certain subspaces ofH(D), the space
of analytic functions onD. An analytic self-mapϕ of D induces a linear oper-
atorCϕ : H(D) → H(D) defined byCϕf = f B ϕ. This operator is called the
composition operatorinduced byϕ.

Recall that an analytic functionf onD is said to belong to the Bloch space
B provided that(1− |z|2)|f ′(z)| is uniformly bounded forz ∈D. Similarly, f ∈
B0, the little Bloch space, if(1− |z|2)|f ′(z)| → 0 uniformly as|z| → 1. The
hyperbolic Bloch classBh is defined by using the hyperbolic derivative in place
of the ordinary derivative in the definition of the Bloch space. That is,ϕ ∈ Bh if
ϕ : D→ D is analytic and

sup
z∈D

(1− |z|2)|ϕ ′(z)|
1− |ϕ(z)|2 <∞.

Similarly, we sayϕ ∈Bh0, the hyperbolic little Bloch class, ifϕ ∈Bh and

lim
|z|→1

(1− |z|2)|ϕ ′(z)|
1− |ϕ(z)|2 = 0.

Note that these are not linear spaces, sinceϕ is required to be a self-map ofD. It
is an easy consequence of the Schwarz–Pick lemma that every analytic self-map
of D belongs toBh, and in fact the supremum above is at most 1; see [G, p. 2].
Membership in the hyperbolic little Bloch class, on the other hand, is nontrivial.

It is easy to see thatCϕ : B → B is bounded for every analytic self-mapϕ of
D, while Cϕ : B0 → B0 is bounded if and only ifϕ ∈ B0. It is a recent result
of Madigan and Matheson thatCϕ : B0 → B0 is compact if and only ifϕ ∈ Bh0;
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see [MM, Thm. 1]. Membership ofϕ in Bh0 has a simple geometric interpreta-
tion whenϕ is univalent, since(1−|z|2)|ϕ ′(z)| is comparable to the distance from
ϕ(z) to ∂ϕ(D). This results inCϕ having very strong properties. In particular, the
author showed that ifϕ is univalent and inBh0, thenCϕ : Lpa → Hq is compact
for all 0 < p < q < ∞; see [Sm, Thm. 6.4]. HereLpa andHq are the classi-
cal Bergman and Hardy spaces. This paper resulted from an effort to understand
Bh0 when the univalence assumption is not made. Our main result, Theorem 1.2,
shows thatBh0 contains inner functions. Thusϕ ∈Bh0 does not even imply thatCϕ
is compact onH 2, since an inner function can not induce such an operator.

We introduce the notation

τϕ(z) = (1− |z|2)|ϕ ′(z)|
1− |ϕ(z)|2 ,

so thatϕ ∈ Bh0 if and only if lim|z|→1 τϕ(z) = 0. Our first result shows that there
is a restriction on the average rate at whichτϕ can go to zero whenϕ is an inner
function.

1.1. Theorem. If ϕ is an inner function, then∫
D

τϕ(z)
2

1− |z|2 dA(z) = ∞.

Although it is clear that finite Blaschke products belong toB0, it is not obvious
thatB0 contains other inner functions as well. Several constructions of such func-
tions have appeared in the literature recently; see [Sa; St; B1; B2]. On the other
hand, it is not obvious thatBh0 contains any inner functions at all. In particular, it
is easy to see that ifϕ is an inner function inBh0, then the whole unit circle is in
the singular set forϕ; that is,ϕ does not have an analytic continuation across any
arc in∂D. ThusBh0 contains no finite Blaschke products. Our main result is that
there are inner functions inBh0.
1.2. Theorem. Let η be a nonnegative increasing function such that∫ 1

0

η(t)2

t
dt = ∞ and η(4t) ≤ 2η(t), 0< t < t0,

for somet0 > 0. Then there exist an inner functionϕ and a constantC such that

τϕ(z) ≤ Cη(1− |z|2). (1.1)

From Theorem 1.1, we see that Theorem 1.2 is, subject to the regularity assump-
tion onη, the best possible result of this kind. A typical function satisfying the hy-
potheses of Theorem 1.2 isη(t) = |log t |−1/2. The result remains valid when the
regularity assumption thatη(4t) ≤ 2η(t) is replaced byη(4t) ≤ (4− ε)η(t) for
someε > 0. This is equivalent to assuming thatη is of upper type less than one;
see [J]. It is for clarity of presentation that the simpler form of this regularity con-
dition is used here. Since containment inBh0 characterizes compact composition
operators onB0, we obtain the following corollary to Theorem 1.2.
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1.3. Corollary. There exists an inner functionϕ such thatCϕ : B0 → B0 is
compact.

The function constructed to prove Theorem 1.2 will be a singular inner functionϕ.

A Möbius mapσ fromD ontoD satisfies the identity 1−|σ(z)|2 = (1−|z|2)|σ ′(z)|,
and from this it is easy to check thatτϕ = τσBϕ. It is well known thatσ can be cho-
sen so thatσ B ϕ is a Blaschke product, so there are Blaschke products that satisfy
(1.1). It would be interesting to have a description of the zero sets of Blaschke
products inBh0, such as that given by Bishop in [B1] forB0. The singular set of
each such Blaschke product is the full unit circle, as noted above, and so every
point on the unit circle is a limit of its zeros.

To see what is involved in the construction of the required singular inner func-
tion, letϕ(z) = exp(−F(z)), where

F(z) =
∫ 2π

0

eit + z
eit − z dµ(t)

andµ is a positive singular measure. Then

τϕ(z) = (1− |z|2)|F ′(z)|exp(−<F(z))
1− exp(−2<F(z)) ≤ (1− |z|

2)|F ′(z)|
<F(z) , (1.2)

sincex ≤ ex(1− e−2x)when 0≤ x. Forϕ to belong toB0, it is only required that
the numerator of this estimate forτϕ(z) tends to 0 as|z| → 1, that is,F ∈B0. This
is how an inner function inB0 was shown to exist by Sarason [Sa], who observed
thatF ∈B0 if the indefinite integralf of µ belongs to the Zygmund classλ∗. Re-
call that a continuous functionf is said to belong toλ∗ if the second differences
12
hf(x) = f(x+ h)− 2f(x)+ f(x− h) are uniformlyo(h) ash→ 0. The con-

struction was then completed by citing constructions of Kahane [K], Piranian [P],
and Shapiro [Sha] of increasing singular functions inλ∗. In the present situation,
an appropriate lower bound for the denominator of the estimate forτϕ in (1.2) is
also required. Such a lower bound will result from a lower bound for the first dif-
ferences1hf(x) = f(x + h) − f(x) of f. We therefore need a construction of
an increasing singular function that produces appropriate estimates for1hf and
12
hf, from below and above, respectively. The constructions of Kahane, Piranian,

and Shapiro cited here do not provide the required lower bounds for1hf. How-
ever, their methods can be adapted to produce the required function. The formu-
lation of the resulting theorem and the construction will be given in Section 3. It
should be remarked that the assumptions made onη in Theorem 1.2 are essen-
tially best possible for the existence of a monotone singular functionf satisfying
|12

hf | ≤ Chη(h); see [K] and [Sha].
It also is of interest to express the estimate (1.2) forτϕ in terms ofµ. Noting

that<F(z) is just the Poisson–Stieltjes integral ofµ, it is easy to verify that

(1− |z|2)|F ′(z)|
<F(z) =

∣∣∣∣∫ 2π

0

2eit

(eit − z)2 dµ(t)
∣∣∣∣/∫ 2π

0

1

|eit − z|2 dµ(t).

Thus the positive singular measureµ we construct will have the property that suf-
ficient cancellation occurs in the numerator for this ratio to tend to 0 as|z| → 1.
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The proof of Theorem 1.1 will be given in Section 2, and the construction off

is in Section 3. We begin Section 4 by proving a theorem that shows how the esti-
mate we get for12

hf gives an estimate for the growth of the second derivative of
the Herglotz integral off. This is then applied to prove Theorem 1.2.

I would like to acknowledge the hospitality of Michigan State University, where
I was visiting when this research was done. In particular, I would like to thank
Joel H. Shapiro for many helpful discussions on the material presented here.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 uses the following non-univalent change-of-variable
formula; see [Sh, p. 398]. Ifg is a measurable function onD andϕ : D → D is
analytic, then ∫

D

g B ϕ(z)|ϕ ′(z)|2 log

(
1

|z|
)
dA =

∫
D

gNϕ dA.

HeredA is area measure onD andNϕ is the Nevanlinna counting function, defined
by

Nϕ(w) =
∑

z∈ϕ−1{w}
log

(
1

|z|
)
, w ∈D \ {ϕ(0)}.

We also recall Littlewood’s inequality, which asserts that ifϕ : D→ D is analytic
then

Nϕ(w) ≤ log

∣∣∣∣1− w̄ϕ(0)w − ϕ(0)
∣∣∣∣

for all w ∈D \ {ϕ(0)}.Moreover, ifϕ is an inner function, then equality holds for
all w outside a set of logarithmic capacity 0; see [L] or [Sh].

Proof of Theorem 1.1.The change-of-variable formula shows that∫
D

τϕ(z)
2

(1− |z|2)2 log
1

|z| dA(z) =
∫
D

|ϕ ′(z)|2
(1− |ϕ(z)|2)2 log

1

|z| dA(z)

=
∫
D

Nϕ(w)

(1− |w|2)2 dA(w).

Becauseϕ is an inner function, equality holds outside a set of area measure 0 in
Littlewood’s inequality. ThusNϕ(w) is comparable to 1−|w|2 off this set, and so
this last integral diverges. Hence the first integral above also diverges, which fin-
ishes the proof since log(1/|z|) is comparable to 1− |z|2 for 1/2< |z| < 1.

3. Construction of the Increasing Singular Function

In this section we construct the increasing singular functionf that has the good
estimates for both1hf and12

hf described in Section 1. The construction should
be compared to those by Kahane and Shapiro (in [K] and [Sha]) of monotone sin-
gular functions in the Zygmund classλ∗. While these constructions do produce
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the estimate for12
hf that we need, they do not provide the required estimate for

1hf. Our construction uses ideas from both [K] and [Sha]. We begin with two
elementary lemmas.

3.1. Lemma. Suppose that{bj } is a sequence of positive real numbers such that

bj ≤ 3bj+1, all j ≥ J,
for some integerJ. Then there is a constantC such that

n∑
j=1

bj 4j ≤ Cbn4n, all n ≥ 1.

Proof. Assume first thatn ≥ J. If J ≤ j ≤ n thenbj ≤ 3n−jbn, and so

n∑
j=1

bj 4j ≤ C + bn
n∑

j=J
3n−j4j ≤ Cbn4n.

After increasing the constantC, this estimate will hold forn < J as well.

3.2. Lemma. Suppose that the functionη satisfies
∫ 1

0 η(t)
2t−1 dt = ∞. Then

there exists an increasing functionρ such that

lim
t→0+

ρ(t) = 0, ρ(4t) ≤ 3

2
ρ(t), and

∫ 1

0

[η(t)ρ(t)]2

t
dt = ∞.

Proof. Let a0 = 1, and by induction chooseak, k ≥ 1, so that

0< ak ≤ ak−1

4
and

∫ ak−1

ak

η(t)2

t
dt ≥ 1.

Now define
ρ(t) = 1/

√
k + 1, ak+1 < t ≤ ak.

It is easy to verify that this function has the stated properties.

3.3. Theorem. Let η be a nonnegative increasing function such that, for some
t0 > 0, ∫ 1

0

η(t)2

t
dt = ∞ and η(4t) ≤ 2η(t), 0< t < t0.

Letρ be the associated function from Lemma 3.2. Then there exists an increasing
singular functionf defined on[0,2π] and a positive constantC such that, for
h > 0,

|f(x + h)− 2f(x)+ f(x − h)| ≤ Cη(h)ρ(h)h (3.1)

and
f(x + h)− f(x) ≥ C−1ρ(h)h, (3.2)

provided[x − h, x + h] ⊂ [0,2π].
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Proof. Following Shapiro, the required functionf will be presented as a limit of
functions{fn}, where each function is constructed from its predecessor using the
basic building block

g(x) = sinx

2
− sin 2x

4
.

Note thatg, g′, andg′′ all vanish at 0 and 2π, and further that

|g(x)| ≤ 3
4, |g′(x)| ≤ 1, |g′′(x)| < 3

2 .

Let ρ be the function from Lemma 3.2 and define, for integersn ≥ 0,

bn = η(4−n)ρ(4−n) and cn = 2η(1)

η(4−n)
.

Note that if 4−n < t0 then

bn = η(4−n)ρ(4−n) ≤ 2η(4−n−1) 3
2ρ(4

−n−1) = 3bn+1, (3.3)

and also
∞∑
n=0

b2
n =

∞∑
n=0

[η(4−n)ρ(4−n)]2 ≥ 1

log 4

∞∑
n=0

∫ 4−n

4−n−1

[η(t)ρ(t)]2

t
dt = ∞. (3.4)

By multiplying ρ by a constant, we may assume thatb0 = 1. Then, using thatη
andρ are increasing and limt→0+ ρ(t) = 0, we have

1≥ bn ≥ bn+1→ 0, bncn ≥ bn+1cn+1→ 0, and 2= c0 ≤ cn. (3.5)

Let f0(x) = x and, forn ≥ 1, supposefn−1(x) has been defined so that it is
increasing and twice differentiable. Divide [0,2π] into 4n equal intervals{ In,k :
1 ≤ k ≤ 4n } of lengthδn = 2π · 4−n, and setmn,k = min{ f ′n−1(x) : x ∈ In,k }.
Forx ∈ In,k, we now define

fn(x) =
{
fn−1(x) if mn,k ≤ bncn,
fn−1(x)+ bnψn(x) if mn,k > bncn,

whereψn(x) = 4−ng(4nx). Since|ψ ′n(x)| ≤ 1 andcn ≥ 2, it follows thatfn is
increasing. Writingun = fn − fn−1, we see that

|un(x)| ≤ bn4−n and |u′′n(x)| < 3bn4n/2. (3.6)

Thusfn = f0+
∑n

j=1 uj converges uniformly to a nondecreasing function, which
we denote byf. Also, by (3.3) we may apply Lemma 3.1 to obtain

|f ′′n−1(x)| <
n−1∑
j=1

3

2
bj 4j ≤ Cbn4n,

and so
mn,k ≤ f ′n−1(x) ≤ mn,k + Cbn4nδn < mn,k + Cbn (3.7)

for x ∈ In,k. Throughout,C will denote a constant whose value may change from
line to line but is independent of any parameters, such asn in the inequality of
(3.7). To prove thatf is singular, consider a pointt for whichf ′(t) exists and is
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positive. Writedn,k(G) =
(
G((k + 1)δn) − G(kδn)

)
δ−1
n for the difference quo-

tient of a functionG over the intervalIn,k. Thendn,k(f ) = dn,k(fn−1), sinceuj is
zero at the endpoints ofIn,k for all j ≥ n. Thus, choosingk(n) so thatt ∈ In,k(n),

f ′(t) = lim
n→∞ dn,k(n)(f ) = lim

n→∞ dn,k(n)(fn−1) = lim
n→∞ f

′
n−1(xn),

wherexn ∈ In,k(n) is chosen to satisfydn,k(n)(fn−1) = f ′n−1(xn). By (3.7),

|f ′n−1(t)− f ′n−1(xn)| < Cbn,

and sincebn→ 0 from (3.5), it follows that limf ′n(t) = f ′(t).Also, sincef ′(t) >
0, it follows from (3.7) that lim infmn,k(n) > 0. Recalling the definition offn and
thatbncn → 0 from (3.5), we now see thatfn(t) = fn−1(t) + bnψn(t) for all n
sufficiently large. Since limf ′n(t) = f ′(t) andf ′n(t)− f ′n−1(t) = bnψ ′n(t) for all
largen, the series∑

bnψ
′
n(t) =

∑
2−1bn(cos(4nt)− cos(2 · 4nt))

is convergent. But
∑
b2
n = ∞ from (3.4), and so this lacunary trigonometric

series diverges off a set of measure 0; see [Z, p. 203]. Thusf ′(x) = 0 a.e. andf
is singular.

We now turn to the proofs of (3.1) and (3.2). We write

1hG(x) = G(x + h)−G(x)
and

12
hG(x) = G(x + h)− 2G(x)+G(x − h)

for the first and second differences of a functionG. Note that bounds for the sec-
ond difference are|12

hG(x)| ≤ 4 sup|G| and, whenG is twice differentiable,
|12

hG(x)| ≤ h2 sup|G′′|. Thus, using (3.6),

|12
hf |
h
= lim

n→∞
|12

hfn|
h
≤
∞∑
k=1

|12
huk|
h
≤
∞∑
k=1

bk min

(
3

2
h4k,

4

h4k

)
.

We choosep to satisfy 4−p−1 < h ≤ 4−p and estimate

h

p∑
k=1

4kbk ≤ 4−pCbp4p ≤ Cbp,

from Lemma 3.1. Also,

1

h

∞∑
k=p+1

bk

4k
≤ 4p+1bp+14−p ≤ 4bp,

since the sequence{bk} is decreasing. Thus

|12
hf |
h
≤ Cbp = Cη(4−p)ρ(4−p) ≤ Cη(h)ρ(h),

from the definition ofbk, the choice ofp, and the regularity properties ofη and
ρ. This proves (3.1).



110 Wayne Sm i th

To get a lower bound for1hf, we first show by induction that

f ′n(x) ≥ bncn/2 (3.8)

for all x andn. Sincef0(x) = x, b0 ≤ 1, andc0 = 2, this is true forn = 0.
Now assume that (3.8) has been established forn − 1, and considerx ∈ In,k. If
mn,k ≤ bncn then, by the induction hypothesis and (3.5),f ′n(x) = f ′n−1(x) ≥
bn−1cn−1/2 ≥ bncn/2, as required. The other possibility is thatmn,k > bncn, in
which case

f ′n(x) = f ′n−1(x)+ bnψ ′n(x) ≥ mn,k − bn > bn(cn − 1) ≥ bncn/2,

sincecn ≥ 2. Thus (3.8) holds. Now leth ∈ (0,1) andx be given, and choose
the integerq to satisfy 4−q−1 < h/(4π) ≤ 4−q . Recalling thatuj vanishes at the
endpoints ofIq+1,k for all j ≥ q + 1, from (3.8) we have

f((k + 1)δq+1)− f(kδq+1) = fq((k + 1)δq+1)− fq(kδq+1) ≥ bqcqδq+1/2.

Becauseh > 2δq+1, there are at leasth/(3δq+1) terms in the sum below, and so

1hf(x)

h
≥

∑
Iq+1,k⊂[x,x+h]

f((k + 1)δq+1)− f(kδq+1)

h

≥ bqcq
6
= η(1)ρ(4−q)

3
≥ 3η(1)ρ(h)

4
.

Thus (3.2) holds and the proof is complete.

4. Proof of Theorem 1.2

Let f be a function on [0,2π] with continuous periodic extension, and let

G(z) =
∫ π

−π

eit + z
eit − zf(t) dt

be the Herglotz integral off. Before proving Theorem 1.2, we need a preliminary
result showing how an estimate of12

hf gives an estimate on the growth ofG′′.
It is well known thatf ∈ λ∗ (i.e., |12

hf | = o(h) as|h| → 0) if and only ifG′ ∈
B0, or equivalently(1− |z|2)|G′′(z)| = o(1) as|z| → 1; see [Z, p. 263]. Since
our goal is to construct aϕ ∈Bh0, and since(1− |z|2)|G′′(z)| will provide an esti-
mate for just the numerator ofτϕ(z),we need an estimate for the rate at which this
goes to zero. The following theorem gives the estimate we need. The proof em-
ploys the same ideas used in the classical case thatf ∈ λ∗ (cf. [Z, p. 109]). Note
that we assume in the theorem thatf is continuous, since there are nonmeasurable
functionsf satisfying12

hf ≡ 0.

4.1. Theorem. Suppose thatω(t) is positive and nondecreasing fort > 0, and
that ω(4t) ≤ 3ω(t) for all t sufficiently small. Iff is continuous and satisfies
|12

hf | ≤ ω(h)h for h > 0, then there is a constantC such that

(1− |z|2)|G′′(z)| ≤ Cω(1− |z|2).
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Proof. LetU(r, θ) = <G(reiθ ), so that

U(r, θ) =
∫ π

−π
f(t)P (r, t − θ) dt,

whereP(r, t) = (1− r 2)|eit − r|−2 is the Poisson kernel. Noting thatP ′′(r, t) is
even int and integrates to 0, whereP ′′(r, t) represents the second derivative with
respect tot, we see that

Uθθ (r, θ) =
∫ π

−π
f(t)

∂2

∂θ2
P(r, t − θ) dt = 1

2

∫ π

−π
12
t f (θ)P

′′(r, t) dt.

The hypothesized bound for12
t f therefore gives

|Uθθ (r, θ)| ≤
∫ π

0
tω(t)|P ′′(r, t)| dt.

One can check thatP ′′(r, t) < 0 for 0< t < τ andP ′′(r, t) > 0 for τ < t <

π, whereτ = τ(r) is asymptotic to(1− r)/√3 asr → 1; see [Z, p. 109]. The
assumptionω(4t) ≤ 3ω(t) implies that

sup
τ≤t≤π

ω(t)t−1 ≤ sup
τ≤t≤4τ

ω(t)t−1 ≤ 3ω(τ)τ−1.

Using this and the assumption thatω(t) is increasing, we derive

|Uθθ (r, θ)| ≤ ω(τ)
∫ τ

0
−tP ′′(r, t) dt + 3

ω(τ)

τ

∫ π

τ

t 2P ′′(r, t) dt.

Integrating by parts, we have

−
∫ τ

0
tP ′′(r, t) dt = −τP ′(r, τ )+ P(r, τ )− P(r,0) ≤ −τP ′(r, τ ) ≤ C

τ
.

Similarly,
∫ π
τ
t 2P ′′(r, t) dt ≤ C, and so

|Uθθ (r, θ)| ≤ Cω(τ)/τ ≤ Cω(1− r)/(1− r),
sinceτ is asymptotic to(1− r)/√3 andω(t) is increasing.

Now setρ = (1+ r)/2, wherer = |z|, and letH = Gθθ . Then

H(z) =
∫ π

−π

ρeit + z
ρeit − zUθθ (ρ, t) dt.

Differentiating with respect toz yields

|H ′(z)| ≤ 2
∫ π

−π

|Uθθ (ρ, θ + t)|
ρ2 − 2ρr cost + r 2

dt

≤ Cω(1− ρ)
(1− ρ)

∫ π

−π

dt

ρ2 − 2ρr cost + r 2
dt.

This last integral is equal to 2π/(ρ2 − r 2) and so, using thatω(t) is increasing,
we have the estimate

|H ′(z)| ≤ Cω(1− r)/(1− r)2.
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IntegratingH ′ to getH = Gθθ , we now see that

|Gθθ(z)| ≤ |Gθθ(0)| + C
∫ r

0

ω(1− t)
(1− t)2 dt ≤ C

∫ 1

1−r

ω(t)

t 2
dt.

Choosingp so that 4−p−1 < 1− r ≤ 4−p and using Lemma 3.1,∫ 1

1−r

ω(t)

t 2
dt ≤

p∑
k=0

∫ 4−k

4−k−1

ω(t)

t 2
dt

≤ C
p∑
k=0

4kω(4−k) ≤ C4pω(4−p) ≤ Cω(1− r)
(1− r) . (4.1)

Putting these estimates together, we obtain

|Gθθ(z)| ≤ Cω(1− r)
(1− r) .

A computation shows thatGθθ(z) = −zG′(z)− z2G′′(z). Also,G′ ∈B, since the
assumptions onω imply it is bounded and sof ∈ 3∗. Also ω(1) ≤ 3kω(4−k),
which implies 1≤ Cω(t)t−1, and so

|G′(z)| ≤ C log
1

1− |z|2 = C
∫ 1

1−r2

dt

t
≤ C

∫ 1

1−r2

ω(t)

t 2
dt ≤ Cω(1− r)

(1− r) ,

where (4.1) was used to derive the last inequality. Thus

|G′′(z)| ≤ |z|−1|G′(z)| + |z|−2|Gθθ(z)| ≤ Cω(1− r)
(1− r)

for 1/2< |z| < 1, and this completes the proof of Theorem 4.1.

Proof of Theorem 1.2.Let µ be the positive singular measure on [0,2π] with
indefinite integral equal to the singular functionf from Theorem 3.3, and let

F(z) =
∫ 2π

0

eit + z
eit − z dµ(t)

be the Herglotz integral ofµ. Recall from (1.2) that the associated singular inner
functionϕ(z) = exp(−F(z)) then satisfies

τϕ(z) ≤ (1− |z|
2)|F ′(z)|

<F(z) . (4.2)

Integration by parts shows thatF(z) = izG′(z)− 2πK, where

G(z) =
∫ 2π

0

eit + z
eit − z (f(t)+Kt) dt.

We setK = (2π)−1(f(0)−f(2π)), so that the periodic extension off(t)+Kt is
continuous and Theorem 4.1 can be applied. Then12

h[f(t)+Kt ] = 12
hf(t), and

so the bound12
hf ≤ Cρ(h)η(h)h from Theorem 3.3 along with Theorem 4.1 (ap-

plied withω(t) = Cρ(t)η(t)) gives an upper bound for|G′′(z)|. Since|G′(z)| ≤
|G′(0)| + |z|max{ |G′′(w)| : |w| ≤ |z| }, it follows that
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(1− |z|2)|F ′(z)| ≤ (1− |z|2)|zG′′(z)| + (1− |z|2)|G′(z)|
≤ Cη(1− |z|2)ρ(1− |z|2) (4.3)

for all |z| sufficiently close to 1.
Let z = |z|eiθ whereθ ∈ [0,2π), and assume first that 2π /∈ [θ, θ + (1−|z|2)).

The denominator of the upper bound forτϕ in (4.2) is just the Poisson–Stieltjes
integral ofµ, and so an estimate for it is

<F(z) =
∫ 2π

0

1− |z|2
|eit − z|2 dµ(t) ≥ C

−1(1− |z|2)−1µ[θ, θ + (1− |z|2)]

= C−1(1− |z|2)−11(1−|z|2)f(θ)

≥ C−1ρ(1− |z|2), (4.4)

where the estimate for1hf from Theorem 3.3 was used for the last inequality. If
2π ∈ [θ, θ + (1− |z|2)) thenµ[θ, θ + (1− |z|2)] = 1h1f(θ)+1h2f(0), where
h1+ h2 = 1− |z|2. Thus max{h1, h2} ≥ (1− |z|2)/2, and it follows that (4.4)
holds in this case as well. Inequalities (4.2), (4.3), and (4.4) now combine to yield

τϕ(z) ≤ Cη(1− |z|2),
and the proof is complete.
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