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1. INTRODUCTION. In [7], Palamodov established a homological theory for pro-
jective spectra of topological vector spaces. In applications of this theory, it is cru-
cial to decide whether, for a given projective spectrum X of (DFS) spaces, a cer-
tain vector space Proj' X is trivial. A topological characterization of Proj' X = 0
has been given by Retakh [8]. In practical cases, its evaluation is hard. In Vogt [9;
10], more tractable conditions were given, which were motivated from the struc-
ture theory of nuclear Fréchet spaces. There is a sufficient as well as a necessary
condition, but these are probably different. In the case of sequence spaces, it is
shown in [9] that the necessary condition is also sufficient. Recently, Wengen-
roth [11; 12] has proved the sufficiency of the necessary condition also for (DFM)
spectra. His proof is based on the investigation of topological properties of the
dual inductive spectrum. In the present paper, we give a direct proof of Wengen-
roth’s result for the case of (DFS) spectra. It grew out of a third condition, the
sufficiency of which was shown in Braun [1].

To present an application, let P(D) denote a constant coefficient partial differ-
ential operator, let @ C R¥ be a convex domain, and denote by A(S2) the space
of all real analytic functions on Q and by I'?() the Gevrey class of exponent d.
Recall that I'! = A and that I'?(2) contains test functions if d > 1. Hérmander
[5] has characterized the surjective operators P(D): A(2) — A(L2). He used a
Mittag—L effler procedure to show the sufficiency of his condition and a Baire cat-
egory argument to derive necessity. Braun, Meise, and Vogt [2; 3] used Palam-
odov’s homological approach to extend this theorem to I'¢(R¥), d > 1. To do so,
they proved the equivalence of Vogt’s two conditions using Fourier analysis. This
failed in the case of arbitrary convex domains, which was solved in Braun [1].
The functional analysis part of this proof was distilled out of the Mittag—Leffler
argument in Section 5 of Hormander [5]. Further refinement then led to the proof
presented here. A very similar proof was independently found by Frerick and
Wengenroth [4] by dualizing the acyclicity argument of Wengenroth [11; 12].

The authors thank the referee for suggesting a stronger formulation of Corol-
lary 10.

2. DEFINITION. A projective spectrum (Xp, L,’g +1)k consists of a sequence (X;)x
of vector spaces together with linear mappings t,f +1° Xk+1 —> Xi. Each of the
spaces Xy is the inductive limit X; = Uf;l X nofasequence Xp ) C Xpo2 C -+
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of Banach spaces. The unit ball of Xy , is denoted by By ,. For K > k, we define
spectral mappings by

‘ idy,, K =k,
L =
N T €7
We require that
¥ Xg, C Xy, forall k, K, and n. 1)

3. THEOREM (Palamodov [7, p. 542]). There is a functor Proj' such that, for
each exact sequence of projective spectra

0O X—->Y—>Z-—>0,
there is a natural long exact sequence of vector spaces

0 — proj X — proj Y — proj Z — Proj! X — Proj' Y — Proj! Z — 0.

In applications, it is crucial to have topological criteria for Proj' X = 0. The
following definition presents two of those.

4. DEFINITION (Vogt [9; 10]). For a projective spectrum X as in Definition 2,
we define the following properties.

(P2) X is said to satisfy condition (P,) if, for each u, there are n and k such that,
for all K and m, there are N and S satisfying

U Bem C S(Br,w + Bun).

(P,) For each p there are k and 7 such that, for all K, m, and ¢ > 0, there are N
and S with
LgBk,m C SL;BK,N +&By, p.

Note that neither (P;) nor (P,) are changed if for any k the sequence X; | C
Xy 2 --- is replaced by a subsequence. Thus the assumption (1) does not restrict
generality.

The spectrum X is said to be reduced if, for each u, there is k such that, for all
K, the closure of LZ-X x in X, contains L;: Xi. This definition of being reduced is

implied by the usual one as well as by (P5).

5. LEMMA. If the spectrum X is reduced and satisfies (P,), then there are, for
each ., numbers k and n such that for each K we have

X, C Xk + By, @

For given 11, the number n is the same as in (Py).

Proof. For given pu there are n and k as in (P;). Let K be given. Then (P,)
implies that for each m there are numbers N (m) and S(mn) with

l)‘:Bk,m - S(nl)(tﬁBK,N(m) + B,u,n)- (3)
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Since the spectrum is reduced, there exists an / such that, for all X, the space L',‘< Xk
is dense in ¢} X; in the topology of X;. We claim that

u'X, Cc e Xg + Bun.
Assume this to be false. Then there is an x € X; with L;"x & L;XK + By.n. Set
1
U= F(g rj))_ek,j).

This is a neighborhood of zero in X (see e.g. [6, 24.6]). Since L’,‘(X x 1s dense in
leX[, there are £ € X and Zf:l}"fbj € U, thatis, A; > 0 with Zle A =1
and b; € S(j) !By, j=1,..., L, suchthat

L
fo = t’I((S + lebj.
j=1

By (3), we have
L;:bj S LII!&XK + Bu',,.
This implies

" n
tl X E LKXK + Bu,n.

As this contradicts the assumption, the claim is shown. O

6. REMARK. By removing some of the steps Xy, we can arrange that (P,) holds
in the following form.

(P,)’ For each k € N there is n(k) € N such that, for all K,m € Nand ¢ > 0,
thereare N = N(k, K,m,e) e Nand S = S(k, K, m, &) > 0 with

z,’;‘"lBk,m C St’}}"lBK,N + eBi_10)-

7. LEMMA. If a spectrum X satisfies (P;), then there is a sequence (n(k))ren
of natural numbers such that the following holds: For allk, K, m € N there are
Nk, K,m) €e Nand S(k, K, m) > 0 with

k—1
k— < k—1 —
b Bem C Sk, K, m) " By gkmy T ﬂ(‘z—ﬁ "By iw-

v=1

Proof. We may assume that (P,) holds in the form (P,)’. First, we define S, N,
and 7, using S, N, and n as in Remark 6. The definition proceeds by induction
over k, starting with k = 2:
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S@2,K,m)=5@2,K,m,1),

Sk, K, m) = 2S(k, K,m, — ! )
28k — 1, k, n(k))

€y = 1,
1
& = = s
2(1+ Sk — 1, k, n(k)))
N@2,K,m)=NQ,K,m,1),

. N(k—-1,K,Nk -1,k n(k)), if m<Nk-—1,k, ,
N(k,K,m):[ ( ( n(k)), &) i m<1\~f(k 1, k, n(k))
Nk —1,K,m,¢g) if m >Nk —1,k, nk)),

i(2) =n(2),

fi(k) = max (n(k + 1), Nk, k + 1, n(k + 1)))..

It is immediate from (P,)’ that the claim holds for k = 2. To proceed inductively,
let k > 3 be given and assume that the assertion is true for £ — 1. Let K and m be

given and define L
S =Sk -1, k,nk)).

The induction hypothesis implies

k—2
k-2 k-2 -
U1 Be—1,nt00 € S By fe—1.4may T m(‘z—Z) "By i) @)
v=1
From (P,)’ we get
L,’j_lBk,m C Sl];(_IBK,N(k,K,m,ek) + €k Br—1,n%)- )

Letu € By, be given. Because of (5), there are vi—; € SBg Nk, k,m,e) and Ux—1 €

EkBk—l,n(k) with

k—1 k-1
by U =lg Vp_1+ Ug_1.

Because of (4) there are
k—2

R ~ ~1
Vk—2 € EkSBL fi—1. k.00 and uz_p € g ﬂ(tz_z) By i)
v=1

with L’g:fuk_l = L’k‘_zvk_g + ity_5. Set

Up—2 = Ug—1 — l;f_lvk—z- ,
Then, for 1 < v <k — 2, the following holds:

14 v v
bp_1Uk—2 = lp_(Uk—1 — L V2
k—2 k—2 ~
= ti_z(tk_luk—l — 1 vg_2) = t;_zuk—z € & By ;).
Because of the definition of 72 and of (1), this implies
k—1 3
Up—2 = Up—1 — b Vk—2 € ExBrotnt) + &kSBy_1 §k—1,kni)

C (S + 1) Br_1ig—1)-



A Sufficient Condition for Proj! X =0 153

Note that &,(S + 1) = 1/2. Thus uz_» € (1/2) (52} (2_,) "' By,iqy- This shows

k—1 k—1
lp U =lg Vg 1+tk Moroa + ur—

k—1
‘ 1
k-1 -1
€ St Benakmen T 5Bk fu-1knin 15 (@_1) ™" Busiw-
v=1

Thus, form > ﬁ(k — 1, k, n(k)) we have
1 i k=1

k= szm+ ﬂ(tk 1) an(u)

L u € StK BKN(kask)+

Inductively, for all j € N we find elements x;, y;, and w; in the corresponding
bounded sets with

k-1 k-1
l,k u=1yg x1+tk yl—l—wl,
k-1

“lyp = 4 Y wi

Since Xy, and X;_1 7—1) are Banach spaces, the following series converge:

00 00
V= ij € 2SBK,N(k,K,m,sk), w = Z: wj € Bk_l,ﬁ(k_l).
Jj=1 j=1

For each ! € N we have

1
-1 k-1
u—tK E xJ+Lk )’l+2 w;j.
Jj=1

Since the spectral mappings are continuous, this implies

k—1 k—1
i, u=Ig v+uw.

Furthermore, for 1 < v < k — 1, we have (;_;w = Z]"’;I t;_wj. This sum
converges absolutely in X, 7(,) to an element of B, (). Thus

k-1
k—1 k—1 -
L, uce ZSLK BK’N(k,K,m,gk) + ﬂ(tz—l) le,ﬁ(v),

v=1

which ends the induction step.
8. THEOREM. If the spectrum X satisfies (P7), then Proj! X = 0.

Proof. We must prove the following necessary and sufficient condition (P) of [10,
4.4], which is a version of Retakh’s condition [8]:

(P) There is a sequence (n(k))ren in N such that for each u there is k such that
for each K there is S with

©
t,tLXk C LﬁXK + S ﬂ(t;)_le’ﬁ(v).
v=1

We may assume that the spectrum satisfies (P,)’. By the remark following Defi-
nition 4 it is reduced, and by Lemma 5 it also satisfies (2) withk = p + 1. Let i
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be given, and set k = u + 2. Let m and K be arbitrary, and let N and $ be as in
Lemma 7. Then

) k=2, k—1
U2 Xe C oy T Xk + Biciawm)

C iy 2 Xk + Stk — 1, K, n(k — D) " By 1. knte—1))
k-2
+ ﬂ(t;:_l)—lBu,ﬁ(v)
v=1

73
C g Xk + () @_) " Buiiy-

v=1

REMARK. Theorem 8 was independently obtained by Frerick and Wengenroth [4].
Its significance comes from Corollary 11. Wengenroth proved Corollary 11 for
the larger class of (DFM) spectra in [11] (see also Wengenroth [12]). There, he
derives the result from his theorem about acyclic inductive spectra.

9. LEMMA. If a reduced (DFS) spectrum X satisfies (Py), then it satisfies (P5).

Proof. For given u let k and n be as in (P;). For K and m arbitrarily given
there are N and S as in (P,). There is [ > n such that B, , is relatively compact
in By, ;. Thus there is a finite number of points xi, ... ,x; € X, , with SB,, , C
U}Ile (xj + (e/2) BM) . The spectrum has property (2) by Lemma 5; thus, for each
x;j € Xy, there are elements y; € Xg and b; € (¢/2) B, , with ¢f'x; = (& y; + b;.
Each y; lies in some Xk n(j). Choose N = max({N}JU{N(j) | j=1,...,L})
and S’ = maxf=1 lyillx,n~- If now u € By, is arbitrary, then there are v € SBg y
and u; € SB, , with ¢;'u = (% v + u,. For u, there are j and u, € (¢/2)B,,; with
U1 = Xj + uy. Thus

€
2
Cc S+ S’)tﬁBK,N/ -+ EBM,"‘ O

£
you=1gv+iky+bj+uy € SthBxy+ Sty Bg . + 5Bt + 5 By

10. CorOLLARY. For a (DFS) spectrum X, the following are equivalent:
(1) X satisfies property (P2) and is reduced,;

(2) X satisfies property (P3);

(3) Proj! X =0.

(For the notion of a reduced spectrum, see Definition 4.)

Proof. Lemma 9 shows that (1) implies (2). Theorem 8 gives that (2) implies (3).
From (3), we get (P,) by [10, 2.7]. In this case, X is reduced by condition (P),
which was quoted in the proof of Theorem 8. O

In the context of (DFS) spectra, the bipolar theorem allows a dual version of (P,),
called (P;)*. By the remark before Theorem 2.8 of [10], (P2) and (P;)* are equiv-
alent for (DFS) spaces. Condition (P,)* has the advantage that it is expressed as
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an inequality for Minkowski functionals ||y}, , = sup{|y(x)| | x € By} for
y€X,.

11. CoroLLARY (Wengenroth [11,3.10]). Ifthe spectrum X is a reduced ( DFS)
spectrum, then the following are equivalent:

(1) Proj' X = 0;
(2) the following condition (Py)* is satisfied:
(Py)* for each w, there are n and k such that, for all K and m, there are N
and S such that

Iyllz . < Smax(|yllk x> I¥17,0)-

forally € X,.

To investigate more closely what condition (P;)* means, assume that we are given a
set V, alinear space A of functions on V, and a family (b, )x» of weight functions
on V such that

ben <biyin and bg, > bypy for k,n e N.

We assume

Xin={F€AlIfI}, = sup;ey| f(®) exp(—bia(t)) < 00} (6)
and hence
X;c ={feA| ||f";,n < oo foralln}.

In this context, condition (P,)* becomes:

(PL,) For each u, there are n and k such that, for all K and m, there are N
and S such that for each f € X :L that satisfies estimates (a) and (b) also
condition (c) is valid, where

(@) log|f| < byn,
(b) log|f| < bx,um,
(c) loglf| < bgm +S.

In the investigation of partial differential operators P (D), a version of the Ehren-
preis fundamental principle can often be used to show that the kernel spectrum of
P (D) is of the form (6), with A the space of holomorphic functions on an alge-
braic variety V. Thus the condition (P;)* is an extension of the Phragmén—Lindelof
condition of Hormander [5]. In this paper, he characterizes when P(D): A(Q2) —
A(S2) is surjective, where A (£2) denotes the space of all real analytic functions on
a convex domain € C R”. Predecessors of Corollary 10 were applied by Braun,
Meise, and Vogt [2; 3] and Braun [1] to characterize the surjective operators on
Roumieu classes. In concrete settings, complex analytic methods are used to re-
formulate (PL,) in more suitable terms. In particular, condition (b) can often be
replaced by a condition involving only the real points of V. This makes the analogy
to the classical principle of Phragmén and Lindel6f more obvious.



156 'RUDIGER W. BRAUN & DIETMAR VOGT

References

[1] R. W. Braun, Surjektivitit partieller Differentialoperatoren auf Roumieu—Klassen,
Habilitationsschrift, Diisseldorf, 1993.

[2] R. W. Braun, R. Meise, and D. Vogt, Applications of the projective limit functor
to convolution and partial differential equations, Advances in the theory of
Fréchet spaces (T. Terzioglu, ed.) (Istanbul 1987, NATO ASI Series C, vol. 287),
pp- 2946, Kluwer, Dordrecht, 1989.

, Characterization of the linear partial differential operators with constant
coefficients which are surjective on nonquasianalytic classes of Roumieu type on
RY, Math. Nachr. 168 (1994), 19-54.

[4] L. Frerick and J. Wengenroth, A sufficient condition for vanishing of the derived
projective limit functor, Arch. Math. (Basel) 67 (1996), 296-301.

[5] L. Hormander, On the existence of real analytic solutions of partial differential
equations with constant coefficients, Invent. Math. 21 (1973), 151-183.

[6] R. Meise and D. Vogt, Einfiihrung in die Funktionalanalysis, Vieweg Stud. 62,
Vieweg, Braunschweig, 1992.

[7] V. P. Palamodov, The projective limit functor in the category of linear topological
spaces, Math. USSR-Sb. 4 (1968), 529-559.

[8] V. S. Retakh, Subspaces of a countable inductive limit, Soviet Math. Dokl. 11
(1970), 1384-1386; translation of Dokl. Akad. Nauk SSSR 194 (1970), no. 6.

[9]1 D. Vogt, Lectures on projective spectra of (DF') spaces, Seminar lectures,

AG Funktionalanalysis, Diisseldorf/ Wuppertal, 1987.
, lopics on projective spectra of (LB)-spaces, Advances in the theory of
Fréchet spaces (T. Terzioglu, ed.) (Istanbul 1987, NATO ASI Series C, vol. 287),
pp. 11-27, Kluwer, Dordrecht, 1989.
[11] J. Wengenroth, Retractive (LF ) spaces, Dissertation, Trier, 1995.

[3]

[10]

[12] , Acyclic inductive spectra of Fréchet spaces, Studia Math. 120 (1996),
247-258.

R. W. Braun D. Vogt

Mathematisches Institut Fachbereich Mathematik

Heinrich-Heine-Universitit Bergische Universitit

Universitétsstrafle 1 GauBstraf3e 20

D-40225 Diisseldorf D-42097 Wuppertal

Germany Germany

braun @cs.uni-duesseldorf.de vogt@math.uni-wuppertal.de



