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1. Introduction

A function f is said to be amlmost periodic polynomidf it can be expressed in
the form

fx) =) cje™* with ¢;eC and A; €R. (1.1)
j=1
The set of all almost periodic polynomials forms an algetPa . The closure of
APp under the uniform normi /|| = sup..z| f(x)| gives the algebrd P of almost
periodic functions. In other wordg,P is theC*-subalgebra of.°°(R) generated
by all functionse;(x) = e™**, L e R.
Themean valuef an almost periodic function is defined as

I N
M(f)zthozﬁf fx)dx,

and theFourier coefficientM ;(f) := M (e_, f). (These definitions are standard;
see [4] and [14].) Of coursd]l (f) = Mo(f). For f € APp written in the form
(11)!M )»_,-(f) =Cj.
TheFourier spectrunof f, denoted( f), isdefinedagi e R : M;(f) # 0}.
We useAP™ (resp.AP ™) to denote the subalgebra consisting of Ale AP
such that2(f) c [0, co) (resp.(—oo, 0]). A matrix function is said to be id P
or in AP¥ if all of its entries are. We say that anx n matrix AP functionG is
AP-factorableif it can be represented as a product

G(x) = GT(x) A(x)G™ (x), (1.2)

where(G*)*! € APT, (G7)*' € AP~, andA = diagle,,....e.,], ; € R.
Factorization (1.2) was introduced in [10]. It was also observed there that, if
is periodic with a period’, then a simple change of variable= ¢**7/2" reduces
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(1.2) to a classical Wiener—Hopf factorization of matrix functions that are contin-
uous on the unit circle. The latter factorization is important, in particular because
of its applications to Wiener—Hopf equations (i.e., convolution type equations on
the half-line); see [8], an early influential paper on the subject, and [7], a recent
exposition. As it happens, a more genet& factorization arises naturally [10;

11] when convolution type equations on finite intervals are considered. Other ap-
plications of AP factorization include inverse scattering problems [1] and signal
processing [15]. Itis also used in extension problems for positive and contractive
(matrix) AP functions [18; 17], as well as functions on a torus [2].

Some properties of th&P factorization are very similar to those of the Wiener—
Hopf factorization and can be established analogously. In particular APdiac-
torization exists then the set af in (1.2) is defined uniquely}; are referred
to as thepartial AP indicesof G. If the partial AP indices are all equal to
zero, then the multiple&s™ and G~ in (1.2) are defined up to a transforma-
tion Gt — G*C andG~ — C~1G~ with a nonsingular constant matri, so
thatd(G) = M(GT)M(G ™) is defined uniquely (see [10]). On the other hand,
the existence ofl P factorization and its explicit construction are much more com-
plicated than those of the usual Wiener—Hopf factorization of continuous matrix
functions. These questions are nontrivial (and still open) even foR2natrices
of the form

irx
G =] O] a2

wherei > 0 andf is an almost periodic polynomial. By the way, such matrices
are of special importance because they arise in the just mentioned applications to
convolution type (in particular, difference) equations in the case of one interval
of lengthi. We will refer toA in (1.3) as thediagonal exponensf G¢. We prove
AP-factorability of several new classes of matrix functions of the form (1.3), es-
tablish necessary and sufficient conditions for having zero parftahdices, and

in some cases compuligG). This is done mainly in Sections 3, 4, and 5. Briefly,
the classes of matrix functions are described in terms of the Fourier spectrum of
f. For example, we prove that$¢(f) c {—v}URU[A —v, 1), where O< v <

11 andR is a suitably chosen interval i®, » — 2v], thenG; is AP-factorable

(see Theorem 3.1). In Section 4 we study the case whisra trinomial: f(x) =

c_1e_, + coe, + c1e5. We establish new cases afP-factorability of G, when

u # 0. Some generalizations of the trinomial case are given in Section 5. The
structure-preserving transformation introduced in [3] is the main tool in our inves-
tigation. It turns out that virtually all previously known casesAgt-factorability

of matrix functions (1.3) can be verified using this transformation. The transfor-
mation is described in full detail in Section 2, where some previously known re-
sults are presented as well. The matrix generalization of the functions (1.3), where
diagonal entries are changede®”*~I, and f is an almost periodical x n ma-

trix, is studied in Section 6. Herey P-factorization is proved for several classes

of such matrix functions. New phenomena appear for the matrix generalization of
(1.3); for example, in contrast with (1.3), not every matrix function of the form
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e, 0
G(x) = |: F(x) e“"lm]’
where F(x) is an almost periodic polynomial x m matrix with nonnegative
Fourier spectrum and +n > 2, admits anA P-factorization. Applications to the
Fredholm properties of systems of convolution equations on a finite interval (both
continuous and discrete types) are given in Section 7.
Certain properties of almost periodic matrix functioG$x) and their AP-
factorability are well known and can be easily established.

Lemma 1.1. For any two matrix function® and Q with P*1 € APT andQ*! e
AP~, PGQ and G are simultaneously P-factorable(PGQ is AP-factorable if
and only if G is) and have the same partia P indices, and if the partial P
indices ofG are zero thed(PGQ) = M (P)d(G)M(Q).

Lemma 1.2. G and G* (the conjugate transpose 6f) are AP-factorable only
simultaneously, the partiagd P indices ofG* are the negatives of the partialP
indices ofG, and if the partial AP indices ofG are zero therd(G*) = (d(G))*.

For the matrix functiorG, of the form (1.3), we have more specific information.

LeEmMa 1.3. LetGy be given as ir(1.3).

(i) If Gy is AP-factorable, then its partial P indices are of the forrt:-«, where
O<a <A

(i) Gy and Gy are simultaneousIyi P-factorable with the same partial P in-
dices, and

d(Gy) = J(d(Gp)*J, where J = [2 (1)}

(i) Definef'(x) = 3_,capncarn Mv(f)e™. Then

| ex 0 o € 0
Gf’—[f/ e—,\] and Gf_[f e_J

are simultaneously factorable with the same par#l indices. If the partial
AP indices are zero then, in addition,

1 0 1 0
d(Gf’):[—Mm 1}d(G)[—M_A(f> 1]'

Part (i) follows from the general fact (discussed in [10]) that the sum of partial
AP indices of anyA P-factorable almost periodic x n matrix function with con-
stant determinant will be zero, and from [13, Lemma 1.2]. Parts (ii) and (iii) can
also be found in [10], though they are not formulated there as separate statements.
In view of Lemma 1.3(iii), it will be implicitly assumed throughout the rest of
the paper tha® (f) C (—A, ).
Throughout the paper we denote ByandZ* the set of integers and the set of
nonnegative integers, respectively.
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2. The Transformation

The transformation that is the principal tool of the present paper is introduced in
[3] as Theorem 3.1. For lack of a better name, we will refer to the technique as the
BKST transformatiomfter the authors of the paper. We describe now the BKST
transformation in detail. We begin with a matrix in the form (1.3) ghdritten as

f(x) = ae—"”<1 -y bke”’”), (2.1)
k=1
wherea #0, 0 < y1, y2, ..., ¥m < A+ v, andv € (—A, A). For convenience, it
will be assumed thag; are arranged in the increasing ordef: < - - - < y,,. We
letI" be them-vector(yy, . . ., ym), andN will denote anyn-vector(ny, . . ., n,,)

withn; € Z*; (N, T') will be the usual inner produatiy;1+- - - +n,, ¥, and|N| =
> nj. Finally, for any vectotV and polynomial in the form (2.1), let

(n1+n2+"'+nm)!
niny!---n,!

We definer(x) = ZNZ(N,F)<A+V yNa—lei<N,F>x and

yv=yn(f) = bi*by? - by (2.2)

m

=Y Y b
k=1 N:A+v—yr<(N,I')<i+v

Then direct calculation yields that
eivaf-f + ei()quv)xM;—

m
- (1= bkeiykx) Z yNei(N,F)x
( =1 N

(N,T)<i+v

4 Z Z be PL i((N,T)+yi)x

=1 N:A+v—yr<(N,T)<i4v

m
— Z yNei(N,F)x _ Z bkeiykx Z yNei(N.l">x

N:(N,T)<A+v k=1 Ni(N,T)<A+v

+ Z Z ynbre NIy

=1 N:A+v—y<(N,T)<i+v

= Z yve'™ Z Z ywbre N THOY (2 3)

N:(N,T)<i+v k=1 N:(N,T)<i+v—y;
Every N # 0 in the left summation of (2.3) will correspond to a vector
Nk = (I’ll,...,l’lk —1,...,I’lm)

in thekth summation on the right for ea¢tsuch thai, # 0. If we letn,, .. .n
denote the nonzero terms dfandn = |N|, then
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Z bkyNkei(VkHNkT))x
k:ng#0

. — 1 I Nyq— Ny Ny,
— el(NT))c(bal( (n ) b, 1[9&22 e baq" 4+ ...

Mgy — 1)!na2!~-~naq!

(n — 1! Ny na, —1
by, Dot by
+ N - (g, — DI a

Ny Ry, ---naq!

iN,T)xf a1 Nag n! i(N,T)x
=e bal tee baq ﬁ = yYnE€ . (24)
Ny Mgy -+ - Mg,

Hence, every term except = 0 in the summation on the left in (2.3) vanishes
along with every term in the double summation on the right, and we are left with

M (x) F(x) + e CTMS (x) = yoel® = 1. (2.5)
Let now
M~ = Mfev—k = Z yNaflei(<N.F)*)»+v)x
N:(N.T)<A+v
if v<0,and '
M~ (x) = Z yNa*]-el«NqF)*)»Jrv)x
Ni(N,T)<i—v

if v > 0. Then
Ao & M (x)e ™ — M~ (x)e ™ = Z A

N:(N,I')—re(—v,v)

if we agree, as usual, thétv, v) = ¢ for v < 0 and that a sum with an empty set
of indices equals zero.

Set s V- 1
+_ | —Jé érpy - _ | =
S N

It is clear thatA™ € APT andA~ € AP~; (2.5) shows tha#™ has determinant
—1, as doesA™, and they are therefore invertible AP+ and AP~ respectively.
Matrix multiplication shows that

b e[ —foo e |[en O [-M~ 1
van = w5 ST S

_ -_fek-&-v + f€A+v €y -M~ 1
| eMS+ M Mie, 1 0

_ [0 e, -M- 1
e Mie_; 1 0

__ ey 0 | e 0 =G
T -Me +Mfel, e | T | fioen| T
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Observe also that, owing to (2.4),

MMF) =" Yo b= >

k=1 Ny:(Np,D)=i4v—yy NN, I)=i+v
This and Lemma 1.1 yield the following theorem.
TueoreM 2.1.  With the foregoing notationG; and G4, are AP-factorable only

simultaneously, their partiad P indices coincide, and when the parti&P indices
equal0 we have

— 0 -Y 1
d(Gp) = [ Xa a—l]d(Gf)[ 1 0]’ (2.7)
whereX = M(M2+) = ZN;(N,D:H—V yn and

Y=MW")= { 2NN, )= yva ! if v >0,
0 otherwise.

In comparison with [3], we have simplified the formula fr Also, the case <

0 was not considered in [3] because it corresponds to the situatign c [0, co)
disposed of earlier in [10, Thm. 2.4]. We, however, decided to demonstrate how
the BKST transformation can be applied to derive this result.

THEOREM 2.2. SupposeR(f) c R* := [0, 00), and letu be the smallest
(leftmosj element of2(f). ThenGy is AP-factorable with partialAP indices
equal tot+pu, and if u = Othen

d(G) = [2 _jj“] 28)

wherea = Mo(f) andM =} .y ry—; YN (f)-

Proof. Write f in the form (2.1) withv = —u. Applying the BKST transforma-
tion once yields, according to (2.6),

G, = [eaﬂ 0 } 2.9)

&

HenceGy, (and therefores,) is AP-factorable with partiah P indicest.
If w = 0then (2.9) and (2.7) tell us that

—a O 0 1
dc=1=| 3 2laco]] 5]

| —=Ya O[O0 1| |0 —1/a
d(Gf)_[ X ai||:1 0]_[51 X }

whereX =3 ..y, yn(f) i= M. Formula (2.8) follows. O

and so
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The BKST transformation can also be used to verify several other previous re-
sults on factorability (additional information is available in [16]); for the reader’s
convenience, we state some of them.

Suppose that one point of the Fourier spectruryi &f separated from the rest of
the spectrum by a “big gap”, a distance at least as great as the diagonal exponent.
This type of matrix reduces in one BKST transformation to the case considered in
Theorem 2.2, allowing explicit calculation of partiaP indices andl(G).

THEOREM 2.3. If —v e Q(f) C {—v}U[A —v,A)andv > O, thenGy is AP-
factorable if we letu = the leftmost element a2 (f)\{—v}, then the partialAP
indices ofG; are£(v +p —A). Forv+u —A =0,

| “Yr 0
d(Gy) = [Mv(f)M _p}, (2.10)

where
p=M_u(H/M_u(f) and M= yy(HHp ™,

with the summation over alV = (0, no, . . ., n,,) such thatz;’?:z n;8; = v for
{82, .. 8t ={a—p aeQ(f)\{—v, ul}.

Proof. Write f as in (2.1). Applying the BKST transformation yields =
(Y1, - - ., Ym) With 3, > A. Thus,(N, T') > A unless(N, I') = 0, and soQ2(f1) €
{{N,T) — 1} N (—v,v) C R*. By Theorem 2.2G,, and thereforeG;, is AP-
factorable. Its nonnegative partial index coincides with the smallest element
The latter, by definition, equals+ u — A.

Consider now the case of zero partid? indices, thatisy +u — A = 0. Letting
a=M_,(f), formula (2.6) shows that

Mo(f1) = —p/a.

By (2.8),

d(Gp) = [_I?/a %’] (2.11)
where

Mi= Y yn(f)

N’:{(N',T")=v
On the other hand, by (2.7),
d(Gp) = [_Xa aol]d(Gf)[_ly é] (2.12)

where

x= Y i ov= ¥ 2

Ni(N,T)=Atv NiNTy=r—v ¢

Inour caseY = 0.Sincex < y; < A+v < 2A, we have als = 0. Comparing
the formulas (2.11) and (2.12),

1 0
d(Gy) = [ a]v/[f _p].
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Sincey; > A andi < A 4+ v < 24, the only Fourier exponents of; are the
numberg;; —A=0<--- <y, — A. Thus,

fi= Z )’j;f) ey s,
j=1

wherey; (f) = b;. Consequently

M, = Z YN,
NN T )=v

wherel'"isthe sef{y, — A, ..., ym — A}, and forN’ = {n), ..., n/,} € (Z*)"~1

we have
() ( b; )
W= n/ZI nm' 111 a(_MO(fl))
(”2 +n )! n
= —n]_[(in W, = (N W :
whereN = (0, n, . . ., n),). This proves formula (2.10). O

This case was considered earlier in [6]. Howedk(;) was calculated there only
for a trinomial f.

Suppose the Fourier spectrumpfies in a gridM = —v + hZ™, where—v is
the leftmost point in the spectrum ahd> 0. This situation occurs (with a suit-
able choice of:) if and only if the distances between all the points<zff) are
commensurable. According to [12, Thm. 3.1], the following result holds.

THEOREM 2.4. If Q(f) C M = —v + hZ" thenGy is AP-factorable.

We postpone the proof (based on a recursive use of the BKST transformation)
until Theorem 2.7, where a more general result will be established. Meanwhile,
observe that the BKST transformation does not give us a convenient way to explic-
itly calculate the partiah P indices ofG; or d(Gy) other than recursively. How-
ever, necessary and sufficient conditions for zero pattiaindices can be found

in [12, Sec. 3.2]. Combining Theorems 3.2 and 3.3 in [12] yields the following
result.

THEOREM 2.5. LetQ(f) C M = —v + hZ*. Let alsor be the smallest positive
element ofM, and write f astV:_M cje' "M ‘whereM = {i/h}.(Throughout
this paper, we will letf] denote the greatest integer less than or equal &md{ x }
the greatest integer strictly less than[x] = {x}forx ¢ Zand k] = {x} + 1=

x for x € Z.) For any positive integer, define the matrix

cp €1 C2 r Copyl
C1 Co c-1 -+ Copy2
n e
T, = (Ci—j)i,jzl = c2 C1 Co Cn+3

Ch-1 Cp—2 Cp-3 - co
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let A; be the matrix obtained frorffy,,; by deleting the(M + 1)th row and
(M +1)thcolumn, andA, the matrix obtained frorfy, 1 by deleting théM +1)th
row and first column.

ThenGy is AP-factorable, and the partiali P indices ofG, will be zero if and
only if one of the following holds

(@) v/heZ, \/h€Z, anddetTy 1 # O,
(b) v/heZ, »/h ¢ Z, anddetTy, detTy 1 # O; or
(¢) v/ih¢Z, r/h €Z, anddetA; detA, # 0.

If Q(f)N(—A, 1) consists of two points only, then conditiéd( ) c M is obvi-
ously satisfied. In this case, one step of the BKST transformation providé® an
factorization ofGy. This leads to the formulas for partidlP indices, which can
also be extracted from the proof of Theorem 2.3 in [10] as follows.

THEOREM 2.6. Let f = ae_, + be,, —A < —v < u < i. ThenGy is AP-
factorable with partialAP indices equal to

(@ £vif v<0orb =0,

(b) +pif w <0o0ra=0,

() £min{w, v, mingezlk(u +v) — Al}if w, v > 0, andab # 0.

The following case is introduced in [6, Thm. 3.1 and Thm. 3.6] as a generaliza-
tion of both the commensurable distances situation (Theorem 2.4) and the case
of one-sidedf (Theorem 2.2). Define as the positive distance from zero to the
negative portion of the union of the two grit¥§ = —v + hZ andM’ = —A + hZ.
(Strictly, e = min(x — h{x/h}, v — h{v/h}).) Theorem 3.6 of [6], which also can

be verified with the BKST transformation, may be stated as follows.

THEOREM 2.7. If Q(f) C MU[X — ¢, 1), thenGy is AP-factorable.

We will first show that BKST transformation reducés to another matrix in the
same class with smaller.

LemMma 2.8. If Q(f) € MU[A — ¢, A), then there exists a matrix functias’

such that
e 0 / ey 0
Gr = and G’ =
! [f } [f’ }

are simultaneously P-factorable,Q(f’) c MU[AX — ¢, A'), and eitherf’ = 0
or X e{r+hZ}N[e, » — h].

Proof. If f(x) = 0 then we are done. Otherwise, we constr@tty applying
the BKST transformation not more than twice@. The first time, writef as
f(x) = ae™™* (1 — Y _bje* — Y cre™¥), with y; € hZ and§ > L +v —¢
andl’ = (y1,...,%p,81,...,8,). (N, I') is therefore either a multiple df or >
A4v—eg S0Q(f1) C {((N,T) —A}N(=v,v) C {—=A+hZ}U[v —e,v). If
fi(x) =0, letG" = G1 and we are done. Otherwise, let’ be the leftmost point
in Q(f1). If =)’ > 0thenf; € AP* and, by Theorem 2.27, is AP-factorable
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with partial AP indicestA" and so we leG’ = diagley, e—;/]. Suppose-1" < 0.
Sincee < v — h{v/h} < v, the inclusion—\' € Q(f1) C {—A +hZ}U[v — ¢, )
implies that\’ € {A + hZ}. From here and the inequalitiesO\" < (v <) A one
can conclude that, in fack, > A — h{A/h} > ¢ and)’ < A — h. Transforming
a second time, the elementsIaf are either multiples ok or > A’ + v — ¢, and
the diagonal exponents @f; are +v, so (N, I';) is either a multiple of: or >
N +v—e HenceQ(fz) C {(N, 1) —v} C {—v+hZ}U[N —¢&, \). We may
now letG’ = G,. O

Proof of Theorem 2.7Applying Lemma 2.8 repeatedly, we arrive at a matrix,

(W O
Gf” - [ fn e—k,, :|’
for which eitherf,, = 00ori, = A —h{A/h}, Q(f,) C{—v+hZ}U[Lr, —&, Ap).
In the first case(, is obviouslyAP-factorable (with partial P indices£x,,). In
the second case, consider the two subcases separately.

(i) A — h{r/h} < v —h{v/h}. Thene = A,,, {—v + hZ} N (—A,,0) = @, and
f» € APT. Hence, by Theorem 2.2;;, is AP-factorable.

(i) A—h{r/h} > v—h{v/h}. Thene = v —h{v/h} < A,, and the intersection
{—v + hZ} N (—A,, 0) consists of exactly one point;e, the distance of which
from the rest of2(f,,) is at least,,. By Theorem 2.3G;, is AP-factorable.

In both subcases, Lemma 2.8 implies tbatis AP-factorable as well.  [J

Again, this method gives no way other than recursively to explicitly calculate the
partial AP indices ofG; or d(Gy) (if the partial indices are zero).

3. A Generalization of the Big-Gap Result

Theorem 2.3 shows the factorability of polynomiglsvith one negative exponent
and the rest of the exponents a distance of at leastiay. It relies on the fact
that, under the BKST transformation, suglyield f; € AP, a known factorable
case. We can generalize this result by allowing additional points in the Fourier
spectrum off which lie within a certain closed interval but which still cauges
APT.Giveni eR*, v e (0,1), s €Zt, ands < A/v — 1, define

[)‘ —v,’\s;”—v] if s>1,

s+1
if s=0.

Rs(x,v) = { ’
THEOREM 3.1. If Q(f) C {—v}UR;U[X—v, 1) for somes, then the following
statements hold.
(1) Gf is AP-factorable.
(2) lfwe leta = M_,(f), b = =M, )(1-0(f), andec = —IM;_,(f), then
Gy will have partial AP indices equal to zero if and onlydf+ b+ # 0.
(3) When the partiad P indices equal zero,

B 1/ad Y/ad
d(Gy) = |:—X/d —aM ad — XY/d — aMYi|’

(3.1)
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where

(@ d =c/a+b*Ya,

(b) Y = a7S71(_M ()L—u)/x—v(f))s»

(© X= ZN:(N,F):k+v yn(f), and

(d) M =3 yiv.riy—, Y8 (f1), wherel'" is the vector of nonzero elements
of Q(f1).

Observe thaR, C (0, A—2v]andR;NR; = @fori # j. Thus, Theorem 3.1 con-
tains several independent statements in which the intermediate [ga¢fofis al-
lowed to lie entirely in any one of the disjoint intervas, . . ., Ry, ,.—1. The case
s = 0 corresponds to the setting of Theorem 2.3, WiSB(¢) C {—v}U[A—v, A);
inthiscasep =X =Y =0.

Proof. Write

P q
fx) = aeivx(l - ijeiyfx — chem”),
j=1 k=1
withy <A/(s+D <y1<ya<- <y <(A—V)/s <A< <fp<---<
8, < A +v. Letn andm denotep- andg-vectors of nonnegative integers, and let
N = (nim); lety = (y1, ¥2, ..., ¥p), 8 = (61, 82, . . ., 8,), andI" = (y3); note
that(N, ') = (n,y) + (m, 8) = D n;y; + > mybi.
(1) Theorem 2.1 states tha will be simultaneously factorable with

e, O
Gfl - |:f1 e_v:|’
whereQ(f1) € {{N, ') — A} N (—v, v). We will show that2 (f;) ¢ R*, proving
thatGy,, and thusG,, are AP-factorable.

Sinces, > A, if [m| > 1then(N,I") =1 > A—A = 0. Sincey; < (A —v)/s, if
Im| =0andpn| < sthen(N,T") = (n,y) <s((A—v)/s) =1—v,S0(N,T")—Ar ¢
(—v,v). And sincey; > 1/(s + 1), if [m| = 0 and|n| > s + 1, then(N,T) =
(n,y) > +1DM/(s+1)=xrandso(N,T) —x >0.Thus,Q2(f1) e R,, so
Gy, is AP-factorable by Theorem 2.2 and 69 is AP-factorable as well.

(2) Theorem 2.1 also states th@t and G, will have the same partigd P in-
dices, that isG will have zero partiadP indices if and only ifG, does. But
fi(x) € AP*, so Gy, will have zero partial indices if and only Mo(f1) # 0O
(Theorem 2.2). Now we will consider in what cag@s I') — 1 = 0, that is, what
N will contribute to the constant term @, . If [m| > 1 then(N,T') = A if and
onlyif jn] =0, m = (1,0,0,...,0), ands, = A; thatis,M;_,(f) # 0. The
contribution toM o( f1) is

N 1, ., a

a1
If |m| = 0, then we know thatN, T") < A — v if |n| <sandthatN, ') > 1+ v
if |n] > s 4 2. Sincey: > A/(s +1) andy; > A/(s + 1) for j # 1, it follows
if |n|] =s+1that(N,T) = Aifandonlyifn = (s +1,0,0,...,0) andy; =
A/(s +1); thatis,M; /s+1—v (f) # 0. In this case, the contribution td o( f1) is
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G+D, g b

s+t T oa
Thus, if we defined = —M; 11—, (f) andc = =M, _,(f) (b = by or O,
¢ = c1 0r 0), thenMo(f1) = c/a + b*™/a, and soG;, andG, will have partial
AP indices equal to zero if and only éf+ b5 £ 0.

(In fact, G, and therefore alsG, will have partialAP indices that are equal to
+min((s +1)y1— A, 81— ) unless(s +1)y; = 8; andey = —b5 ™, and, if this is
the case, the6's will have partialAP indices equal teemin(sy,+y2—A, 82— 1)
unlesssy1 + y2 = 2 andco = —(s + 1)bib>.)

(3) According to Theorem 2.1,

d(Gp) = [‘X“ aol]d(Gﬂ[‘lY 3]
where

X= > g and Y= > yy(fal

N:<N,'>=i+v N:<N,I'>=\—v

Note that everyV = (n|m) that contributes t& will havem = 0, becausé; €
[A, 2 +v)and sor +v —3§; € (0,v] # (N;,I") for any N. As for Y, we note
that if jm| # O then(N,T) > A > A —v. If [n| > s + 1 then(N,T) > A >
A —v; if m = 0and|n| < s then(N,T") < A — v, with equality holding only
whenn = (0,0, ...,0,s) andy, = (A — v)/s. In this casey, = (s!/sHb, and
b, = _%M G—vys—v(f), SOY = (=M (k—v)/s—v(f))sa_x_l~

We know from Theorem 2.2 that

0 —d?
d(Gp) = [d vy ]
whered = Mo(f1) = c¢/a+b**YaandM’ ="\, v r—, Y (f1) (note that
what is referred to in Theorem 2.2 ass v here, andu there is here the leftmost

element off1, which is Q T’ represents the vector of nonzero element ¢f1)).
Matrix inversion and multiplication yields

_[-1a 0o][0 -147[0 1
d(Gf)_[ X a][d M’ :|[1 Y]

_ 1/ad Y/ad 0O
| = X/d —aM ad — XY/d —aMY |

4. Trinomials

In this section we consider almost periodic matrices of the form

T IR
c_1e_, +coey +cres e,
with —v < p < § and withc_4, co, andcy; complex numbers. Thug = Gy,
wheref(x) = c_1e_, +coe, +c1e5. SuchG are not always factorable (see Theo-
rem 4.1), nor does there exist a universal test for factorability of trinomials. There
are, however, many special cases in which factorization is possible.
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If —v > 0o0ré8 < 0thenf(x) e AP* and soG is explicitly factorable by The-
orem 2.2, so we can assume without any loss of generalitytidat- 0. We will
also assume that > 0, since ifx < 0 then we can instead use the matix =
JG*J With f = c1e™ ™ 4 coel™* 4 c_1e™ If B 1= (v + )/ (8 — w) is rational
then the distances between points are commensurable and Theorem 2.4 applies,
so we will assumes is irrational. Finally, we will assume throughout this sec-
tion thatc_icoc1 # O; if this is not true, thery'(x) is a binomial and Theorem 2.6
applies.

Let us first consider the case where- § > A, which is referred to as the case
of smallr. Theu = 0 case is covered completely in [13, Thm. 5.1, Cor. 5.2, and
Thm. 6.1] (see also [3, Sec. 2]). These results can be summarized as follows.

TaeoreM 4.1. If v+ 8 =1 andu =0, then
1+

(a) G is AP-factorable if and only if|cfc,1| # lcg " (B = v/é irrational);
(b) G has zero partialAP indices if it isAP-factorable and

0 -1
[ cg ] if |cfe_al < leol#*t,
—C
() d(G) = %
6 61 0 i | B Bl
| if legea] > feolP
—2¢o —c1c]

THEOREM 4.2. If v+ 6§ > L andu = 0, thenG is AP-factorable. Its partial
AP indices are zero if and only if there exists a positive intdgarch that either
Q) s+v=Fr1+ Y inBe1>r>Bo+ Y Anbia andc_yy; # 1, or

(2) 64+v>pa+ Zizl ngPs—1 =1 > P2+ Zi;ll ngBs—1,

where
1 . . . v n
ni + ———— = the unique continued fraction f@ = — (n; € Z")
np + pro— )
B-1:=v, Bo:=38, Br:=Pr2—mPr-1,
c10:=cyc1, C_10:=cyre 1,
and

n
. Cl,kk—lc—l,k—lv N RGN T k odd
C_ 1k .= Clk = e for
C_1k-1s C1LE-1C_1 j_15 k even

The BKST transformation allows us to understand the smakse whem £ 0,
which we present as Theorems 4.3 and 4.4.

THEOREM 4.3. If v+ 8 = A andu > 0, thenG is AP-factorable. The partial

AP indices ofG will be zero if and only if either

@) ww+u) > 1 —u, wherew := 1+ [(A —v)/(v + w)] (which is always true
whenu > v) or

(b) one of the conditions for zeraP indices in Theorem 4.2 holds f@r ; =
wv+pu)—A Bo=w+DHO+p) -2,
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w4+ pu) — A 1
B= =m+—,
w+Dw+wp) —2 Ny + =
(—co)" ™t (—co)”
CLo=—"——— 10=—"—" 7
! cicty ! cie’yt

andcy1 x and B, defined as in Theorem 4.2.

Proof. Applying the BKST transformation once will transfor@( x) to an already
understood case. We have= (v + u, 1), SOQ(f1) C {n1(v + ) +nohA — A} N
(—v,v). If np > 2then(N, ') — A > A > v ¢ Q(f1). If np = 1thenn; = 0 gives
0e(f1), butn, =1andn; > 1 gives(N, Y=A=v+u>veQ(fr). If no =
0, definew = 1+ [(A — v)/(v + w)]; that is, makew the smallest integer such
thatw(v + u) > A —v; clearly,(w +2)(v + ) > w(v +u) +2v > A+, so at
worst, f1 is a trinomial withQ (1) = {fw(v+u) — 1,0, (w + (v +p) — A1} and
the diagonal terms o, aree*"*. (Degenerate cases are when+ 1)(v + )
orw(v + u) > A + v, in which casef; is binomial or monomial, both of which
are AP-factorable, so we need only consider the above case.) However, since
v+u > v, Gy, meets the conditions of Theorem 4.2 and%g and thusG, must
be AP-factorable.

As for the partialA P indices, ifw(v +u) > A —pthen(w + D) (v +p) — A >
v ¢ Q(f1), and sof; is binomial with Fourier spectrurfw(v + u) — 2, 0} and
therefore has zero partidlP indices. (Ifw(v + u) — A > v, then f; is monomial
with Fourier spectrunjO} and therefore zero partiadlP indices.) Otherwise, we
construct

w! 1 co wo
fi= T 2 piwltm—x
w!c_q c_1

w+1
D1 —a wtb 1 <_ﬂ) D)D)

ic_l c_1 (w+ 1! c__l c_1

—w

= (—c0)" ey Tewwrm—r — 1622 + (—c0) eV e w1y -
and apply Theorem 4.2. O
Tueorem 4.4. If v+68 > L andu > 0, thenG is AP-factorable and its partial
AP indices are equal to
{ iminjezu(!}k + wr) — Akl if —vy <0 and

+min(—vy, wy) if —v;>0
where

Aoi=A, Vo=V, Mo=u, 6&:=3,

)\n_ n
=14 [_}
Vn + Uy

)\n+l = Vp,

Vn+1 = _wn(vn + /'Ln) + )\na
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Mnt1 == Vp + Sp — Ay = Mn—1,
Spt1 = (Wy + D (v + ty) — A,

and
k = the smallest natural numbei such thats; > ;.

Specifically, the partiadA P indices ofG are zero if and only if eithev;, = O, or
- <0 andkk/(vk + wp) € 7.

Proof. We will show inductively that fom < k, aftern iterations of the BKST
transformation( transforms to

G |: €, 0 i|
’ c(n]);efvn + C(On)e/"n + Cin)ean ef)Ln

with 0 < w, < Ay, vy +68, > A, 0 < 8, < A, forn < k, andé, > A, for
somek < oo, SO f(x) is binomial and therefor€, is factorable with partiai P
indices computable by Theorem 2.6.

We know thatG(x) meets the criteria + 8 > A andu > 0; we will show
inductively that f,, .1 is trinomial with these properties if, is. Transforming
f» by the BKST method, we havE, = (v, + tu, vi + 8,), SO Q(fu+1) C
{n1(vp+ ) +n2(, +68,) —An}. Forng > 2, (N, ') = A, > &, > v, & Q(fuy1);
likewise, forN = (1,1), (N,T) — X, > vy + Ay — Ay = v, € Q(fry1). Let
w, = 1+[(A,—v,)/ (v, +1,)] be the smallestinteger such that(v, +w,) —A, >
—vy. fng > w, +2, then(N,T) — A, > Ay — v, + 20, + ) — Ay > v, &
Q(fu+1)- So the only vector#/ that could contribute t® ( f,,,1) areN = (w,, 0),
(0, 1)7 and(wn + 17 0)7 SO at worst2 (fn+1) = {wn (Vn + I/Ln) - )\n» Vn + 8n - )\n,
(Wp + Dy + ) = An} = {=Viy1, o1, Snra}. HErE i1 = v +8, — A, > 0
by assumptiona and’l+l+5n+l = —wy(Vy+pn) + A+ (W, + Dy +pn) =4y =
Vo + My > v, = Ayya. Further, ifn + 1 < k then—v,; < 0 because other-
Wised, 11 = —Vur1+ vy + iy > v, = A1, AlSO, 1,11 < v, because otherwise
Vy 48, — Ay > vy, thatis,s, > A,, andifs, ;1 > A,,1 then we are merely in the
n = k case, and so we are done.

It is worth nOting thatanLZ = Vpy1+ 3n+1 — Ant1l = —Wp (Ve + Up) + An +
(Wn + Dy + ) — Ay — vy = -

Now we must show thdt is finite. We lety denote the smallest numbgsuch
thatv; 4+ ; > A; and claimk < min(y + 1, 2[Ao/ro]) < oo. If y is finite, then
w, = 1 because, +u, —i, > 0> —v,; thend, 11 = (wy + Dy +puy) — A, =
2wy + py) — Ay = vy +puy > vy = Ayyg and sak < y 4 1. If y isinfinite, then at
every step we know that; < A; — u;, thatis,A; 1 < A; — u;; thereforep; > <
Aj — pj — 141, and since eithen; or p1; 11 = po, itfollows thati; o < A; — uo.
Therefore, if we let; = 2[Xo/uo] then we haver, < g — [Ao/molpo < o =
u;, and since (as we showed beforg)> A; impliesé;_1 > A;_1, we know that
k <z <o0.

Finally, after thekth transformationg; > A;. We know 0 < u; < Ay since
Vi1 + 8k—1 > Ap—1 andéy_1 < Ag_1. So if —v; > 0 then we are in the one-
sided case, which is factorable with parti&P indices of min(—vy, ui) by
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Theorem 2.2. (If-v; > X4, then f; is monomial and s@, is factorable with
partial AP indicestpu,, which is the same asmin(—vy, ug) sinceu, < —vy.)
If —v, < O then we are in the conventional binomial case, @npds factorable
with partial AP indicestmin;cz|j(vi + i) — Ael. S0 Gy, and therefores, is
AP-factorable with partiad P indices as stated previously. O

Thus, we have a complete understanding of the simalise, at least in terms of
AP-factorability and partialh P indices; combining Theorems 4.1, 4.2, 4.3, and
4.4 yields our next result as follows.

COROLLARY 4.5. Let f(x) = c_1e™™* + cge™ + c1e™* withv, 8§ > 0, u > 0,
andv 4§ > 1. ThenGy is AP-factorable unless all of the following hald
@v+s=2,

(b) =0,

(c) B =v/sisirrational, and

(d) lefe-al =leg ™I #0.

We now use the foregoing results to generalize to other classes of tringfiiteds
can be shown to be P-factorable. The following result contains Theorem 4.4 ex-
cept for the explicit calculation of partiagd P indices; however, Theorem 4.4 is
used in the proof, so it needed to be stated and proven separately.

THEOREM 4.6. If u > Oandv+u+38 > A, thenG is AP-factorable. Moreover,
the partial AP indices are zero if and only if one of the following holds

(@ A/(v+ ) €Z;

(b) w(v + p) > A — u (alwaystrue ifu > v) andv +38 = A, or
v/v+S§—wh+p)eZand(w+8§— 1w+ u)—21) <0

) wv+pw =sorwv+u)=8§+v—pu<i—u;

(d) § <w@+u) <min{§ +v — u, A — u} and the matrix

e, 0
w,—w—1 -2 w41l . —w—2
(—co)’ ] "ewwu)—n — C1C_Tepis—r + (—C0) " CT] e vrw -1 €—v

satisfies the conditions for zero partialP indices of Theorem 4.2if +§ =
A and of Theorem 4.41ib + 8§ #£ A.

Proof. We havel' = (v + i, v+6), SOQ(f1) C {n1(v + ) + no(v +68) — AN
(=v,v). lfnp > 2then(N,T) —A>20+26 — A >20+8+u—Xr>v.lf
n, = landny > 1, we have(N,T") — A > 2v +u + 8 — A > v. Definew =
1+[(x —v)/(v+ w)]; that is,w is the smallest integer such thatv + ) >

A — v. By definition,(w — 1)(v + u) — A ¢ (—v, v), and sincev + u > v we see
that(w +2)(v +u) — A > w(v + u) — A + 2v > v. Hence the only vectors such
that(N, ') — A € (—v, v) are(w, 0), (w + 1, 0), and(0, 1), so at worst we have
Qfy=v+s—2,ww+pu) — A, (w+ 21+ w) — A}, with the diagonal ex-
ponents oiGy, equaltotv. If v+8 < w(v+pw)orv+48 > (w+1)(v + ), we
are in the big-gap case, which is alway®-factorable by Theorem 2.3; if not,
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we are in the small- trinomial case (Theorems 4.2 and 4.4), which are always
AP-factorable. ThusGy,, and therefore als@, are AP-factorable.

As for the partialAP indices, ifw(v +p) > A —uthen(w +D(v +u) — A >
v and f1 is binomial with Fourier spectrufw (v + 1) — A, v+ 68 — A}. Owing to
Theorem 2.6, the partiad P indices will be zero if either of the numbers@ f1)
is zero or they are of opposite signs and their difference divid@$ A is a multi-
ple ofv+ p thenw(v+u) = A > A —pu, so this condition is sufficient on its own.)
Otherwise f1 is trinomial. Ifv+8—X > ww+u) —A+v (i.e.,if§ > ww+w))
then we are in the situation of Theorem 2.3 (one poinRify’) separated from
the rest by a distance af, or in this casev), in which case the partiadP in-
dices are zero if and only if equality holds, and likewiséuif+ 1)(v + u) — A >
v+38—Ar+v(ie,ifwl+pun) >8+v—w).lf none of these hold then we are
in a nondegenerate trinomial case with a distance-6fu > v between highest
and lowest exponents, and so we constregtand apply Theorem 4.2 if the mid-
dle exponent is zero and Theorem 4.4 otherwise. O

If u andé are sufficiently close the will transform to a case of commensu-
rable distances between exponents, and we will be able to grBviactorability
and give necessary and sufficient conditions for zero pa4tfaindices based on
Theorem 2.5.

THEOREM 4.7. Letk=[(A4+v)/ v+ w)]. fF O<pu<d <A —-v)/(k—1) —v,
thenG is AP-factorable. If we letg = v 4+ pw andh = v + §, the partial AP
indices ofG will be zero if and only if

(@) (kg —1)/(h—g)€Z,v/(h —g) €Z, anddet Ty 41 # O;

(b) (kg —2)/(h—g)€Z,v/(h—g)¢7Z,anddet Ty, det Ty1 # O; or

(c) (kg —N)/(h—g)¢7Z,v/(h—g)eZ,anddet A; det A, # 0,

where

kg — 2 by Py
e e T e N Ol
h—g J—Pp a h—g

Ty = (ci-)} j=1» D1 = Tus1 without its(M + 1)th row and column, and\, =
Ty;+1 Without its(M + 1)th row and first column.

Proof. First, note thak > 0 because otherwige + v)/(v + 1) < 1 and squ >
A if k=1, theni +v < 2(v 4+ ), thatis,v + 2u > A. Sinces > u by def-
inition, we havev + © + 68 > v + 2u > A, and so Theorem 4.6 holds aatis
AP-factorable.

Otherwise, we will show that ifN, I') — A € (—v, v) then|N| = k, and that this
causes$2 (f1) to lie within a grids +hZ, a sufficient condition for P-factorability
by Theorem 2.4.

Write £ intheformf(x) = ae ™ (1—bre’®* —be™), g < h < (A—v)/(k—1).
Sincel’ = (g, h) withh > g, if IN| <k —1then(N,T) - A< (k—Dh—1 <
k—1D((r—=v)/(k=1)—A=r—v—1=—vandso(N, ') ¢ Q(f1). If IN| >
k + 1then(N,T) > (k + 1)g. By definition,k + 1 > (A +v)/g, SO(N,T) >
((A+v)/g)g =1 +vandhencéN, ") — A ¢ (—v, v).
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Thus, if(N,T)—1 € Q(f1) then|N| = k. Thatis,Q(f1) € {(k—j)g+jh—A} =
{(kg —2)+ j(h —g)} = &+ (h— g)Z and so, by Theorem 2.4, and therefore
G is AP-factorable.

As for the partialAP indices, sincéN| = k for (N, I') — A to appear im2(f1),

¢ Ko byb) i((kg—)+j(h—g))x 4.1
=2 G e -
J=Jo

From Theorem 2.5 we know that, f@¥, to have zero partiahP indices, ei-
ther (kg — A)/(h — g) orv/(h — g) must be an integer. Define as befgre=
[(kg — A1)/(h — g)], sothatr ;= kg — X — p(h — g) < h — g. Define

( k )bli—j-kpb.zi—r'
c=\._ - <
J—P a

Then (4.1) simplifies to

M
- i(t+j(h—g)x
fi= Y geitritoe
j=—M

with M defined as before, so then Theorem 2.5 applies. O
CorOLLARY 4.8. If © >vandi < 2v + 3u, thenG is AP-factorable.

Proof. If A < 2v +3utheni +v < 3(v + ), S0k =[(A +v)/(v + )] < 2

If w>vthen(h —v)/(A — ) >1,s0k—1<1=<(—v)/(*—p andso
eitherk —1=00rA —u < (A —v)/(k —1).If k — 1 = 0then, as noted previ-
ously,A+v <2v+2uandsov + u +38 > v+ 2u > A and Theorem 4.6 holds.
Otherwise, for any value of we must have eithet +v > A —pors +v <

(A —v)/(k—1); we know from Theorems 4.6 and 4.7 that, in either of these cases,
G(x) is AP-factorable. O

Note that Corollary 4.8 represents the only nontrivial instande-ofl < (A —v)/
(A — w), because ik = 1 then Theorem 4.6 holds as already noted, and if
(A —v)/(A — ) > 2 then eithen. — v > 2(0 — ) or 2u > A +v. Sinces > u,
it follows thatu +8 +v > 2u +v > A + 2v > A and so Theorem 4.6 holds.

The following is a subcase of Theorem 4.6, and is included only because the
partial AP indices have been calculated explicitly.

THEOREM 4.9. If u > (A —v)/2, thenG is AP-factorable and the partiah P
indices are

(@) tvif § <A —2v,

) £ +s—1)ifv+s—r<00rpu<ir-2v<3,

) £(w+pu—-2)if v+pu=>xr, or

(d) £min,,cz|n(s§ — u) — v)| otherwise.

Proof. Both elements of* are not less thath. — v)/2+v = (A + v)/2, so if
IN| > 2then(N,T') > A+ v and hencéN, ") — A ¢ (—v, v). Thus, onlyN =
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(1, 0) and(0, 1) contribute to€2( f1), so f1(x) is at worst binomial; thus,, and
thereforeG, is AP-factorable. As for the partiad P indices, if§ < A — 2v then
v+38—A < —vy; sincen < 8, the same is true for, and f1(x) = 0. This
means thaG,(x) = diagle™*, e="*]. If only . < A — 2v, then f; is @ mono-
mial with exponent + § — A, so the partialAP indices aret(v + § — A). If
v+ 68— A <0, then fi(x) € AP~ with highest exponent + § — A, so the par-
tial AP indices are agaig=(v +68 — ). If v+ u — A > 0, we havef; € AP™
with leftmost exponent 4+  — A. If none of these degenerate cases hgidy)
is a two-sided binomial and the diagonal terms3f are+v, so the partiald P
indices aretmin, ¢z |n(§ — w) — v)|. O

5. Generalized Trinomials

Many of the results we obtained for trinomials can be generalized by consider-
ing polynomialsf that have—instead of three points in the Fourier spectrum—a
Fourier spectrum lying on a sort of “double-grid” generated by three points. If
we choose our first three pointsy, i, § then we can consider an almost periodic
polynomial f with Q(f) C {—v + (v + W)Z + (v + 8)Z} because (as will be
shown), under the BKST transformation, this new matrix will behave the same as
a trinomial.

Unfortunately, the case whef®(f) C {—v+gZ+ hZ} has not yet been solved
in full generality. (If it were then this would give a full understanding of trinomi-
als as a special case.) However, certain restrictions can be plagedmaiv: to
make the matrix behave well under the BKST transformation.

Double-grids are considered in [3, Sec. 4], but the ones considered there are
unions of two shifted grids with the same size step, and the size of the step is equal
to the absolute value of the leftmost exponent; [3] also requiresithiatin one
of the two grids whose union contaif f). We, on the other hand, propose four
different restrictions that would suffice to makke AP-factorable, but we do not
offer necessary conditions or more general results. There is some small overlap
between the cases considered here and in [3] (the case covered in Theorem 5.2, for
instance, meets the criteria in [3]), but in general we are using different conditions.

THEOREM 5.1. If

eiAx 0
Gf(x) - |:f(x) e—iAxi|
andQ(f) Cc M = {—v + gZ* + hZ*} withv, h, g > 0, and either
(@ h>g=>vandh > A,
(b) h>g>vandg+h>xr+v,
) h>g>vandh < (L —v)/((A+v)/g] — D), or
(d) h>g>2vand3g > A +v,

thenGy is AP-factorable.

Note that, except for the calculation of parti@P indices, this covers Theorems
4.2—-4.7 and Corollary 4.8 as special cases whete—v + g, § = —v + h, and
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M _i+ig+jn(f) = 0fori 4+ j > 1. Also note that, in the first two cases, the “double
grid” M is nothing more than a single gridv + ¢Z with the single point-v + h
added. Also, ifz/g is rational then we can write/g = p/q with p, g € Z and let

& =g/q;thenQ(f) C {—v+gZ* +hZ*} C {—v +£Z} and so Theorem 2.4 is
applicable. Therefore, we are only interested fig irrational.

Proof. Applying the BKST transformation, the termsiofare of the formxf)g +

o’k (@ € Z*), s0Q(f1) C ((N.T) — A} = {(mef” + - + npa”)g +
(nloz;l) 4+ 4 npoc;‘”))h — A} = {ng +n5h — A}.

Inthe firstcase, i, > 2 orn, = landn} > 1, then(N,T) —A > g+h—A >
g > v.Defineasusuab = 14+[(A—v)/g]. Thenifn, = 0andn} < w, (N,T) <
[A—v)/glg < (A —v)/g)g =r—v,and ifn, =0andn] > w+2, (N,T") >
wg+2¢>A—v+2g>A+v;80Q(f1) C{wg—A, (w+Dg—A,h—A2r}
Sinceg > v andh — A > 0, it follows that G, is AP-factorable according to
Theorem 4.4 or 4.3.

In the second case, we again have 2 h + g > A + v, S0 againQ(f1) C
{wg — A, (w+ 1)g — A, h — A}. Sinceg > v, the functionG; is AP-factorable
by Theorem 4.2 if: = A and by Theorem 4.4 otherwise.

In the third case, as in the proof of Theorem 4.7, if weklet [ (A + v)/g], then
if n)4+nh <k, (N,T) < (k—Dh < (k — 1)((A —v)/(k — 1)) =1 — v, and if
ny+ny >k, (N, T) > (k+1Dg > (A +v)/g)g = L+ v. Therefore 2(f1) C
{nlg+n5h—x:nj+n, =k} ={(kg —1)+ny(h—g)} =&+ (h—g)Z, which
we know from Theorem 2.4 is a sufficient condition f@f,, and therefores,, to
be AP-factorable.

In the fourth caseg > 2vimplieshi+v—g <A —v,0or(A—v)/(A+v—g) >
1. Now 3g > A +vimpliesthat [A +v)/g] <2, s0[x+v)/g] -1 <1<
(A —v)/(A+v — g). Hence either(» + v)/g] = 1, in which case + h > 2g >
A+ v and the second condition holds, orelsev—g < (A —v)/([(A+v)/g]— 1D
and thus, for anyt, eitherh > 1 4+ v — g and the second condition holds/or<
(A —v)/([(A +v)/g] — 1) and the third condition holds. O

THEOREM 5.2. Consider the case whege = v andh = A, thatis, Q(f) C
{—v + vZ* + AZ*}. Assume./v is irrational. Write f as

flx) = aeivx(:]_ . boei)»x . Zbkeikux>

=1
with a, bg # 0. As usual, letw = 1+ [(A — v)/v] = [A/v]. Let

co1= § yva™ ', co=boa ",
N:(N,T")=wv

A —wvy

—1
= , and =
@ 2 wa P = S rw+

N:(N,T)=(w+1)v
ThenGy has partial AP indices equal to zero if it igi P-factorable, and isAP-
factorable if and only iffcfc_q| # [cg™|.
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Note that ifbo = O then distances between exponents are commensutaple,

is factorable, and Theorem 2.5 gives necessary and sufficient conditions for zero
partial AP indices. Furthermore, note thatis rational if and only if 1+ 8 =

v/(=X + (w + Dv) is rational if and only ifv/A is rational, which is false by
assumption.

Proof. Under the BKST transformationG,(x) transforms toGy(x) where
Q(f1) C {wv — 1,0, (w + 1)v — A} unlessir/v € Z, which we know to be
untrue. By definitiong_y = M ,_;(f1), co = Mo(f1), andecy = M 10— f1);

by applying Theorem 4.1 we find that, and therefore5, is AP-factorable with

zero partialdP indices if|c/c_1| # |cg™|. (The last case of Theorem 4.1, where
cic_1 = co = 0, violates our assumption thag £ 0 sincecy = boa™?1.) O

6. The Matrix Case

The BKST transformation technique can be also applied (under certain restric-
tions) to matrix functions of the form

. €)LI,, 0
Gp_[ - e_ﬂn], (6.1)

wherei > 0 andF is ann x n matrix whose entries are almost periodic poly-
nomials. Defining the Fourier coefficiets, (F) = M (e_, F) entrywise, we let
Q(F)={aeR:My(F) # 0}. Asin Section 2, denote byv the smallest point
of Q(F) N (=, A), and bya the corresponding Fourier coefficigvt_, (F). We
have now to impose the additional condition thatithe » matrixa is invertible;

of course, in the scalar cagse = 1) this condition was satisfied automatically.
Then we can write, analogously to (1.3),

F=ae_, (I — Zbken), (6.2)
k=1

where O< y1 < -+ < ¥, < A+ v and whereby, ..., b, are nonzero x n
matrices. For any = (ny, .. ., n,) with n; € Z*, define

yN(F) = ijlbjz L] bjw, (63)
wherew = n; + - - - + n,, and the sum in (6.3) is taken over all ordefeduples
(J1, j2, - - ., Juw) Of integers exactly,, of which are equal té@ fork =1, ..., m.

Using (6.3) in place of (2.2), a calculation similar to the one given in Section 2
yields the equality
esM{'F +e;40My = 1.

Thus, the analog of Theorem 2.1 holds.

Of course, for commuting matricés, . . ., b,, formula (6.3) can be written in
the same form (2.2) as in the scalar= 1) case. The applicability of the BKST
transformation in this setting was observed in [3, Sec. 7].

The result of Theorem 2.2 (far with nonnegative Fourier spectrum) remains
valid for G provided an invertibility condition is satisfied.
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ProposITION 6.1. Suppose2(F) C [0, A) and assume tha¥l ,(F) is invert-
ible, whereu (> 0) is the smallest element &t (F). ThenG is AP-factorable
with partial AP indices equal tatu (n pairs). If © = 0, then

1
den=[9 74| (6.4)

wherea = M (F) and
L=a Z yN(F)a_l.

N:(N,T)=x
Observe thatl. can also be written a§" .y -, yv(FY) with FO(x) =

aF(x)at=ae_,(I — Y. be,,), b\" = abra~. Coefficientsh.” appear natu-
rally if, instead of (6.2), a representation

m
F = (1 — Zb,gl)eyk>ae_v
k=1

is used. The corresponding form of (6.4), along with other statements of Propo-
sition 6.1, was established in [13]. We give here a different proof based on the
BKST transformation.

Proof. Setting—v = w in (6.2) and applying the BKST transformation, we obtain
_|ed O
o-[s" 0] 69
Hence,Gr, (and thereforeGy) is AP-factorable with partiaAP indicesu (n

times) and—u (n times).
If w =0, (6.5) and (2.7) tell us that

d(Gpl)zlznz[‘X“ % d(GF)[? é]

whereX = 3. .y -, yv. Thus,

—a b 070 I 0 —at
d(GF):[aXal a]|:1 0 :|:a aXal]’

as required. O

It turns out that the invertibility hypothesis is essential in Proposition 6.1, in view
of the following result.

THEOREM 6.2. Letm, n be positive integers, at least one of them larger than
and lety € [0, 1) and § € (O, (A — w)/2) be such thath — w)/§ is irrational.
Then there exists aAP polynomialm x n matrix F such that

A+ At

Q(F):{,u,u+8, R }c[o,x)

and the(m + n) x (m + n) matrix function
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G = e)\l,, O
F 6‘_)\Im

For the proof of Theorem 6.2 we need a lemma.

is not AP-factorable.

LEmMA 6.3 [19, Lemma 2.1]. Let G be a block diagonali P matrix

_|G1 O
o= ¢l
and let one of its diagonal blocks;, G, be AP factorable. TherG itself isAP
factorable only simultaneously with its other diagonal block.

Proof of Theorem 6.2It is easy to see that, in view of Lemma 6.3, we need only
considertwocases: () =1, n=2and(2m=2,n=1.
Consider case (1). Let

F = [O 1]€M + [l’l 0]€(A+M)/2,
whereh is an AP-polynomial with

N P
Q) = {8 5 ,0,8}

(=2

tence of suclt is guaranteed by Theorem 4.1. Then

e 0 0

G = |: 0 e, O :| (6.6)
hegip2 en e

We perform now the following elementary operations: subtract from the second

row the third row multiplied bye,_,; subtract from the third column the sec-

ond column multiplied by_,_,; add the first row multiplied byte(;_,,,» to the

second row; interchange the second and third rows. Call the resulting réatrix

B (Y 0 0
G = |:h€(x+ﬂ)/2 €n 0 :| .
0 0 —e_,
By Lemma 1.1, the matricas andG are simultaneously P-factorable (observe

here that (heg—p)2) = (A — n)/2+ Q(h) C RT). On the other hand, in view
of the choice ofi, the matrix

e 0 €o—p)/2 0
=€ 2
[he(k+u)/2 eu:| Gl [ h €—(—p)/2

is not AP-factorable. Hence (by Lemma 6.8), and thereforeG, is not AP-
factorable.

Consider now case (2). Defirieby (6.6). Then, as we have seen alrea@ys
not AP-factorable. Therefore,

] is not AP-factorable. The exis-
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e 0 —hegyuy2
G H' =] 0 ey —e,
0 0 e

is also notA P-factorable. It remains to observe that

ey 0 0 0 0 1 010

|: _he()t+ﬂ)/2 e_) 0 :| = |:1 0 0:| (G_l)T |: 0 0 1] . (67)
—e, 0 e 0 10 1 00

Thus the left-hand side of (6.7) satisfies the requirements of Theorem 6.2

Next, we state the “big-gap” result (a matrix generalization of Theorem 2.3). It
will be convenient to treat the case of zero pari#l indices separately.

THEOREM 6.4. Assume thaf2(F) C {—v}U[A — v, 1), wherev € (0, 1). As-
sume further that the matricéd _, (F) andM , (F) are invertible, wherg is the
leftmost element of2 (F) \ {—v}. ThenGr is AP-factorable and the partial P
indices ofGr are (v + u — A) (n pairs).

Proof. Applying the BKST transformatior; = (y4, . . ., ¥) With y; > A; there-
fore, (N, ') > A unless(N, I') = 0. HenceQ(Fy) € {(N,T) — A} N (—v,v) C
R*. By Proposition 6.1G,, and therefore5, is AP-factorable, with nonnega-
tive partial AP indices equal to the smallest element- A, which by definition
equalsy + u — A. O

THEOREM 6.5. Assume thaf2(F) C {—v}U[u, A), wherev € (0, A) and u =
A — v. ThenGr is AP-factorable with zero partialh P indices if and only if the
matricesM _, (F) and M ,(F) are invertible. In this case,

_ —q 0
d(Gr) = [LMU(F) _p], (6.8)

wherep =M ,(F)(M _,(F))™, ¢ = (M, (F))"M _,(F), and
L=Y (-My, ()M (F)Y) - (=M, W (FM(F)Y).  (6.9)
The summation ir{6.9) is over all N = (0,ny,...,n,) € (Z*)" such that
> iian;d; = v, where
{62, ..., 0w} ={a—piaeQF)\{—v,ut},

and, for every suclV, over all w-tuples of indiceq s, ..., ju,}, exactlyn, of
which are equalt&, k=2,...,m.Here—v <y —v=pu<--- <y, —vare
the numbers i (F).

A lemma is needed for the proof of Theorem 6.5.

LEMMA 6.6. LetF be anAP polynomialn x n matrix such that2 (F) N (—x, 0]
consists of at most one point.Gf: is AP-factorable with zero partiall P indices,
then the sef2(F) N (—A, 0] is indeed nonempty, and the corresponding Fourier
coefficient is nonsingular.
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Proof. Arguing by contradiction, we may assume that

0 O
F = |:O Im :|ev + Fl, (610)

wherem < n, v e (0, A) andQ(F1) C (0, 00). Consider the homogeneous Rie-
mann boundary problem

¢" +Grop™ =0, (6.11)
wheregt and¢~ are unknown vectors with componentsA®* and AP, re-
spectively. It follows from (6.10) that the problem (6.11) has an infinite dimen-

sional set of solutions. Indeed, denotedighe smallest point il2 (F;); then for
everyg € AP with Q(g) C (—¢, 0) we have the solution

¢~ =[g.0,....,0", ¢"=—Gr[g.0,...,0]" = —Gp[g.0,...,0]".

On the other hand, théP-factorability of Gr with zero partialA P indices would
imply that (6.11) has only constant solutions. O

A similar idea was used in [3] in the case Bfwith pairwise commuting coeffi-
cients.

Proof of Theorem 6.51f M_,(F) andM ,(F) are invertible, therGr is AP-
factorable with zero partiad P indices, by Theorem 6.4. I is AP-factorable
with zero partialAP indices, then (by Lemma 6.6) _,(F) is invertible and, ap-
plying the BKST transformation, we see thai, (F) is invertible as well (cf. the
proof of Theorem 6.4).

It remains to prove the formula (6.8). We argue analogously to the proof of
Theorem 2.3. The formula far;(x) shows that

Mo(F1) = —a ™M, (F)a*,
wherea = M _,(F). By formula (6.4) we have

0 -M o(Flrl]

where
L=Mo(F)- Y yn(F)-Mo(F)™™
N’:(N',T")=v

On the other hand, by the matrix analog of (2.7),
—a 0 0 1
d(Gr) = [ 0 a1:|d(GF)|:I 0]-

M, (F) ta 0
alL —I\/IM(F)a’l ’

The matrixL is computed analogously to the proof of Theorem 2.3. We have

Thus,
d(Gr) = |:

m
F1 = Z yj(F)a‘ley,_x,
j=1
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where
Yi(F) = =M _,(F)) M, _,(F).

Straightforward algebra now yields the formula (6.8). O
We conclude this section with a matrix generalization of Theorem 3.1.

THEOREM 6.7. Let0O < v < A, lets € Z* be such that < A/v — 1, and de-
fine the intervalR, (A, v) by (3.1). Let F(x) be an almost periodie x n matrix
polynomial such tha® (F) c {—v} U Ry(x, v) U[A — v, 1), and assume that the
matrix M _, (F) is invertible. Letl’ = {a +v:a € Q(F) \{—v}}andletQ =
min{ {(N,I') —»: N e(Z")"} N (-v,v) }.

(i) If the matrix

yn(F) (6.12)
N:(N,[)=0+x

is invertible, thenGr is AP-factorable.

(i) Gr is AP-factorable with zero partiad P indices if and only ifo = 0 and
the matrix(6.12)is invertible.

The proof of (i) is analogous to that of Theorem 3.1, using Proposition 6.1. To
prove part (i), Theorem 6.5 is used.

Under the hypothesis of Theorem 6.7 is AP-factorable with zero partial
AP indices, a formula fod(G) could be given using the matrix BKST transfor-
mation and Proposition 6.1; however, the formula is too cumbersome to state and
is therefore omitted.

7. Applications: Convolution Equations
on a Finite Interval

Following [11], consider the convolution type equation
(kxu)()= f(t), teE, (7.1)

on the finite intervalE = (0, A). We suppose that the Fourier transfokm= Fk

of then x n kernelk hasA Py -asymptotics at-oo. The latter condition means that
there exist matrix function&. € AP with absolutely convergent Fourier series
ZMEQ(,&) M, (K1)e, and such that

lim (K(x) — K+(x)) = 0. (7.2)
x—=+00
Equation (7.1) will be treated inBessel potentialsetting:

feH, ,(E), ue7(-)[” (E), (7.3)

o,p
wherep € (1, 00), H,, , is the Bessel potentials spaofel(l+x2)“’/2]-‘Lp(R) on
the real line,, ,(E) stands for its restriction of, H, ,(E) = {¢ € Ho ,(E) :

suppp € E}, ando € R. A particular case o = 0 corresponds to the more
traditional settingf, u € LI(E).
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Recall that a linear operatot acting from a Banach spaceé into a Banach
spaceY is Fredholmif its range ImA is closed and the defect numberA) =
dim KerA andg(A) = codim ImA are finite; the difference(A) — 8(A) is called
theindexof A and is denoted by ind. The equatioMx = y (y € Y given,x €
X unknown) is, by definition, Fredholm i is. Its defect numbers and its index
are defined as the defect numbers and the indek oéspectively.

The next theorem follows from [11, Thm. 2.6].

THEOREM 7.1. Equation(7.1)is Fredholm if and only if
(1) the matrix functions

= |:€Aln 0 :|

Ky =

Ki e—kln
are AP-factorable with zero partiad P indices, and
(2) for all the eigenvaluesy, . . ., &, of d(K_)"1d(K), the numbers

0; = 1ar§ =
=97 50 9s; p

are not integers.
Under conditiong1) and (2), the index of(7.1) equals

2n
> -161-1+1/p—o0).
=1

Combined with the results of Sections 3—6, this theorem yields concrete Fred-
holm criteria for equations (7.1) in terms of the asymptotic behavior of the Fourier
transforms of their kernels. For example, Theorem 6.5 implies the following.

THEOREM 7.2. Letthe kernek of equation(7.1)be such thak .. in (7.2)are AP
polynomials satisfying the big-gap condition

Q(K+) - {_v+}U[M+a)")v Q(K,) C {—V,}U[/.L,,)\), (74)
wherev, € (0, A) and u+ = A — vy. Then equatior(7.1)is Fredholm if and only
if the following two conditions hotd

(1) the matricesM _,_(K_), M_, (Ky), M,_(K_), M, (Ky) are invertiblg
and
(2) for all the eigenvalueg; of

A=M_, (K)™*M, (K)IM, (K)*M_, (K)

—vt

and n; of
B=M_, (K)M, (K)*M, (K)M_, (K™,

the numbers
1

1 1 1 .
@:o—zargsj—;, ijU—Zargm‘—; (j=1....n

are not integers.
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Under these conditions, the index @f.1)is

n n

Z(@-[@]-H%—o) +Z<wj—[w,] —1+%—a>.

=1 j=1

Proof. Condition (1) is necessary and sufficient for matrix functids to be
AP-factorable with zero partiad P indices. If this condition is satisfied, formula
(6.8) yields
=\ —1 N A 0

d(K) (K} = [* B].
Since eigenvalues of block triangular matrices and of their diagonal blocks coin-
cide, condition (2) and the index formula follow immediately from those of The-
orem 6.5. 0

It is interesting to observe that Fredholm properties of the equation (7.1) in the
setting (7.4) depend only on the two leftmost Fourier coefficients_of
An important subcase of (7.2) occurskfitself lies in APy:

K =Y cje;,, where ) [lc;l| < oo.
j J

Equation (7.1) can then be rewritten as

D cult — 1) = ft), te(O.n). (7.5)
J

The corresponding version of Theorem 7.1 reads as follows.

THEOREM 7.3. Equation(7.5)is Fredholm in the Bessel potentials setting if and
only if the matrix function

= EAI 0
K =
|: djcien el j|

is AP-factorable with zero partiad P indices andr — 1/p ¢ Z. If these conditions
are satisfied, then the defect numberg056) equaln max0, —1 — [0 — 1/p]}
andn max0, 1+ [0 — 1/p]}.

It follows from Theorem 7.3 that equation (7.5) has a unique solution for every
right-hand side if and only iK is AP-factorable with zero partial P indices and
o e(l/p—1,1/p). Inthe L ,-setting (i.e., folo = 0) this result is stated in [9].

Proof. For K € APy, assumption (7.2) is obviously satisfied wikh. = K_ =
K. Condition (1) of Theorem 7.1 is therefore equivalentit®-factorability ofK
with zero partialAP indices. In its turnd(K_)~*d(K ) = I,,, so that allg; in
condition (2) are equal to — 1/p. From here follows the Fredholm criterion.

To prove the formulas for defect numbers, use Theorem 2.1 of [11], according
to which (7.5) is equivalent to the Wiener—Hopf operaiéy with the symbol
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.\ —O
s =(2L) R
x+i ’

considered orL”(R*). Because of the factorability of with zero partialAP
indices, Ws has the same defect numbers as the direct sum adpies of the
operator

Wie—ir/etin-o * Lp(RT) = L,y(RY).

It remains to apply the well-known result on one-side invertibility and the index
formula for Wiener-Hopf operators with piecewise continuous symbols [5[J

We conclude with a concrete version of Theorem 7.3 that is valid by virtue of
Theorem 6.7.

THEOREM 7.4. Let all the shiftsu; in the difference equation

J
u(t+v)— Y bjut—p)=ft), 0<t<a, (7.6)
=1

J

liein R;(x,v) U[A — v, ) for a certain integes < A/v — Land R, (A, v) given
by (3.1). Then(7.6)is Fredholm(resp. invertibl¢if and only if o — 1/p ¢ Z (resp.
oe(=1+1/p, 1/p)), min{ {(N,I') =1 : N €(Z")"} N (—v,v) } =0, and the
matrix ZN:(N,I‘):/\ yn (F) with yy (F) defined by(6.3)is invertible.
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