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Introduction

A graph is of parabolic or hyperbolic type if the simple random walk on the vertices
is, respectively, recurrent or transient. A plane triangulation graph is CP-parabolic
or CP-hyperbolic if the maximal circle packing determined by the graph packs,
respectively, the complex planeC or the Poincaré diskD. We examine the impli-
cations that (Gromov) negative curvature carries for determining type, specifically
in these settings. Our main result is encased in the following theorem.

Theorem. Every proper(Gromov)negatively curved metric space whose bound-
ary contains a nontrivial continuum admits a(2, C)-quasi-isometric embedding
of a uniform binary tree.

Corollaries of this theorem include:
(1) the simple random walk on every locally finite, negatively curved graph whose

boundary contains a nontrivial continuum is transient;
(2) the simple random walk on a locally finite, 1-ended negatively curved graph

whose boundary contains more than one point is transient;
(3) a negatively curved plane triangulation graph is CP-hyperbolic if and only if

it has a circle boundary (equivalently, CP-parabolic if and only if it has a point
boundary).

The classical “type problem” is that of determining whether a given noncom-
pact, simply connected Riemann surface is conformally equivalent to the planeC
or the diskD. The surface is said to be ofparabolic type in the former case, and
of hyperbolictype in the latter. Our concern is with two related discretizations of
this classical problem, one via random walks on graphs, the other via planar circle
packings. Connections between probabilistic characteristics and the type prob-
lem are deep and intimate, and have been known for a long time. For instance, a
simply connected Riemann surface is hyperbolic if and only if a Brownian trav-
eler starting at any point has a positive escape probability. This generalizes to
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higher-dimensional Riemannian manifolds. A complete Riemannian manifold is
hyperbolic exactly when the Brownian motion generated by the Laplace–Beltrami
operator is transient. Kanai discretized this in [26; 27] where he characterized
hyperbolic Riemannian manifolds of bounded geometry as (roughly) those that
are quasi-isometric to certain graphs of hyperbolic type. Another discretization of
type has occurred more recently in the very geometric/combinatorial setting of cir-
cle packings, which is a purely 2-dimensional phenomenon. Here, a triangulation
of the plane determines a maximal circle packing of exactly one of the planeC or
the diskD, and there has been interest in finding conditions on the combinatorics
of the triangulation that determine type; see, for instance, [18; 23; 28].

It is of no surprise that negative curvature of a graph has implications for the type
of the graph, but all work to date concerning these implications has assumed addi-
tional structure—either bounded degree or some sort of isoperimetric inequality.
These, especially the latter, are very strong uniformity conditions that forbid the
type of random asymptotic behavior that can easily occur in graphs and in circle
packings, even in the context of negative curvature.

Our proof of the theorem occupies Section 1 and involves primarily the very
fast divergence of geodesics in a negatively curved space, as well as the quasi-
denseness of geodesic rays. The theorem itself in weaker forms is hinted at in
Gromov’s work [21] and Bowditch’s exposition [8] of Gromov’s work. Actually,
we prove a result stronger than the theorem, namely, that every metric space sat-
isfying the hypotheses of the theorem admits, for any positiveε, a (1+ ε, C(ε))-
quasi-isometric embedding of a uniform binary tree, whereC(ε) is small when
measured in the length scale of the binary tree. The applications of the theorem to
the determination of type are easy and appear in the subsequent sections. After re-
calling some standard facts about random walks in Section 2, we apply the theorem
to confirm the first two corollaries listed above. These are compared with previous
results of Ancona [4] and of Kaimanovich and Woess [25], both of which assume
bounded degree and strong isoperimetric conditions in the context of simple ran-
dom walks. Section 3 develops some of the basic topology of negatively curved
planar metrics. These metrics arise naturally from negatively curved plane trian-
gulation graphs as quasi-isometric images, and we prove that their boundaries are
either singletons or topological circles. The beautiful results of He and Schramm
[23] determining the CP-type of plane triangulation graphs using vertex extremal
length are reviewed in Section 4, after which the theorem, as well as results from
the section preceding, are applied to the determination of CP-type. In particular,
the third corollary listed above is proved. A final section, Section 5, concludes
with a short discussion of further applications of the theorem that are due to K.
Stephenson and the author, proofs of which will appear in [9]. Since many read-
ers whose background is in either random walks or circle packings may not be fa-
miliar with the recent developments on metric negative curvature, it seems fitting
to include all the results that we will use from this theory in one section. Thus
an appendix has been included that gives an overview of recent metric geometry
with references (or proofs when we could find no references) for all the results
stated. As there is no uniformity of terminology in this rather young field, we take
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this opportunity to fix the terminology and notation that we use in our proofs, and
we present some results in a nonstandard way that is particularly suited for our
purposes in the paper proper.

1. Proof of the Theorem

Throughout this section,ρ denotes a proper, negatively curved geodesic metric on
the setX with a fixed basepointx0, andZ denotes a nontrivial continuum in the
Gromov boundary∂X (see the Appendix for definitions). Also, all geodesic rays
are assumed to be arclength parameterized. Sinceρ is negatively curved, there
exists a positive constantδ such that(X, ρ) hasδ-inscribed triangles.

Lemma 1.1. Letα be a geodesic ray based atx0 that limits at a point ofZ, and
let s be any positive parameter value. If there exists a geodesic rayβ based atx0

that limits at a point ofZ for which theρ-distance betweenα(s) and β(s) is at
least4δ, then there exists a geodesic rayσ based atx0 that limits at a point ofZ
for which

2δ < ρ(α(s), σ(s)) < 4δ.

Proof. Assuming that the boundary∂X is parameterized from the basepointx0 as
described in the Appendix, let

U = { σ(∞)∈ ∂X : ρ(α(s), σ(s)) ≤ 2δ }
and

V = { σ(∞)∈ ∂X : ρ(α(s), σ(s)) ≥ 4δ }.
Observe thatU contains the pointα(∞)∈Z and thatV contains the pointβ(∞)∈
Z. From the definition of the topology on the boundary, as described in the Ap-
pendix, the setsU andV are closed in the boundary and, by Lemma A.4, they are
disjoint. If there is no geodesic ray with the desired property, then the union of
the two setsU andV coversZ, and it follows thatU andV provide a separation
of the connected setZ, a contradiction.

We apply this lemma recursively to define a collection of arclength parameterized
geodesic raysσb, indexed by binary sequencesb of finite length, that are based at
x0 and limit at points ofZ. First, choose such raysσ0 andσ1 based atx0 that limit
at respective distinct points ofZ. Sinceσ0(∞) andσ1(∞) are distinct boundary
points, theρ-distance betweenσ0(t) andσ1(t) is unbounded ast increases, and
we may choose a parameter valuet0 for which theρ-distance betweenσ0(t0) and
σ1(t0) is at least 2δ. Let61 = {σ0, σ1}.

Fix a constantK ≥ 5 and, for the positive integern, assume that we have
constructed the set

6n = { σb : |b| = n }
of geodesic rays based atx0 that limit at points ofZ such that theρ-distance
between any two distinct points from the set

{ σb(t0 +Kδ(n− 1)) : |b| = n }
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is at least 2δ. Here we are using|b| to denote the length of the binary sequenceb.

Lemma A.4 implies that theρ-distance between any two points from the set

{ σb(t0 +Kδn) : |b| = n }
is at least(2K + 1)δ, which is greater than 4δ. For eachσb in 6n, apply Lemma
1.1 with s of the lemma equal tot0 + Kδn to find a geodesic rayσb∗ based atx0

that limits at a point ofZ and for which

2δ < ρ(σb(t0 +Kδn), σb∗(t0 +Kδn)) < 4δ. (1.1)

For i = 0,1, defineσbi asσb if the last digit ofb equalsi; otherwise, defineσbi
asσb∗. This defines the set6n+1 = { σb : |b| = n+ 1}, and our construction en-
sures, since(2K + 1)δ is at least 11δ, that theρ-distance between any two points
from the set

{ σb(t0 +Kδn) : |b| = n+ 1}
is at least 2δ.

We now use the sets6n to construct a mapping of auniform binary treeT into
X. The treeT is a nontrivial, rooted graph with intrinsic metricd (see Appendix)
wherein each vertex other than the root vertex has degree three and where each
edge is isometric to a Euclidean interval of some fixed length, which we take to be
of lengthδ. The root itself, denoted asv∅ (where∅ stands for the empty binary
sequence), has degree 2. There are 2n vertices in the sphere of radiusnδ about
the root vertex inT , and we assume that these have been labeled asvb, whereb
ranges over the binary sequences of lengthn; thechildrenof vertexvb arevb0 and
vb1. Define the mappingλ : T → X on vertices by

λ(vb) = σb(t0 +Kδ(|b| − 1)) (1.2)

if b 6= ∅, with λ(v∅) equal to the midpoint of a geodesic segment fromλ(v0) =
σ0(t0) to λ(v1) = σ1(t0), and extend to edges by mapping the edge fromvb to
its child vb∗ convexly onto a geodesic segment fromλ(vb) to λ(vb∗), using the
segment that lies inσb wheneverσb = σb∗.

Our first task is to calculate upper and lower bounds for theρ-distance between
theλ-images of any two vertices inT . Toward this end, first notice that theρ-
distance betweenλ(vb) andλ(vb∗), wherevb∗ is a child ofvb, is at leastKδ if
b 6= ∅;moreover, this distance is at most(K + 1)δ. This upper bound on the dis-
tance follows from the definition ofλ on vertices, Equation (1.2), along with the
fact thatσb0(t) andσb1(t) areδ-close at parameter valuet = t0 + Kδ(|b| − 1).
This last fact follows from an examination of the internal points of a triangle with
verticesx0, λ(vb0), andλ(vb1), and the fact thatK ≥ 5 along with (1.1). Letb0x
andb1y be binary sequences that agree in the first|b| digits and observe that the
upper bound of(K+1)δ for theρ-distances between theλ-images of a vertex and
its children gives the upper bound

ρ(λ(vb0x), λ(vb1y)) ≤ (K + 1)δ(|x| + |y| + 2) = (K + 1)d(vb0x, vb1y). (1.3)
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A useful lower bound is a bit harder to come by. For this, letb andc be dis-
tinct binary sequences for which|b| = |c|. Use Lemma A.4 and the fact that the
ρ-distance betweenλ(vb) andλ(vc) is at least 2δ,while that between theλ-images
of two sibling vertices is at most 4δ, to obtain the inequality

2Kδ + ρ(λ(vb), λ(vc))− 9δ ≤ ρ(λ(vb∗), λ(vc∗)), (1.4)

wherevb∗ andvc∗ are respective children ofvb andvc. If |x| = |y| for the binary
sequencesb0x andb1y, then starting with the fact thatρ(λ(vb0), λ(vb1)) ≥ 2δ,
successive applications of (1.4) imply that

((2K − 9)|x| + 2)δ ≤ ρ(λ(vb0x), λ(vb1y)). (1.5)

For the general lower bound, assume that|x| ≥ |y|. Let z be the binary sequence
of length |x| − |y|, all of whose digits are equal to the last digit of the binary
sequence 1y. Thenσb1y = σb1yz and (1.2) implies that

ρ(λ(vb1y), λ(vb1yz)) = Kδ|z| = K(|x| − |y|)δ. (1.6)

The triangle inequality applied to theλ-images of the verticesvb0x, vb1y, vb1yz,

along with (1.5) and (1.6), gives the lower bound

((K − 9)|x| +K|y| + 2)δ ≤ ρ(λ(vb0x), λ(vb1y)). (1.7)

After subtracting 9δ|y| from, and adding and subtracting 2(K − 9)δ to, the left-
hand side of (1.7), recalling also that thed-distance between the verticesvb0x and
vb1y is (|x| + |y| + 2)δ, we obtain the lower bound

(K − 9)d(vb0x, vb1y)− 2(K − 10)δ ≤ ρ(λ(vb0x), λ(vb1y)). (1.8)

Theorem 1.2. For eachε > 0, the spaceX admits a(1 + ε, C(ε))-quasi-
isometric mapping of a uniform binary tree.

Proof. LetK ≥ 10 and scale the metricd by a factor of(K−9) to obtain a metric
dK onT in which each edge has length(K − 9)δ. Then, for every pair of nonroot
verticesu andv of T , (1.3) and (1.8) imply that

dK(u, v)− 2(K − 10)δ ≤ ρ(λ(u), λ(v)) ≤ K + 1

K − 9
dK(u, v).

It follows that the restriction ofλ to the setV of nonroot vertices ofT is a(
K+1
K−9,2(K − 10)δ

)
-quasi-isometry, whenT is given the scaled metricdK. An

application of Lemma A.2 withM = (K − 9)δ andN = (K + 1)δ implies thatλ
is a(µ,C)-quasi-isometry, whereµ = K+1

K−9 andC = 2(3K−8)δ.Setting 1+ε =
µ, and observing thatεmonotonically decreases to zero asK = 9+10ε−1 mono-
tonically increases, yields the desired result.

Corollary 1.3. The(1+ε, C(ε))-quasi-isometric mapping of the previous the-
orem extends continuously to a homeomorphism of the Cantor set boundary∂T
onto a Cantor set contained in the continuumZ.
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Remark. LetTε denote the binary treeT with the scaled metricdK.Notice from
the proof of Theorem 1.2 that the length of each edge ofTε is L(ε) = 10δ/ε. It
follows that

C(ε) = 60δ/ε + 38δ = 6L(ε)+ 38δ. (1.9)

The following corollary implies the theorem in the Introduction. It and its com-
panion corollary say that every negatively curved space whose boundary contains
a nontrivial continuum has embedded binary trees whose distortions from unifor-
mity are small in the scale of the lengths of the edges of the embedded trees.

Corollary 1.4. For eachε > 0, the spaceX admits a(1+ ε, C(ε))-quasi-
isometric embedding of a uniform binary treeBε, whereC(ε) is O(ε`(ε)) as
ε ↓ 0 and`(ε) denotes the length of each edge ofBε.
Proof. First we use Theorem 1.2 and the remark following Corollary 1.3 to iden-
tify a (1+ ε, C(ε))-quasi-isometricmappingwith the desired properties, and then
we adjust the mapping to an embedding. Fixε > 0 so that 9+ 10ε−1 = K is an
integer, and scale the metricdK of Tε by a factor of(K − 9) to obtain the uniform
binary treeBε in which the length of each edge is

`(ε) = (K − 9)2δ = (K − 9)L(ε) = 10L(ε)/ε. (1.10)

For each binary sequenceb, let b̄ denote the binary sequence obtained fromb by
replacing each digiti of b by a string of(K − 9) i’s. Let f : Bε → Tε be the
isometric embedding defined on the vertices byf(vb) = vb̄, and recall from the
proof of Theorem 1.2 thatλ : Tε → X is a (1+ ε, C(ε))-quasi-isometric map-
ping, whereC(ε) is given by (1.9). It follows that the compositionλ B f is a
(1+ε, C(ε))-quasi-isometric mapping. Notice thatC(ε) increases without bound
asε ↓ 0, but (1.9) and (1.10) imply that

C(ε)

ε`(ε)
= 3

5
+ 19ε

50
,

so thatC(ε) isO(ε`(ε)) asε ↓ 0.
We now adjustλ B f to an embedding by redefiningλ only near the vertices of

the formvb̄. We save ourselves an unnecessary technical headache by assuming
thatε is no more than 2, so that(K − 9) is at least 5. Letb 6= ∅ be a binary se-
quence and, without loss of generality, assume that the last digit ofb is 0. Then
the parent ofvb̄ in Tε is of the formva0, for the appropriate binary sequencea,
since the sequencēb ends in a string of(K − 9) zeros. Recall thatλ is defined
on the edgevb̄vb̄1 as a convex map to a geodesic segment ofρ-length betweenKδ
and(K + 1)δ from λ(vb̄), which lies on the rayσb̄ = σa0, to λ(vb̄1), which lies
on the rayσb̄1. Let ς be the geodesic segment contained in the imageλ(vb̄vb̄1)

that meetsσb̄ at the single pointx, an endpoint ofς that lies betweenλ(va0) and
λ(vb̄0), and meets the subsegment ofσb̄1 betweenλ(vb̄1) andλ(vb̄11) at the sin-
gle pointy, the other endpoint ofς. Defineλ′(vb̄) = x andλ′(vb̄1) = y, and ex-
tend convexly to map the edgevb̄vb̄1 ontoς. A further convex adjustment on the
edgesva0vb̄, vb̄vb̄0, andvb̄1vb̄11 produces an embeddingλ′ of the convex hull of
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the verticesva0, vb̄0, andvb̄11 that agrees withλ at these three vertices, and that
is (K + 1)δ-close toλ. Repeating this construction at every vertex ofTε of the
form vb̄, as well as performing a similar construction nearv∅, produces a map-
ping λ′ : Tε → X that is(K + 1)δ-close toλ and, as the reader may check, for
which3 = λ′ B f is an embedding. An application of Lemma A.3 implies that3

is a(1+ ε, C ′(ε))-quasi-isometric embedding, whereC ′(ε) = C(ε)+2(K+1)δ.
Using (1.9) and (1.10),

C ′(ε)
ε`(ε)

= 4

5
+ 29ε

50
,

so thatC ′(ε) isO(ε`(ε)) asε ↓ 0.

The details of the constructions above imply the following corollary.

Corollary 1.5. For eachε > 0, the(1+ ε, C(ε))-quasi-isometric embedding
3ε of the uniform binary treeBε guaranteed by the previous corollary may be
chosen so that theρ-length of the image of every edgee of Bε satisfies

m(ε) ≤ `ρ(3ε(e)) ≤ M(ε), (1.11)

where both boundsm(ε) andM(ε) are asymptotic tò(ε) = 100δ/ε2, the length
of each edge ofBε, asε ↓ 0.

2. Simple Random Walks and Type

For a good exposition of important results about random walks on graphs that in-
cludes a section on the type problem, see the survey article [34]. All graphs con-
sidered in this section are connected and locally finite, but we do not assume that
they have bounded degree nor that they satisfy any sort of isoperimetric inequal-
ity. The simple random walk (SRW) on the graphX = (V(X),E(X)) is the ran-
dom walk for which the transition probabilityp(x, y) from vertexx to vertexy is
given by

p(x, y) =
{

1/deg(x) if xy ∈E(X),
0 otherwise.

HereV(X) andE(X) denote, respectively, the vertex and edge sets ofX. The
SRW onX is recurrent if, with probability 1, the random walk starting at some
vertexx returns tox; otherwise, the SRW istransient.In the transient case, there
is a positive probability for the event that a random walker will escape to infinity.
The graphX is recurrent /transient whenever the SRW onX is recurrent /transient.

Theword metricon the graphX is an intrinsic metric in which each edge has
unit length, and the graph is said to benegatively curvedor word hyperbolicif
its word metric is negatively curved. We often use the adjectivecombinatorial
to refer to word-metric properties of a graph; for example, combinatorial length,
distance, and diameter are always with reference to the word metric.
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Let T be a tree with word metric. A vertex ofT of degree at least 3, as well
as the root vertex if the tree is rooted, is called abranchvertex. Two branch ver-
tices areconsecutiveif there is a simple edge path between them that traverses no
other branch vertices. We say thatT is quasi-uniformif T is nontrivial, there are
no vertices of unit degree, and there is a finite upper bound on the combinatorial
length of any simple path of degree-2 vertices. Notice that every quasi-uniform
tree has uncountably many ends and there is a finite upper bound on the combi-
natorial distance between any two consecutive branch vertices. Also,T is binary
if T is rooted and the degree of each nonroot vertex is at most 3 while that of the
root vertex is at most 2. The following two lemmas are well known and imply,
with Corollary 1.5, items (1) and (2) of the Introduction.

Lemma 2.1. Every quasi-uniform binary tree is transient.

Proof. An argument as in [17, Chap. 6] implies that the electrical resistence to in-
finity is finite, which implies that the tree is transient.

Lemma 2.2. If the locally finite graphX contains a transient subgraph, thenX
itself is transient.

Proof. See, for example, [34, Sec. 2].

Remark. Note that these two lemmas together imply that every locally finite,
quasi-uniform tree is transient, since every such tree contains a quasi-uniform
binary subtree.

Theorem 2.3. If X is a locally finite, negatively curved graph whose Gromov
boundary contains a nontrivial continuum, thenX is transient.

Proof. SinceX is locally finite, its word metric is proper. By Corollary 1.5, there
is a(2, C(1))-quasi-isometric embedding31 of the uniform binary treeB1 intoX.
Because31 is an embedding into a graph and the degree of each nonroot vertex
of B1 is 3, the image of each such vertex under the embedding must be a vertex of
X. It follows thatX contains a binary subtreeB = 31(B1) that is quasi-uniform.
Apply the two preceding lemmas.

Corollary 2.4. If X is a locally finite, one-ended, negatively curved graph
whose Gromov boundary contains more than one point, thenX is transient.

We review some of the previous work on the implications that Gromov negative
curvature holds for random walks on graphs. The terms from the general theory of
random walks on graphs that we use in this paragraph are defined in, for instance,
[34]. These previous results have been derived in more general contexts than that
of simple random walks, but have assumed hypotheses that imply stronger geo-
metric conditions on graphs than just mere negative curvature of the word metric.
We focus on two results, both derived in the context of a random walk given by a
stochastic transition matrix
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P = (p(x, y))x,y∈V(X)
that descibes the one-step transition probabilities. The first is a result of Ancona
[4], who proves that ifX is negatively curved andP is uniformly irreducible, has
bounded range, and has spectral radius less than unity, then the Martin bound-
ary ∂MX coincides with the Gromov boundary∂X, and the random walk con-
verges to∂X almost surely. The second is a result of Kaimanovich and Woess
[25], who replace the bounded range hypothesis of Ancona with the weaker hy-
pothesis thatP satisfy a uniform first moment condition, and conclude that the
random walk converges to∂X almost surely. The uniform irreducibility condition
implies that the graphX has bounded degree. In the context of a SRW, if a graph
has bounded degree, then the spectral radius is less than unity if and only if the
graph satisfies a strong isoperimetric inequality; [24] and [34, Thm. 3.3]. These
results imply, when the random walk is simple, not only thatX is transient, but the
additional conclusion that the Martin boundary coincides with the Gromov bound-
ary, to which the random walk converges almost surely. The price that is paid,
though, for these stronger results are the very strong geometric limitations placed
on the graphX that it both have bounded degree and satisfy a strong isoperimetric
inequality, limitations absent from our results.

3. Negatively Curved Planar Metrics

Our attention now specializes to planar graphs, particularly those associated to cir-
cle packings of the Euclidean and hyperbolic planes. As a preliminary to deter-
mining CP-type in the next section, here we collect some basic topological results.
The setting throughout is that of a complete, negatively curved geodesic metricρ

on the complex planeC that is compatible with (i.e., induces the same topology
as) the Euclidean one.

Theorem 3.1. The Gromov boundary∂ρC is either a singleton or a topological
circle.

The theorem is a consequence of the next two lemmas.

Lemma 3.2. The Gromov boundary∂ρC is a metric continuum.

Proof. For any positive numberR, let Ūρ(R) denote the closure of the unbounded
complementary domain of theρ-ball of radiusR centered at the origin. For each
positive integern, letCn be the unionŪρ(n)∪ ∂ρC, a subspace of the compactifi-
cationC̄ = C ∪ ∂ρC of the planeC. That eachCn is a metric continuum follows
quickly from the fact thatC has one end, the definition of the topology onC̄, as
well as the basic facts thatC̄ is compact and metrizable (see the Appendix). As
the boundary∂ρC is the decreasing intersection of the metric continuaCn, it is it-
self a metric continuum.

Lemma 3.3. Every pair of distinct points of∂ρC separates∂ρC.
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Proof. Let a 6= b be points of∂ρC and choose a bi-infinite geodesicγ such that
γ (∞) = a andγ (−∞) = b. The trace|γ | is a closed planar set homeomorphic
to a line, and hence separates the plane into exactly two components—say,X◦ and
Y ◦. Note that the respective restrictions of the metricρ to the setsX = X◦ ∪ |γ |
andY = Y ◦ ∪ |γ | are proper, geodesic, and negatively curved. It follows as in the
proof of the preceding lemma, sinceX andY each have one end, that the Gromov
boundaries∂X and∂Y are metric continua. The inclusions ofX andY in C in-
duce embeddings of Gromov boundaries, so that∂X and∂Y are naturally (closed)
subspaces of∂ρC. An easy exercise establishes that the intersection∂X ∩ ∂Y is
precisely the pair∂γ = {a, b} and, as∂X and∂Y are each connected and contain
the two pointsa andb, the setsU = ∂X − ∂γ andV = ∂Y − ∂γ are nonempty.
It follows that the setsU andV form a separation of∂ρC− {a, b}.
Proof of Theorem 3.1.With Lemmas 3.2 and 3.3, an old characterization theo-
rem of Moore [33, Thm. 28.14] applies to show that∂ρC, if not a singleton, is a
topological circle.

We next present a useful property of the metricρ when the Gromov boundary∂ρC
is a singleton. We assume thatρ hasδ-inscribed triangles for the fixed positive
constantδ.

Theorem 3.4. If the Gromov boundary∂ρC is a singleton, then there is a con-
stantL such that, for any compact subsetK of C, there is a simple closed curve
of ρ-length at mostL that separatesK from infinity.

Proof. Let γ be a geodesic ray based at the pointγ (0) = z0. For any pointp not
onγ, let αp be a shortest geodesic segment connectingp to γ. Let βp be a short-
est path connectingp to γ from the side ofγ “opposite to” the side from which
αp approachesγ. This is unambiguous as long asαp meetsγ at a point other than
z0; whenαp happens to meetγ at z0, βp is chosen to equalαp. The reader might
notice that our description ofβp, even whenαp misses the basepointz0, allows
for the possibility thatβp hits the pointz0. Always in this case,βp must meetγ
along an initial segment ofγ. LetP be the set of points for which the length of the
pathsαp andβp coincide, in which case both are geodesic segments, each meet-
ing γ in exactly one point. Continuity of the metric implies not only thatP is not
empty, but, moreover, thatP is an unbounded set in the plane.

In the next paragraph we verify that, for pointsp of P far enough from the
basepointz0, both companion segmentsαp andβp miss the basepointz0. For each
such point, letαp andβp meetγ at the respective pointsap 6= z0 andbp 6= z0,

and consider the triangle (or bigon ifap andbp coincide)papbp with sides|αp|,
|βp|, and the subsegment ofγ betweenap andbp. Let xp andyp be points on the
respective segmentsαp andβp of ρ-distance 2δ from the respective pointsap and
bp. By Lemma A.1, sinceαp andβp are shortest paths toγ fromp, theρ-distance
from xp to yp is at mostδ. Let Cp denote the piecewise geodesic path that starts
atxp, travels alongαp to ap, continues alongγ to bp, then alongβp to yp, and fi-
nally back toxp along a geodesic segment. Note that theρ-length ofCp is at most
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2δ + 4δ + 2δ + δ = 9δ = L (look at the internal points of the isosceles trian-
glepapbp). By the definition ofαp, the segment fromxp to yp alongCp cannot
touchγ, from which it follows thatCp meetsγ only along the subsegment ofγ
betweenap andbp, at which pointsCp approachesγ from opposite sides. This
implies that the curveCp is essential inC−{z0}. The metric ballBρ(z0, n)misses
Cp whenn < ρ(z0, ap)− 5δ, soCp separatesBρ(z0, n) from infinity. By choos-
ing p with ρ(z0, ap) large enough, which is possible by an argument similar to
that of the next paragraph, we may separate any given compact set from infinity
by one of the pathsCp, and the theorem follows.

Finally, if arbitrarily far from the basepointz0 there are points ofP at least one
of whose companion shortest segments toγ meetsγ at z0, then a sequencep(i)
of such points may be extracted for which either the sequence of segmentsαp(i),

or the companion sequenceβp(i), converges to a rayγ ′ based atz0. This limiting
ray γ ′ cannot be asymptotic (see the Appendix) to the rayγ, for this would vio-
late the fact that there is a shortest path fromp(i) to γ, for arbitrarily largei, that
travels all the way to the basepointz0 to meetγ. It follows that the points [γ ] and
[γ ′ ] of the boundary∂ρC are not the same, contradicting our assumption that the
boundary is a singleton.

By choosing the pointsxp andyp in the proof above to be slightly more thanδ
units from the respective pointsap andbp, rather than 2δ away, one may obtain
the value 5δ for the constantL.

4. CP-Type

Two discrete graphical versions of classical extremal length have appeared, the
first in 1962 by Duffin [19], theedge extremal length,and the second more re-
cently by Cannon [14], thevertex extremal length.Edge extremal length is useful
for determining the type of a SRW on a locally finite graph [19]. Vertex extremal
length is useful for constructing square tilings of rectangles with prescribed pat-
terns of contact [15; 32]. In a remarkable paper [23], He and Schramm use vertex
extremal length to give a complete combinatorial characterization of the CP-type
of a plane triangulation graph. For bounded degree graphs, the two discrete ver-
sions of extremal length agree [23, Thm. 8.1], and one of the impressive accom-
plishments of [23] is the realization that vertex extremal length is a fine enough
sieve with which to determine CP-type in the nonbounded degree setting, where
edge extremal length fails. The results to follow concerning the CP-type of nega-
tively curved plane triangulation graphs are verified by simple applications of the
work of He and Schramm in [23], along with our results in Sections 1 and 3. We
begin by recalling definitions and terminology.

For a graphG, we useV(G ) andE(G ) to denote, respectively, the vertex and
edge sets ofG. A plane triangulation graphis the 1-skeleton of a triangulation of
the plane, and acircle packingfor the plane triangulation graphG is a collection
C = {Cv : v ∈V(G ) } of Euclidean circles in the planeCwith pairwise disjoint in-
teriors such thatCv is tangent toCw whenevervw is an edge ofG. By connecting
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the Euclidean centers of tangent circles in the circle packingC by line segments,
we obtain a geometric realization of the abstract graphG as the 1-skeleton of a
geodesic triangulation of, necessarily, a simply-connected domainD(C) inC.This
domainD(C) is called thecarrier ofC, though this term in the literature often refers
also to its geodesic triangulation described previously. Whenever there is a circle
packing forG with carrierD,we say thatG packsthe domainD.Notice that every
plane triangulation graph is locally finite. The following is the basic existence–
uniqueness result concerning infinite circle packings in the plane. In this form,
existence is due to He and Schramm [22] and uniqueness to Schramm [31]. Previ-
ously, Beardon and Stephenson [5] had proved the result in the setting of bounded
degree graphs, and subsequently, He and Schramm, in another impressive accom-
plishment of [23], have extended the existence result to include packings of more
general simply connected domains by sets of more general shapes than circles.

Circle Packing Theorem. Every plane triangulation graph packs exactly one
of the planeC or the unit diskD. A circle packing for a plane triangulation graph
with carrier eitherC or D is unique up to Möbius transformations that fix the
carrier.

Definition. The plane triangulation graphG is CP-parabolic if it packs the
planeC andCP-hyperbolicif it packs the diskD. The circle packing theorem im-
plies that every plane triangulation graph is either CP-parabolic or CP-hyperbolic,
but never both. Amaximalcircle packing forG is one with carrier eitherC orD.

Definition. The locally finite, connected graphG is RW-parabolic if the SRW
onG is recurrent andRW-hyperbolic if it is transient.

For bounded degree plane triangulation graphs, these two notions of type coincide
[23], but—though every CP-hyperbolic graph is RW-hyperbolic—there are plane
triangulation graphs of unbounded degree that are CP-parabolic and, at the same
time, RW-hyperbolic [23, Thm. 8.2]. Duffin’s notion of edge extremal length cap-
tures the RW-type of a graph while Cannon’s notion of vertex extremal length,
as shown in [23], captures the CP-type. We refer the reader to Section 2 of [23]
for the general definitions of combinatorial extremal length, and are content with
quoting the results from [23] that meet our purposes.

Definition. An infinite graphG is VEL-parabolic if, for some (hence, any) ver-
tex v, the vertex extremal length of the family0(v,∞) of infinite, unbounded
paths of vertices based atv is infinite; otherwise,G is VEL-hyperbolic. Similarly,
G is EEL-parabolic if, for some (hence, any) vertexv, the edge extremal length of
the family0(v,∞) is infinite; otherwise,G is EEL-hyperbolic.

We now quote [23, Thm. 7.2], He and Schramm’s combinatorial characterization
of CP-type in terms of vertex extremal length.

Characterization Theorem. A plane triangulation graph is CP-parabolic if
and only if it is VEL-parabolic; equivalently, CP-hyperbolic if and only if VEL-
hyperbolic.
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Recall that a graph is negatively curved if its word metric is so. The main purpose
of this section is to verify the following theorem. Its proof consists of making sev-
eral observations that allow us to apply Corollary 1.5, Theorem 3.1, Theorem 3.4,
and the characterization theorem.

Theorem 4.1. A negatively curved plane triangulation graph is CP-parabolic if
and only if its Gromov boundary is a singleton. A negatively curved plane triangu-
lation graph is CP-hyperbolic if and only if its Gromov boundary is a topological
circle.

LetK be a triangulation of the planeC whose 1-skeleton is the graphG, and de-
fine |K|eq to be the metric realization ofK obtained by identifying each face ofK
with a Euclidean unit equilateral triangle, and using the induced intrinsic metric.
Our claim is that the resulting geodesic metric space|K|eq is quasi-isometric with
the graphG with word metric. This follows quickly from the next observation,
whose easy verification is left to the reader.

Lemma 4.2. Let(X, ρ) be a metric space andY a quasi-dense subset ofX. Sup-
pose that there is a constantµ ≥ 1 such that each pair of pointsy0 andy1 of Y
are joined by aρ-rectifiable path inY ofρ-length at mostµρ(y0, y1). Then(Y, d)
is quasi-isometric to(X, ρ), whered is the intrinsic metric determined by the re-
striction ofρ toY ; indeed, the inclusion ofY inX is a(µ,0)-quasi-isometry with
quasi-dense image.

Exercise. Obviously, the 1-skeletonG ofK is 1/
√

3-dense in|K|eq.Moreover,
if x andy are points on two sides of a Euclidean unit equilateral triangle4 that
share the vertexv, then the path fromx to y throughv in ∂4 has length at most
4/
√

3 times the straight line distance in4 from x to y. Since the metric of|K|eq

is geodesic and equilateral on faces, Lemma 4.2 applies withµ = 4/
√

3 to show
thatG with word metric is quasi-isometric to|K|eq.

Lemma 4.3. The Gromov boundary∂G of the negatively curved plane triangu-
lation graphG is either a singleton or a topological circle.

Proof. As G is the 1-skeleton of the triangulationK, the previous exercise im-
plies that|K|eq is quasi-isometric toG with word metric. Because negative cur-
vature is a quasi-isometry invariant, the metric of|K|eq is negatively curved and,
sinceG is locally finite, the metric of|K|eq is proper and hence complete. Since
K triangulatesC, Theorem 3.1 implies that the Gromov boundary∂|K|eq is ei-
ther a singleton or a topological circle. By the last paragraph of the Appendix and
Lemma 4.2, the inclusion ofG into |K|eq induces a homeomorphism of Gromov
boundaries.

Proof of Theorem 4.1.The forward implications of the two statements of the the-
orem follow from Lemma 4.3, the circle packing theorem, and the reverse impli-
cations, which are proved next.
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According to the monotonicity property [23, 2.1], ifG contains a VEL-hyper-
bolic subgraph thenG itself is VEL-hyperbolic. Assume that the Gromov bound-
ary∂G is a topological circle. By Corollary 1.5, as in the proof of Theorem 2.3,G
contains a quasi-uniform binary treeB as a subgraph. It is a nice exercise in the
calculation of combinatorial extremal length to show that every quasi-uniform bi-
nary tree is VEL-hyperbolic. Alternately, asB has bounded degree, the VEL-type
of B coincides with the EEL-type [23, Thm. 8.1], and since EEL-type coincides
with RW-type for locally finite graphs [23, Thm. 2.6], Lemma 2.1 implies that
B is VEL-hyperbolic. Therefore,G is VEL-hyperbolic and the characterization
theorem applies to show thatG is CP-hyperbolic.

Assume now that the Gromov boundary∂G is a singleton and that the word met-
ric onG hasδ-inscribed triangles for a fixed positive constantδ. Notice that since
G is not a tree,δ is at least unity. Fix a basepointv0, a vertex ofG. By Theorem
3.4, there is a positive constantL such that every compact subset of|K|eq is sepa-
rated from infinity by a path of length at mostL. By the exercise after Lemma 4.2,
each such separating path may be replaced by a separating path in the 1-skeleton
G of |K|eq of length at most(4/

√
3)L. This allows us to construct inductively a

sequence of pairwise disjoint cyclescn, each an edge path in the graphG of com-
binatorial length at most(4/

√
3)L, and each separatingv0 from infinity. It fol-

lows that every element of0(v0,∞) meets every|cn|. Define a vertex label (or
v-metric in the terminology of [23])m : V(G )→ [0,∞) by

m(v) =
{

1/n if v is a vertex of the cyclecn,

0 otherwise,

which is well-defined since the cyclescn are pairwise disjoint. Then them-length
of each pathγ in 0(v0,∞),

Lm(γ ) =
∞∑
i=1

m(γ (i)),

is infinite while them-area
∑

v∈V(G) m(v)
2 is finite. It follows that the vertex

extremal length of the family0(v0,∞) is infinite (see [23, Sec. 2]) and, there-
fore,G is VEL-parabolic. The characterization theorem applies to show thatG is
CP-parabolic.

The calculation of vertex extremal length in case the boundary is a singleton in the
foregoing proof works in more general settings, and is easily modified to prove
the following corollary.

Corollary 4.4. Let v0 be a vertex in the graphG and let {Vn} be a sequence
of pairwise disjoint sets of vertices, each of which separatesv0 from∞. Suppose
there exist positive constantsC and ε such that, for eachn,

Card(Vn) ≤ Cn1−ε.

Then the graphG is VEL-parabolic.
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Finally, we mention a result of Northshield [29; 30], who constructed a bound-
ary for bounded degree, planar graphs that satisfy a strong isoperimetric inequal-
ity and for which every circuit surrounds only finitely many vertices. He then
proved that his boundary, say∂NG for the graphG, is either a topological circle
or a singleton, and that the SRW onG converges almost surely to a∂NG-valued
random variable. IfG is in addition negatively curved, the Northshield boundary
can be identified with the Poisson boundary, and ifG is also a plane triangulation
graph then the Northshield boundary is the Martin boundary. See [34, Sec. 7.E]
for definitions and further references.

5. Further Applications

We do not need that the embedded binary treeB used in the proof of Theorem
4.1 be quasi-uniform to conclude thatG is CP-hyperbolic, only the weaker condi-
tion that it be transient. ThatB is in fact quasi-uniform gives more information
about the maximal circle packing forG than merely that its carrier is the diskD.
For example, the quasi-uniform condition can be used to derive lower bounds on
the hyperbolic radii of certain circles in the maximal packing, as well as various
quasi-denseness results about circles that have uniformly large hyperbolic radii.
We quote two illustrative results that will appear later [9]. In both, we assume that
the unit diskD carries its Poincaré metric, making it a model for hyperbolic geom-
etry. Recall that there is a finite upper bound on the combinatorial length of any
simple path of degree-2 vertices in a quasi-uniform binary treeB. The smallest
such upper bound is called thefundamental lengthfor B.
Theorem 5.1. If G is a bounded-degree plane triangulation graph with max-
imal packingC that contains a quasi-uniform, binary subtreeB, thenG is CP-
hyperbolic and there is a uniform positive lower boundλ on the hyperbolic radii
of any circlesCv of C that correspond to verticesv of the treeB. The boundλ
depends only on the maximum degree ofG and the fundamental length ofB.
Theorem 5.2. If G is a CP-hyperbolic, negatively curved plane triangulation
graph of bounded degree with maximal packingC, then there is a positive con-
stantλ for which the union of the circles ofC of hyperbolic radii at leastλ forms
a quasi-dense subset of the disk in the Poincaré metric. The constantλ depends
only on the maximum degree ofG and the thinness constantδ for the triangles
of G.

Appendix: Negatively Curved Metrics—an Overview

References for recent metric geometry of negatively curved spaces are Gromov
[21], Cannon [13], and Alonso et al. [3], and, for the related topic of nonpositively
curved spaces, Bridson and Haefliger [10]. The older references Blumenthal [6],
Blumenthal and Menger [7], Busemann [11; 12], Aleksandrov et al. [1], and Alek-
sandrov and Zalgaller [2] are invaluble both for comprehensive treatments of met-
ric geometry and for expositions of the initial developments on metric curvature
by a previous generation of mathematicians.



46 Phil ip L. Bower s

The metricρ on the spaceX is geodesicif, for each pair of pointsx andy ofX,
there is aρ-segmentwith endpointsx andy. This means that there is an isometric
mapσ intoX defined on the interval [0, ρ(x, y)] with σ(0) = x andσ(ρ(x, y)) =
y. The metricρ is proper if closed metric ballsB̄ρ(x, R), for x in X andR > 0,
are compact.

Exercise. The geodesic metricρ is proper if and only if it is complete and the
spaceX is locally compact.

The metricρ is rectifiableif each pair of points ofX are endpoints of aρ-rectifiable
path, a pathγ of finite length

`ρ(γ ) = sup
P

{∑
ρ(γ (ti), γ (ti+1))

}
,

where the supremum is taken over all partitionsP of the domain interval ofγ. The
intrinsic metriconX determined by a rectifiable metricρ is denoted asρ∗ and
defined by

ρ∗(x, y) = inf { `ρ(γ ) : γ is a path containingx andy }.
The rectifiable metricρ is intrinsic if ρ = ρ∗. All geodesic metrics are intrinsic.

Exercise. If the metricρ on the spaceX is intrinsic, thenX is connected and
locally connected.

Inscribed Triangles and Metric Negative Curvature. There are various
equivalent ways of formulating an asymptotic version of negative curvature for
geodesic metrics that captures the behavior that one expects from experience with
simply connected, negatively curved Riemannian manifolds. We prefer to work
with the geometrically appealing notions of thin and inscribed triangles, rather
than Gromov’s original approach of using hyperbolic inner products that, though
at times offering cleaner proofs and constructions, is less intuitive to the uninitiated.

Let (X, ρ) be a geodesic metric space andδ a nonnegative constant. Although
there may fail to be unique geodesics between points ofX, it should cause no con-
fusion to use the notationxy to denote some geodesic segment with endpointsx

andy.With this notation,xyz denotes a set consisting of three geodesic segments
xy, yz, andxz. The trianglexyz is δ-thin provided theρ-distance from any point
on any side ofxyz to the union of the other two sides is at mostδ. The internal
pointsof xyz are the pointsµ(x) on segmentyz, µ(y) on segmentxz, andµ(z)
on segmentxy for which

ρ(x, µ(y)) = ρ(x, µ(z)), ρ(y, µ(x)) = ρ(y, µ(z)),
and ρ(z, µ(x)) = ρ(z, µ(y)).

If xyz is a Euclidean triangle inC, the internal points are the points of tangency
of the circle inscribed inxyz. The trianglexyz is δ-inscribedif the ρ-diameter of
the set{µ(x), µ(y), µ(z)} of internal points is at mostδ.
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Remark. The reader should be cautious as the topic is young enough that ter-
minology has not solidified. In [3], for example, thin triangles are referred to as
“slim triangles”, whereas [13] conforms to our usage. A seemingly stronger no-
tion of inscribed triangles than ours is referred to in [3] as “thin triangles”, while
havingδ-inscribed triangles is rendered as “the insize is bounded byδ.”

Definition. We say that the geodesic metricρ onX hasδ-thin(-inscribed) trian-
glesif every geodesic triangle inX is δ-thin (-inscribed), and hasthin (-inscribed)
trianglesif it hasδ-thin (-inscribed) triangles for some nonnegative constantδ. In
either case, the constantδ is called athinness constantfor ρ orX.

In this paper, we primarily use the property ofδ-inscribed triangles showcased in
the following lemma. It is for this reason that we have introduced the lesser-used
term “inscribed triangles” rather than only the more common “thin triangles”.

Lemma A.1. If (X, ρ) hasδ-inscribed triangles, then every geodesic triangle
xyz is δ-uniform,meaning that if the pointsa on segmentxµ(z) andb on segment
xµ(y) satisfyρ(x, a) = ρ(x, b), then theρ-distance betweena andb is at most
δ, and similarly withx, y, andz permuted.

Proof. Sinceρ hasδ-inscribed triangles, it suffices to find pointsy ′ on segmentxy
andz ′ on segmentxz such that the pointsa andb are two of the internal points of
the trianglexy ′z ′. Let β, γ : [0,1]→ X be unit-time parameterizations (i.e., pro-
portional to arclength) of the respective geodesic segmentsxy andxzwith β(0) =
x = γ (0) andβ(1) = y andγ (1) = z. Defines : [0,1]→ R by

s(t) = 1
2[ρ(x, β(t))+ ρ(x, γ (t))− ρ(β(t), γ (t))],

so that the internal points of trianglexβ(t)γ (t) oppositeβ(t) andγ (t), respec-
tively, are

µ(β(t)) = γ
(

s(t)

ρ(x, z)

)
and µ(γ (t)) = β

(
s(t)

ρ(x, y)

)
.

Becauses is continuous withs(0) = 0 and

s(1) = r = 1
2(ρ(x, y)+ ρ(x, z)− ρ(y, z)) = ρ(x, µ(y)) = ρ(x, µ(z)),

s takes on every value between 0 andr. Let r0 = ρ(x, a) and observe thatr0 is in
the interval [0, r]. It follows that there is a numbert0 in [0,1] such thats(t0) =
r0, anda andb are internal points opposite the respective verticesz ′ = γ (t0) and
y ′ = β(t0) in the trianglexy ′z ′.

Exercise. Prove that everyδ-thin triangle is 4δ-inscribed.

Definition. The previous lemma and exercise show that the geodesic metricρ

has thin triangles if and only if it has inscribed triangles. Whenρ has thin or in-
scribed triangles, we say thatρ is asymptotically negatively curvedor hyperbolic.
We shall usually delete the descriptively correct adjective “asymptotically” and
refer simply to anegatively curved metric.
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Quasi-isometries. A not necessarily continuous functionλ : T → X between
the metric spaces(T, d ) and(X, ρ) is a(µ,C)-quasi-isometry,whereµ ≥ 1 and
C ≥ 0 are constants, if for all pointsu andv of T,

1

µ
d(u, v)− C ≤ ρ(λ(u), λ(v)) ≤ µd(u, v)+ C.

A quasi-isometric mappingis a continuous quasi-isometry, and aquasi-isometric
embeddingis one that is also a topological embedding. A subsetV of T isM-dense
if every point ofT isM-close to some point ofV, and isquasi-densein T if it is
M-dense for someM ≥ 0. Both (T, d ) and(X, ρ) arequasi-isometricif there is
a quasi-isometryT → X whose image is quasi-dense inX. In this case, there is a
quasi-isometryX→ T whose image is quasi-dense inT . In fact, quasi-isometry
is an equivalence relation on the class of metric spaces.

Lemma A.2. For positive constantsM andN, if V is anM-dense subspace of
T and if λ : T → X is a function for which the restrictionλ|V is a (µ,C)-quasi-
isometry such that, for everyv inV, theλ-image of the closed metric ballB̄d(v,M)
is contained in the closed metric ballB̄ρ(λ(v),N ), thenλ is a(µ,C+2µM+2N)-
quasi-isometry.

Proof. The proof is an exercise in the use of the triangle inequality.

Lemma A.3. Let λ, λ′ : T → X be functions such thatλ is a (µ,C)-quasi-
isometry andλ′ isN -close toλ. Thenλ′ is a (µ,C + 2N)-quasi-isometry.

Proof. The proof is an even easier exercise in the use of the triangle inequality
than that of the previous lemma.

Exercise. Any geodesic metric quasi-isometric to a negatively curved metric is
itself negatively curved.

Divergence of Geodesic Rays. Throughout the remainder of this appendix,
(X, ρ) is a negatively curved geodesic metric space with, say,δ-inscribed triangles
for some fixed positiveδ, andx0 denotes a fixed basepoint inX. The next lemma
presents the key divergence property of geodesic rays in a negatively curved met-
ric space that is used several times in Section 1 to prove the theorem of the Intro-
duction. Since we use it so often in this paper, and since we could find no proof
of exactly the inequality presented in the lemma, we include a proof.

Lemma A.4. Let σ0 and σ1 be arclength parameterized geodesic rays(or seg-
ments) in X based atx0 and suppose that, for some parameter valuet0, theρ-
distance betweenσ0(t0) andσ1(t0) is at least2δ. Then

ρ(σ0(t), σ1(t)) ≥ 2(t − t0)+ ρ(σ0(t0), σ1(t0))− δ
for all t ≥ t0 ( for whichσ0(t) andσ1(t) are defined).
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Proof. Let 2r denote theρ-distance betweenσ0(t0) andσ1(t0). Sincer ≤ t0,
δ/2 ≤ t0 − r + δ/2.

For anyτ in the half-open interval(t0−r+δ/2, t0], the triangle inequality implies
that

2r ≤ 2(t0 − τ)+ ρ(σ0(τ ), σ1(τ )) < 2r − δ + ρ(σ0(τ ), σ1(τ )),

implying that
δ < ρ(σ0(τ ), σ1(τ )). (A.1)

Suppose there exists a parameter valuet greater than or equal tot0 for which

ρ(σ0(t), σ1(t)) ≤ δ. (A.2)

Let tmin be the least such value oft. By continuity of the metric,

ρ(σ0(tmin), σ1(tmin)) = δ,
and the triangle inequality implies, since theρ-distance betweenσ0(t0) andσ1(t0)

is at least 2δ, that
t0 ≤ tmin − δ/2. (A.3)

Because the pointsσ0(tmin − δ/2) andσ1(tmin − δ/2) are internal points of a tri-
angle with verticesx0, σ0(tmin), andσ1(tmin), theρ-distance between them is at
mostδ. By (A.3), tmin is not the least parameter value greater than or equal tot0
that satisfies (A.2), a contradiction. This with the previous calculation shows that
(A.1) holds for everyτ larger thant0 − r + δ/2.

Now let t be any parameter value greater thant0 and set 2s equal to theρ-
distance betweenσ0(t) andσ1(t). Thenσ0(t − s) andσ1(t − s) are internal points
of a triangle with verticesx0, σ0(t), andσ1(t), and hence theρ-distance between
them is at mostδ. From the previous paragraph it follows that

t − s ≤ t0 − r + δ/2.

Multiplication by 2 and rearrangement of this inequality yield the inequality that
we seek.

Corollary A.5. Under the hypotheses of the previous lemma,

ρ(σ0(s), σ1(t)) ≥ (t − t0)+ (s − t0)+ ρ(σ0(t0), σ1(t0))− δ
for all s, t ≥ t0 ( for whichσ0(s) andσ1(t) are defined).

Proof. Use the triangle inequality and the previous lemma.

The next theorem presents a characteristic property of geodesic rays in a nega-
tively curved space. Its proof is essentially that of [3, Thm. 2.19], except that the
proof there assumes (without so stating) that the constantδ is greater than12 .
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Theorem A.6 (Exponential Divergence of Geodesics).Let σ0 and σ1 be arc-
length parameterized geodesic rays inX based atx0 and suppose that theρ-
distance betweenσ0(t0) and σ1(t0) is greater thanδ for some parameter value
t0. Then, for each nonnegative integern and each pathγ from σ0(t0 + nδ) to
σ1(t0+ nδ) in the complement of the open ballBρ(x0, t0+ nδ), theρ-length ofγ
satisfies

`ρ(γ ) ≥ 2n−1δ.

The Gromov Boundary. There are two equivalent approaches to the Gromov
boundary and its topology in the literature—in terms of Gromov’s hyperbolic in-
ner product and equivalence classes of sequences that are convergent at infinity
(see [21]) and, alternately, in terms of equivalence classes of fellow-travelling
geodesic rays and Cannon’s combinatorial half-spaces (see [13]). The former has
the advantage of oftentimes providing very clean proofs of convergence results
whereas the latter has the advantage of providing good, accurate geometric intu-
ition. We present an approach here that has the advantages of both Gromov’s and
Cannon’s and, at the same time, is very concise in its description and confirma-
tion that it defines a topology. This approach uses Cannon’s preference in [13] for
describing the boundary in terms of equivalence classes of fellow-travelling geo-
desic rays, but describes the topology by prescribing precisely when a sequence of
such classes converges. Any readers familiar with the two standard descriptions
of the boundary will see immediately that our description defines the same topol-
ogy as the former ones. We shall restrict our attention to the setting in which the
metric, in addition to being negatively curved, is also proper, in which case the
boundary provides a compactificationX̄ = X ∪ ∂X.

A geodesic rayis an isometric embedding of the interval [0,∞) into X, and
two geodesic raysσ0 andσ1 areasymptotic,denoted asσ0 ∼ σ1, if the Haus-
dorff distance between their images is finite, meaning that each is contained in the
n-neighborhood of the other, for some positive constantn. In this case, it is easy
to see that in fact they(% + 2n)-fellow travel,where% is theρ-distance between
σ0(0) andσ1(0); this means that theρ-distance betweenσ0(t) andσ1(t) is at most
(% + 2n) for every parameter valuet. We say that the rayσ is basedatσ(0) and
that its trace is the image|σ| = σ([0,∞)). In our context in which(X, ρ) has
δ-inscribed triangles, Lemma A.4 implies that when two asymptotic raysσ0 and
σ1 are both based at the common pointx0, they 2δ-fellow travel. We use the nota-
tion [σ ] to denote the equivalence class of the rayσ under the equivalence relation
of being asymptotic, and∂X to denote the set of such equivalence classes. For
each geodesic rayσ, extend its domain to the extended interval [0,∞] by defin-
ing σ(∞) to be the point [σ ] of the boundary∂X.We then say thatσ is a geodesic
segmentfrom σ(0) to σ(∞) = [σ ].

For each pointc in the boundary, there is a geodesic rayσ based atx0 such that
c = [σ ]. To see this, letτ be a ray for whichc = [τ ] and, for each positive inte-
gern, let σn be a geodesic segment fromx0 to τ(n). Use the fact thatρ is proper
in conjunction with a diagonal argument to show that a subsequence of the seg-
mentsσn converges to a geodesic rayσ. Use thin triangles to show thatσ andτ
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are asymptotic. We use the phrase∂X is parameterized fromx0 to indicate a con-
text in which all geodesic rays representing any point of the boundary are based
atx0. Notice that we may write

∂X = { σ(∞) : σ is based atx0 }.
Let X̄ denote the unionX∪ ∂X, and define a sequence of pointscn in X̄ to con-

vergeto the pointc of X̄ in the following way, depending on whether or notc is a
boundary point. Whenc is inX, cn → c means that there exists a positive inte-
gerN such that the sequence{ cn : n ≥ N } is contained inX and converges toc
with respect to the metricρ. Whenc is a boundary point,cn → c means that for
everyR ≥ 0 there exists a positive integerN such that

(i) theρ-ballBρ(x0, R) does not containcn whenevern ≥ N, and
(ii) for eachn ≥ N, there exist segmentsσn from x0 to cn andσ from x0 to c that

6δ-fellow travel on the interval [0, R].

Easily, limits of convergent sequences are unique and subsequences of a conver-
gent sequence converge to the limit of the sequence.

Exercise. Use Lemma A.4 to show that the convergent sequences and their lim-
its remain unchanged if item (ii) is replaced by the following statement: For each
n ≥ N, all segmentsσn from x0 to cn andσ from x0 to c 6δ-fellow travel on the
interval [0, R].

Exercise. Convergence of points of̄X to a boundary point is defined with ref-
erence to a basepointx0. Use thin triangles and a diagonal argument to verify that
the definition does not depend on the basepoint.

Define a subset of̄X to beclosedif it contains all its limit points, where the point
c of X̄ is a limit point of a setC if there is a sequence of pointscn in C that con-
verges toc. It is an easy exercise to verify that this defines a topology onX̄; that
the union of two closed sets is closed uses the observation that limits are preserved
by subsequences. Throughout the paper proper,X̄ carries this topology and∂X
carries the subspace topology it inherits fromX̄. Obviously, the subspace topol-
ogy thatX inherits fromX̄ is exactly theρ-metric topology, and it is easy to see
thatX is open inX̄. Moreover, the diagonal argument (alluded to previously for
constructing rays from sequences of segments using the properness of the metric)
shows quickly thatX̄ is sequentially compact. That̄X is metrizable is proved in
[16; 20] and, coupled with the sequential compactness, shows that bothX̄ and its
closed subspace∂X are compact. Thus,̄X is a compactification ofX and, for each
geodesic rayσ inX, the extended ray gives an embedding of the extended interval
[0,∞] into X̄—where, of course, [0,∞] has the usual topology, making it an arc.

One of the most important properties of the Gromov boundary is that quasi-
isometries between proper, negatively curved metric spaces extend continuously
to boundaries. This in turn follows from the fact thatquasi-geodesic rays,that
is, quasi-isometries of the half-line [0,∞) into X, fellow-travel actual geodesic
rays. This may be proved with the aid of [3, Prop. 3.3], and a consequence is
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that quasi-isometric, proper, negatively curved metric spaces have homeomorphic
boundaries.
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