Stability for a Class of Foliations
Covered by a Product

SANDRA L. SHIELDS

Introduction

In this paper, we study transversely orientable, codimension-1 C! foliations of
Riemannian 3-manifolds. In particular, we examine foliations of a manifold M
that are covered by the canonical foliation of 93> by parallel hyperplanes, which
we refer to as “covered by a product”. These foliations are particularly nice in the
sense that they are completely determined by the induced action of 71 (M) on the
real line, which is the leaf space of the universal cover (see [20]). This family of
foliations includes fibrations as well as weak stable (or unstable) foliations associ-
ated with many Anosov flows, including geodesic flows or suspensions of Anosov
diffeomorphisms. Several recent works have focused on whether the associated
foliations of other Anosov flows are covered by a product (e.g., [1; 3; 5]).

For closed M, foliations that are covered by a product constitute a large subset
of the taut foliations. However, they are strictly a proper subset, as shown by an
example in Section 2. While the property of being taut is stable for closed man-
ifolds in the sense that all C! close foliations are also taut [21], this is not at all
clear for the property of being covered by a product. (We refer to the metric on the
space of C I foliations, defined by Hirsch in [10]). In this paper, we consider the
class of foliations of a closed manifold M # S? x S! that have a transverse loop
which lifts to a copy of the leaf space in the universal cover and hence are covered
by a product. We find conditions that are sufficient to ensure these foliations are
stable in the sense that nearby foliations are also in this class.

More precisely, we find a condition on a branched surface W constructed from
a foliation of a manifold M that is sufficient to guarantee the existence of such a
transverse loop z. Under certain conditions (given in Lemma 2.3), the branched
surface W can then be modified to obtain a branched surface W’ with the property
that, for every foliation carried by W’ and covered by a product, t is a transverse
loop that is covered by a copy of the leaf space. We denote by W' the lift of W’
to the universal cover of M. The covering of t is a curve that is transverse to 148
and if it intersects a set of smooth submanifolds in a particular manner (which we
make explicit at the end of Section 1) then we call it a global transversal for W
In this case we have that, for every foliation carried by W', t is a transverse loop
that is covered by a copy of the leaf space. In short, we show the following.
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THEOREM 2.5. Let F, be a foliation that is covered by a product, and let T be
a transverse loop that is not freely homotopic to an integral loop of F,. If F, is
carried by a branched surface for which the hypothesis of Lemma 2.3 is satisfied,
then there exists a branched surface W' carrying F, such that every foliation car-
ried by W' is covered by a product if and only if the covering of t is a global
transversal for W'.

In particular, when the manifold M is closed, Theorem 2.5 provides a sufficient
condition for the stability of the property “covered by a product”. This follows
from the fact that if a foliation F of a closed manifold is carried by a branched
surface, then all sufficiently close foliations are carried by this branched surface.

The paper is divided into two parts. Section 1 contains the preliminary infor-
mation necessary to understand the results presented here. Details can be found
in [2] or [17]. Section 2 contains the main results.

The author wishes to thank S. Goodman for many helpful conversations, and
also the referee for numerous comments that improved the paper.

1. Branched Surfaces Constructed from Foliations

The idea of using branched surfaces to study foliations can be traced back to
Williams [23]. In [2], Christy and Goodman describe the construction of branched
surfaces from transversely oriented, codimension-1 foliations of a Riemannian 3-
manifold without boundary. The branched surfaces obtained in this manner are the
same as those constructed by Floyd and Oertel [4] from laminations of 3-manifolds.
Therefore, they are more restricted than those used by Williams.

The construction of a branched surface from a foliation is not essential to un-
derstanding the results presented here. Hence we provide only a brief description
of branched surfaces constructed in this manner. We also outline the relationship
between a given branched surface and the foliation used for its construction. More
details are given in [17].

In what follows, W represents a branched surface constructed from a foliation of
a manifold M without boundary. By the construction, W is imbedded in M and is
transversely orientable. The complement M — W is the union of 3-manifolds. The
boundary of each component D of M — W is divided by a set of nondifferentiable
points into two disjoint, open, planar surfaces with a common boundary. These
surfaces in dD are homeomorphic, and on one—the “lower hemisphere”—the
transverse orientation is directed toward the interior of D; on the other—the “up-
per hemisphere”—the transverse orientation is directed toward the exterior of D.
The branched surface W is a connected 2-dimensional complex (which is compact
if M is compact) with a set of charts W, each defining an orientation-preserving lo-
cal diffeomorphism onto one of the models in Figure 1.1, 1.2, 1.3, or 1.4; the transi-
tion maps are smooth and preserve transverse orientation. Hence W is a connected
2-manifold except on a dimension-1 subset B called the branch set (indicated by
the dotted lines). The set B is a 1-manifold except at isolated points called cross-
ings. The branched surface can always be constructed to ensure B is connected,
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Figure 1.1 Figure 1.2

Figure 1.3 Figure 1.4

so we will assume this to be the case. A sector of W is a component of W — B
and a branch point of W is a point in B. At any branch point x that is not a cross-
ing, there are locally three adjacent sectors Sy, Sz, S3 such that cl(Sy) U cl(S3)
and cl(S,) U cl(S3) are smooth submanifolds of W (i.e., the set of charts locally
defines a smooth immersion into a planar subset of :&3 on cl(S;) U cI(S;) and
cl(S2) Ucl(S3)). We say S; and S, are tangent to S3 at x. By the construction of
W, there exists a flow ¢,, on M that is transverse to W in the direction of the trans-
verse orientation. Suppose that forward orbits (under ¢,,) of points in .S; flow into
S5. Then, for any curve B that begins or ends at x and contains a curve in S5 that
is also bounded by x, we say that S, is the upper sector branching from f at x and
that S| is the lower sector branching from B at x (see Figure 1.2). Given a curve o
containing B, any sectors branching from the beginning of 8 are incoming sectors
along «, and any sectors branching from the end of 8 are outgoing sectors along «.

We will use weight systems on W as defined in {4]. Such a system assigns &
nonnegative real number or weight to each sector so that locally, at each branch
point that is not a crossing, the weight assigned to the two sectors branching from
the branch point (5} and S,) sum to give the weight assigned to the sector tangent
to both (S§3); see Figure 1.5. In addition, there is a nonzero weight assigned to at
least one sector of W.
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Figure 1.5

We may thicken the sectors along the transverse direction to obtain a set of dis-
joint, trivial, unit-interval fiber bundles over the sectors. We then piece together
these thickened neighborhoods over the branch set to obtain a neighborhood of
W, which we call N(W). When we thicken W to get N(W), each component of
the complement shrinks to a diffeomorphic copy of itself. Hence, the complement
of N(W) in M is again the union of 3-manifolds. Even though N(W) is not quite
a fibration, we refer to the interval in N(W) obtained when we thicken a point x
in W as the “fiber” over x (see Figure 1.6); accordingly, we say points in this fiber
“lie over” x. We note that the fiber has an orientation induced by the transverse
orientation to W at x. Throughout, 7: N(W) — W is the map for which the in-
verse image of any point in W is the fiber lying over it. Each x € dN(W) thatis in
the interior of some fiber of N(W) is called a furrow point of N(W); these furrow
points of N(W) lie over the branch points of W.

Local W Thicken to local N{W):

"

Fiber over x
/

Figure 1.6

We consider only foliations of N(W) by surfaces (possibly branched) that are
transverse to the fibers, such that {branch points of leaves} = {furrow points of
N(W)}. We also require that the boundary of each component of M — N(W) be
contained in a leaf. (Figure 1.7 shows how a foliation may appear locally.) We
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may collapse each component of M — N(W) by identifying the upper and lower
hemispheres of its boundary. When we do this, each foliation of N(W) induces
a foliation of M that we say is “carried by” W. Thus there is a natural duality be-
tween foliations of N(W) and foliations of M carried by W. In particular, if W is
constructed from F, then some foliation F* of N(W) yields F when we collapse
the complement of N(W); this foliation F* is called the dual foliation to F. 1t is
important to note that there may be many foliations carried by W that are struc-
turally different from F, and any of these foliations can be used to construct W.
However, if M is closed, then it follows from the construction that all foliations
sufficiently close to F are also carried by W. (We refer to the metric on the space
of C! foliations, defined by Hirsch in [10].)

Formally, a curve in M is a continuous map from a connected subset of ‘R into
M. However, we will consider a curve to be the image of such a map where the
map parameterizes the curve. The beginning and end of a curve refer to its neg-
ative and positive boundary, respectively. A loop is a curve that begins and ends
at the same point. An integral curve of a foliation is a curve that is contained in a
leaf. A transversal to W will be a curve in M that intersects W, everywhere trans-
versely, and whose orientation is consistent with the positive (or negative) orien-
tation of W at each point of this intersection. We only consider transversals to W
that intersect the components of M — W in a union of disjoint arcs extending from
the lower hemisphere to the upper (respectively, a union of disjoint arcs extending
from the upper hemisphere to the lower).

Given a foliation F carried by W, let F* be the corresponding dual foliation of
N(W). A transversal to F* will be a curve that intersects F'*, everywhere trans-
versely, and whose orientation is consistent with the positive (or negative) trans-
verse orientation of F*. We consider only transversals to F* that intersect the
components of M — N(W) in a union of disjoint arcs extending from the lower
hemisphere to the upper (respectively, a union of disjoint arcs extending from the
upper hemisphere to the lower). If we have a curve y* transverse to F*, we may
collapse each component D of M — N(W) so that points in the same arc of y*N D
are identified. This yields a curve transverse to F. In particular, for each loop
transverse to F'* there exists a dual loop transverse to F. Conversely, for any curve
y transverse to F there is clearly a curve transverse to F'*, unique up to homotopy
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in cl(M — N(W)), that yields y when we collapse the complement of N(W) in
M. Hence, up to homotopy in cl(M — N(W)), there is a natural duality (to which
we will often refer) between curves transverse to F' and curves transverse to F*.
It is also worth noting that each curve transverse to W extends (under 7 ~!) to a
curve transverse to F'* and so gives rise to a curve transverse to F.

At each branching of a leaf L of F* there is a component of dN (W) contained
in L. We may restrict L so that it contains only one hemisphere of this compc-
nent. After restricting L at each of its branchings, we have a surface in N(W) that
yields the same leaf as L when we collapse M — N(W). In the definitions that
follow, whenever we consider an image under 7 of a branched leaf L (or some
curve in L), we assume that L is restricted in this manner. (This technical remark
is fundamental and will be implicitly used throughout this article. It will disallow
backtracking across the branch set in various situations.)

DEFINITION. A curve y on W is an F-curve if it is the image under 7 of an
integral curve of F*. A surface S in W is called an F-surface if it is the image
under v of a leaf of F'*. We say a curve (surface) is a W-curve (-surface) if it is
an F-curve (-surface) for some foliation F carried by W.

Note that we restrict the domain when applying 7 to a branched leaf, and so W-
curves cannot locally switch from an upper sector to a lower sector (or vice versa)
at a branching of W. For example, a W-curve cannot cross the branch set and then
backtrack, going from a lower sector to an upper sector.

Let S be an F-surface and let I" be a transversal to W that intersects S. We say
the intersection of S by I' is proper with respect to F if any leaf of F* lying over
S intersects the fibers over the set I' N .S only once.

DEFINITION. Let F be a foliation carried by W, and let I be a transversal to W.
The curve I is a global transversal for F if I intersects every F-surface exactly
once and this intersection is proper with respect to F; I" is a global transversal for
W if it is a global transversal for every foliation carried by W.

For example, Figure 1.8 is a noncompact branched 1-manifold W imbedded in R*.
Given any foliation F carried by W, the indicated transversal I' intersects every

Figure 1.8
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F-surface exactly once. Further, each of these intersections is proper with respect
F.Hence I is a global transversal for W.

Let p be a continuous surjective map from a branched surface W with charts ¥
onto a branched surface W with charts W. An open set U of W is evenly covered
if the inverse image p~!(U) can be written as a union of disjoint open sets V,, in
W such that, for each «, the restriction of p to V,, is a diffeomorphism onto U that
maps neighborhoods of the types shown in Figures 1.1-1.4 onto neighborhoods of
the same type. If every point in W has an evenly covered neighborhood and if each
element of the composition ¥ * p % W1 is smooth and orientation-preserving,
then p is called a covering map. In this case, we say “W covers W” or “W is the
lift of W™.

If W is a branched surface covering W, then every foliation carried by W is cov-
ered by a foliation carried by w. Conversely, if W carries a foliation F and F cov-
ers F, then W lifts to a branched surface W carrying F [18]. For the remainder of
this paper, W will denote the lift of W to the universal cover of the manifold M.

2. Main Results

If the manifold M is closed, then any foliation of M that is covered by a product is
taut. That is, every leaf has a transverse loop passing through it; a standard modi-
fication of these transversals produces a single transverse loop meeting every leaf
[8]. For suppose a foliation F of a closed manifold is covered by a product, yet
there is some leaf L that is not met by a transverse loop. Then L is a compact
surface of genus 1 [7]. Since F is covered by a trivial product of hyperplanes in
M3, each curve in M can be homotoped to be transverse to F or tangent to F. In
particular, if xo € L and y is a loop based at xg, then y is homotopic to a loop
in L. Since each leaf of L is a plane, L is incompressible and hence ;1 (L, xg) =
m1(M, xp). This implies that M fibers over a simply connected 1-manifold with
fiber L [9, Thm. 10.6], contradicting the assumption that M is closed.

In this section, we consider the class of taut foliations of a closed manifold that
are covered by a product, and find conditions on a transverse loop which ensure
that all nearby foliations are also in this class. Since taut foliations of a closed
manifold are stable, it is first worth noting that not all taut foliations are covered
by a product. That is, a transverse loop meeting each leaf is not necessarily cov-
ered by a copy of the leaf space. This is illustrated by the following example,
constructed by S. Goodman.

Begin with a foliation of £, x S! by copies of X, (surface of genus 2). Inser
two tori, transverse (for now) to the foliation, as shown in Figure 2.1. Now sweep
the leaves meeting these tori asymptotically around the tori, in the S*-fiber direc-
tion, so that the tori are now leaves. However, be careful to sweep them in oppo-
site directions on either side of the toral leaves so that (in cross section) we have
the result shown in Figure 2.2. There exits a transverse loop through both toral
leaves, so the foliation is taut. However, there are non-Hausdorff points in the leaf
space of the universal cover—namely, those points representing the equivalence
classes of leaves that cover the toral leaves.
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Torus #1
Torus #2

Figure 2.1

S~ N\

—

L
Torus #1 Torus #2

Figure 2.2

In what follows, M is a smooth Riemannian 3-manifold without boundary
(which is not necessarily compact, unless this is specified) and F), is a codimen-
sion-1 C! foliation of M that is covered by a product. So the universal cover
of M, which we denote by M , is M3 [13]. For any by € M, the elements of
mt1({M, by) can be used to define deck transformations of M [11]. Moreover, each
of these deck transformations maps the covering product foliation onto itself (i.e.,
is a topological equivalency map) and so induces a homeomorphism of any imbed-
ded copy R of the leaf space of this product foliation. In this manner, each t €
w1 (M, by) induces a homeomorphism of R. A result in [20] suggests the following
lemma.

LEMMA 2.1. Let F, be a foliation that is covered by a product. Given a loop t
transverse to F,, if T is not freely homotopic to an integral loop of F, then t is
covered by a copy of the leaf space for the product.

Proof. We assume that the loop t is not null-homotopic and show the contraposi-
tive. Let O be a curve in R that is transverse to the product foliation covering F,
and meets each leaf exactly once (i.e., Q is an imbedded copy of the leaf space).
Suppose T is based at a point by and is not covered by a copy of the leaf space.
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Let p be the universal covering map, and let ¢y be a point in the preimage of b.
Consider the cover T of T through ¢;. Since 7 is not a copy of the leaf space, the
intersection of the imbedded leaf space Q with the set of leaves met by 7 is ei-
ther bounded above or bounded below (where the ordering of points in Q is deter-
mined by the orientation of Q). Without loss of generality, we assume this set is
bounded above. For each positive integer n, lift " to an arc beginning at ¢y and
ending at some point e, € 7. Let ¢, € Q be the intersection of Q with the leaf
through e,, for every n. Since the sequence {e,} is increasing and bounded above
in @, it converges to some point x € Q. Consider the deck transformation h. de-
fined by 7 for which 4. (eg) = e;; h, induces a homeomorphism of the imbedded
leaf space Q for which x is a fixed point. Hence there is an integral curve 8 of the
product from x to 4, (x). In addition, there exists a curve o in M that lifts to curves
oo and «; from ¢y to x and from e; to /. (x), respectively. Since M is simply con-
nected, t is fixed-point homotopic to p(ozl_l) * p(B) * p(ag) = a1 % p(B) *c.
That is, 7 is freely homotopic to the integral loop p(B) of F,. We may conclude
that if = is not freely homotopic to an integral loop of F),, then t is covered by a
copy of the leaf space. W

If W carries a foliation F, then an F-loop is a loop in W that is the projection of
an integral loop in the dual foliation F*. A loop is freely homotopic to an F-loop
if and only if it is freely homotopic to an integral loop of F*. This is equivalent to
being freely homotopic to an integral loop of F. Recall that if W carries a foliation
F, then each transversal to W extends to give a transversal to F'* and hence gives
rise to a dual transversal to F'. If a loop t transverse to W is not freely homotopic
to an F-loop, then the transversal to F* obtained by extending 7 along fibers of
N(W) is not freely homotopic to an F-loop. In this case, T gives rise to a transver-
sal to F that is not freely homotopic to an integral loop of F. If, in addition, F is
covered by a product, then (by Lemma 2.1) 7 gives rise to a loop that is covered
by a copy of the leaf space. In the following theorem, we use this fact to give a
condition on W that guarantees any foliation carried by W and covered by a prod-
uct has a transverse loop that is covered by a copy of the leaf space. Recall that
a W-curve is the projection of an integral curve in some foliation of N(W). Simi-
larly, a W-loop is a loop that is the projection of an integral loop of some foliation
of N(W).

THEOREM 2.2. If there exists a loop t transverse to a branched surface W and
not freely homotopic to a W-loop, then for each foliation that is covered by a triv-
ial product of hyperplanes and carried by W, t gives rise to a transverse loop that
is covered by a copy of the leaf space.

For example, Figure 2.3 shows a branched 1-manifold W imbedded in a planar
model of the torus. Its contains two W-loops, each represented in the diagram by
a horizontal line segment. Every foliation carried by W is covered by a trivial
product of hyperplanes in 232. As noted in Section 1, we may lift W to a branched
1-manifold W in R2 carrying these product foliations. The dotted line segment



12 SANDRA L. SHIELDS

Figure 2.3

depicts a transverse loop t that is not freely homotopic to a W-loop. It is cov-
ered by an imbedding T of R that is transverse to W. It is easy to verify that
every smooth curve in W meets 7 exactly once, so clearly 7 gives rise to a copy
of the leaf space for any foliation carried by W. That is, for each foliation car-
ried by W, t gives rise to a transverse loop that is covered by a copy of the leaf
space.

Given a branched surface W carrying a foliation F, any W-curve y that is not
an F-curve contains an F-curve y’ that has two incoming sectors branching from
its beginning and two outgoing sectors branching from its end (see Figure 2.4). In
addition, y’ has the property that a “splitting in F” along y’ deletes y [17]. That
1s, we may extend a component D of M — N(W) by further splitting the leaf of
F* that contains 0D; by choosing the extension so that N(W) splits along an inte-
gral curve over y’, we destroy any curve in N(W) over y. The effect of this split-
ting of N(W) is that W is split along a strip containing y’. (Figure 2.4 shows the
extension and the corresponding splitting of W.) Details of these splittings can be
found in [17].

The bold line indicates 7y
@® marks the ends of y'

extension of D, by
splitting a leaf of F*

L\ resulting section of
w:

Figure 2.4
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For example, the left diagram in Figure 2.5 shows a branched 1-manifold W
imbedded in a planar model of the torus. The dotted line segment indicates an
imbedded loop t. We consider a foliation F carried by W and dual to the foliation
F* shown in the middle diagram. Clearly 7 is not freely homotopic to an F-loop,
so 7 is not freely homotopic to an integral loop of F. The branched 1-manifold W’
shown in the right diagram also carries F'; it is obtained when we delete the W-loop
that is freely homotopic to t by a splitting in F. In fact, there are no W’-loops
that are freely homotopic to t. Thus for every foliation that is covered by a prod-
uct and carried by W’, t gives rise to a transverse loop that is covered by a copy
of the leaf space (Theorem 2.2).

o ﬁg —

Figure 2.5

A branched surface W can be constructed from a given foliation F of a 3-
manifold so that each component of M — W is a 3-ball. It follows that free homo-
topy maps in M between curves in W can be chosen so that the range is contained
in W. We may also ensure that each sector of W is homeomorphic to a disk. In
what follows, we assume these properties.

Since W has only disk sectors, any curve y’ in W is smoothly homotopic to a
curve y in the branch set B, and we may choose y so that y and y’ are piece-
wise homotopic in the closure of sectors in W (Figure 2.6). Clearly, if we split W
along some curve then, for the modified W, y’ is a W-curve if and only if y is a
W-curve.

Figure 2.6
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There is a more general relationship between two curves in W under which the
existence of one of the curves, y’, in a modification of the branched surface is de-
pendent on the existence of the other curve, y. This relationship will be important
since many curves are related to the same curve y in this manner, so deleting y
deletes each of these curves. The relationship is defined as follows.

DEFINITION. Let y and y’ be curves in W and suppose that there is a continuous
family, parameterized by ¢ € I, of curves f;: [0, 1] — W such that:

i) fo=v";
(i) fi=v;
(iii) for any fixed x¢ € [0, 1], the curve f;(xo) does not locally switch between
incoming sectors at any branch point along this curve; and
(iv) if for some fixed x¢ € [0, 1] there exists #y € I such that the curve f;(xq)
has an outgoing sector at f;,(xo), then for every x € I the curve f;(x) has
an outgoing sector at f;,(x).

We say the curve y’ is subordinate to the curve y.

If a curve y’ is subordinate to y, then there is a particular type of smooth homo-
topy in W from y’ into y that can be parameterized to meet requirement (iv). This
requirement restricts the type of range allowed for the smooth homotopy from
y’ into y to ensure that every curve in y with W branching from both ends is
smoothly homotopic to a curve in ¥’ with the same property. This is necessary to
avoid the case shown in Figure 2.7, where splitting along a curve to delete y does
not eliminate y’. In this figure, y is subordinate to y’, but the converse does not
hold because no smooth homotopy from y’ into y satisfies condition (iv).

Figure 2.7

The branch set B is a graph where each crossing is a vertex. Hence B contains
a set of arcs between adjacent crossings such that every loop in B that does not
backtrack (i.e., does not contain a curve of the form aar~!) can be represented by
a word in these arcs. For each such loop y in B, there are a finite number of cyclic
permutations—that is, loops represented by a cyclic permutation of the word rep-
resenting y. If y and y’ are loops in B that do not backtrack and y’ is subordinate
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to the curve y, then we say that ' and its cyclic permutations are subordinate to
y and to each of its cyclic permutations.

For Lemma 2.3 and the subsequent theorems, we delete all W-loops that are
freely homotopic to a transverse loop to W. For this, we need only consider those
W-loops in B that do not backtrack: For any W-curve that backtracks, the corre-
sponding integral curve over the backtracking portion begins and ends at the same
point; hence, if the W-curve in W obtained when we leave out this backtracking
portion is deleted by a splitting in the foliation, the original curve is deleted as well.
In what follows we will therefore assume that W-loops in B do not backtrack and
that each is represented by a finite word as above.

Recall that F), represents a foliation that is covered by a product. For the proof
of Lemma 2.3, we suppose F}, is carried by W and there is a transverse loop 7 that
is not freely homotopic to an integral loop of F,. We consider all W-loops that
are freely homotopic to 7, so we regard fixed-point homotopic loops as distinct
rather than equating them. Our approach is to begin with W-loops in the branch
set B that are freely homotopic to T and are represented by a word in reduced form
(i.e., reduced W-loops). We assume there exists a finite subset €2 of these loops
to which all others are subordinate. We then use €2 to define a finite number of
splittings in F,, which eliminates all W-loops that are freely homotopic to .

LEMMA 2.3. Let F), be a foliation which is covered by a product and carried by
a branched surface W, and let T be a transverse loop that is not freely homotopic
to an integral loop of F,. Suppose there is a finite set 2 of loops in B such that
every reduced W-loop in B that is freely homotopic to t is subordinate to a loop
Q. Then there exists a branched surface W' carrying F,, such that T is not freely
homotopic to any W’-loop.

Proof. Suppose such a finite set 2 of loops in B exists. Choosing a smaller set
if necessary, we may assume that every loop in 2 is freely homotopic to z. Since
each 8 € Qisnotan F,-loop, there existsan N € Z such that B isnota F,-curve.
For suppose not, and let / be the fiber of N(W) over the beginning of B. For each
n € Z, consider the nonempty subset S, of I consisting of points that lie at the
beginning of an integral curve (of F;’) over B". It is straightforward to verify that
each §, is a closed interval in I. Given integers n; and n;, if no > n; > 0 then
Sn, 2 Sn, by definition. Likewise, if n; < ny < O then S, 2 §,,. In either case,
Sp, N Sp, # 0. If np > 0 > ny then, since S,,_,, is nonempty, there is an integral
curve over 827" = B" B~™ _This curve begins with an arc over =" = (™)~}
which ends at a point x € S,,. Clearly x is alsoin S,,,, so S,, N S, 7# @. It follows
that the intersection [] S, over all n is nonempty. Order the points in / accord-
ing to the orientation of / and let x be the lowest point in [} S,. Then x must be
contained in an integral loop over 8, contradicting the assumption 8 that is not an
F,-loop. Hence there exists an N € Z such that BV is not a F,,-curve.

We may use a splitting in F), to delete BY. This destroys every integral curve
over BV and so deletes the W-loop 8. Clearly the argument above can be applied
to any cyclic permutation 8* of B, so each of these W-loops can be deleted by a
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splitting in F,. Since there are finitely many cyclic permutations of 8, deleting all
of them requires finitely many splittings in F,.

Repeating this for each element of €2, we obtain a branched surface W’. Sup-
pose « is a reduced W-loop in B that is freely homotopic to 7. Then « is subordi-
nate to a loop B € 2. Thus, for some permutations o* and 8* of & and B, respec-
tively, there exists a smooth homotopy (satisfying the four requirements to ensure
that o* is subordinate to 8*) from a* onto B8*; this ensures that every curve in g*
with W branching from both ends is smoothly homotopic (under the reverse of
this homotopy) to a curve in o* with the same property. It follows that such a ho-
motopy exists from («*)” onto (B*)" forevery n € Z. As aresult, when we delete
the loop (B*)V for some N € Z, we also delete (a*)". Consequently, * is not
a W’-loop, so neither is «. Further, any word obtained by simply adding identi-
ties to the word representing o represents a loop that is not a W’-loop, since ho-
lonomy maps are trivial over each loop represented by an identity. It follows that
no W-loop freely homotopic to 7 is a W’-loop. 0

We note that—for the most obvious examples when the manifold M is closed—
there are only a finite number of W-loops in the branch set B that are freely ho-
motopic to the given loop 7, and in these cases the hypothesis of Lemma 2.3 is
trivially satisfied. For example, any branched surface carrying a fibration over S!
by a compact surface can be modified to give a branched surface W’, where no
W'-loop is freely homotopic to a given S!-fiber. Equivalently, the S!-fiber is not
freely homotopic to an integral loop of any foliation carried by W’. However, if
instead B contains an infinite number of loops that are freely homotopic to , then
except under very particular conditions (given in [18]), the hypothesis of Lemma
2.3 is necessary as well as sufficient to guarantee the existence of the modification
W'. For closed M, however, we know of no examples where this is the case.

As before, suppose that F, is covered by a product and that 7 is a transverse
loop to F, which is not freely homotopic to an integral loop of F,. Any branched
surface W carrying F,, can be modified by a finite number of extensions so that t
(up to homotopy in M) is transverse to W. Thus we have the following.

THEOREM 2.4. Suppose F, is a foliation of a closed manifold M that is covered
by a product, and let T be a transverse loop that is not freely homotopic to an in-
tegral loop of F,. If F), is carried by a branched surface for which the hypothesis
of Lemma 2.3 is satisfied, then for all foliations that are sufficiently close to F,
(using the C! metric in [10]) and covered by a product, T gives rise to a transverse
loop that is covered by a copy of the leaf space.

It was shown in [18] that a curve transverse to W gives rise to a copy of the leaf
space for a foliation carried by W if and only if it is a global transversal for that
foliation. Since 7 is not freely homotopic to an integral loop of F),, 7 is covered
by a global transversal T for the product foliation covering F),. Under the techni-
cal conditions of Lemma 2.3, a branched surface carrying F, can be modified to
obtain a branched surface W’ which is also transverse to T such that 7 is not freely
homotopic to any W’-loop. Thus we have the following.
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THEOREM 2.5. Let F), be a foliation of a manifold that is covered by a product,
and let T be a transverse loop that is not freely homotopic to an integral loop of
F,. If F, is carried by a branched surface for which the hypothesis of Lemma 2.3
is satisfied, then there exists a branched surface W’ carrying F, such that every
foliation carried by W' is covered by a product if and only if the covering of T is
a global transversal for W'

COROLLARY 2.6. Let F), be a foliation of a closed manifold that is covered by
a product, and let T be a transverse loop that is not freely homotopic to an inie-
gral loop of Fy. If Fy is carried by a branched surface for which the hypothesis
of Lemma 2.3 is satisfied, and if the covering of T is a global transversal for W',
then all foliations sufficiently close to F, are covered by a product.

DEerFINITION. Given a foliation, two distinct leaves are said to be in the same
Novikov component if there exists a loop transverse to the foliation that meets both
leaves. A Novikov component is proper if it is not the entire manifold.

As noted earlier, in order for a foliation of a closed manifold M to be covered
by a product, it is necessary that it be taut; that is, M must consist of a single
Novikov component. Hence, in Propositions 2.7 and 2.8, we use weight systems
on a branched surface carrying a foliation to give conditions that guarantee the
foliation is taut.

ProPOSITION 2.7. Suppose W is a compact branched surface carrying a folia-
tion F of a closed manifold M. If there is no weight system for W, then there exists
a loop transverse to F that meets every leaf; that is, F is taut.

Proof. Given the foliation F, if there is no transverse loop to F that meets every leaf
then every Novikov component is proper. The boundary of each proper Novikov
component is the union of compact leaves [12], and we may construct W (up to
homeomorphism) to ensure the corresponding set of compact leaves in F* do not
meet IN(W) [17]. Each is then a compact surface in the interior of N(W) thatis
transverse to the fibers, and hence induces a weight system on W when we let the
weight assigned to a sector be the number of times that leaf intersects a fiber over
that sector. Thus, if F' is not taut then W has a weight system. ]

It was shown in [18] that a branched surface carries a trivial fibration over S! by a
compact surface if and only if it can be assigned a strictly positive weight system.
Therefore, the converse of Proposition 2.7 does not hold.

We now let W be a branched surface carrying a foliation of a closed manifold,
and consider all possible imbeddings of compact surfaces in the interior of N(W)
where the image is transverse to the fibers. We may partition the resulting set of
imbedded surfaces into a finite number of equivalence classes by letting two com-
pact surfaces S and S’ be equivalent if 7 (S) = 7 (S’). That is, two compact sur-
faces are equivalent if they lie over the same sectors of W. Form a set S by taking
one representative of each equivalence class.
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PROPOSITION 2.8. Let F be a foliation of a closed manifold that is carried by a
compact branched surface W, and let F* be the dual foliation of N(W). If F has
a transverse loop such that the dual transversal to F* meets every surface in S,
then F is taut.

Proof. If S is empty, then F* has no compact leaves. In this case, M consists of a
single Novikov component ( proof of Proposition 2.7), so there exists a transverse
loop that meets every leaf; that is, F is taut. Hence we assume that S is nonempty.

Let § be a loop transverse to F such that the dual transversal §* to F* meets
every surface in S. Without loss of generality, we assume that §* and the fibers of
N(W) are oriented consistently with the transverse orientation of F*. If F is not
taut, then the leaves met by § are contained in the same proper Novikov compo-
nent. In this case, there exists a compact leaf C in F* (corresponding to a leaf in
the boundary of this component) that is not met by §*. For some C’ € S, 7 (C) =
w(C’) and so C and C’ intersect the same fibers of N(W). Assume §*(¢) intersects
C’ att = ty. Take a neighborhood N(C’) consisting of all fibers of N(W) inter-
secting C’. Now C is in N(C”). Consider the fiber containing §*(¢y) N C’. If C in-
tersects this fiber at a point above (below) §* (o) N C’, then §*(¢) is contained in
N(C’) for every t > to (t < to) because it is transverse to F* and bounded above
(below) by C. But this contradicts the fact that §* is a loop. O

The lower diagram in Figure 2.8 shows a branched 1-manifold W imbedded in a
planar model of the torus. It was constructed from the foliation ' shown in the up-
per diagram. This foliation F is covered by a product in 32 and has a single com-
pact leaf, which sits on the horizontal boundaries identified in the planar model.
Consider a loop transverse to W that is given by a vertical line segment from the

Figure 2.8
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top to the bottom of the planar model containing W. This transverse loop induces
a loop & that is transverse to F and satisfies the hypothesis of Proposition 2.8. In
fact, § meets every leaf of F. Moreover, § is not freely homotopic to an F-locp,
so it gives rise to a loop that is covered by a copy of the leaf space for the product
foliation.
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