A p-adic Analog of Wirtinger’s Inequality

C. F. Woopcock

1. Introduction

Let f: T — C be a nonconstant, complex-valued, continuously differentiable
function on the unit circle with Fourier coefficients {f,} (n € Z). Then it fol-
lows easily from Wirtinger’s inequality (see e.g. [1, p. 177] or [2, p. 47]) and
Parseval’s formula for f and f’ that f has no zero on some open arc of T

of length A
h= ( EneZlfnlz )1/2
= 2(712)
EneZn Ifn'

where the arc is to be interpreted as T if 2 > 2. (If not, divide T up by suit-
ably closely spaced zeros of f and hence derive the required contradiction.)

It is this implied linking between zero-free regions for f and the relative
disposition of its Fourier coefficients {f,} for which we intend to derive a
p-adic analog. (Note, however, that here it will turn out that the roles of the
circle and the integers are interchanged! Also, the link between f’ and the
Fourier coefficients of f is more complicated than in the complex case.)

Throughout, Z, and @, will respectively denote the ring of p-adic inte-
gers and the field of p-adic numbers (for p prime). We denote by C, the
completion of the algebraic closure of @, with respect to the p-adic metric.
Let v, denote the p-adic valuation of C, normalized so that v,(p) =1. For
simplicity we shall assume throughout that p is odd.

Put T,={weC,| wP" =1 for some n = 0} (the p-adic circle) so that T,is
the union of cyclic (multiplicative) groups C,~ of order p” (for n = 0). If
w€T,, w#1, has order p” then v,(w—1)=1/(p" " (p—-1)).

2. Main Theorem

Let K be a tame finite extension of @, with K € C,,. Suppose that f: Z ,—» K
is a uniformly differentiable function. For each w e T,, we put

N
N—>owo =0 y4
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Then the Fourier coefficients {f,} of f enjoy the following properties (P).

(P1) Each f,e K(w) and (£,) = f,« for all ge Gal(K(w)/K) (the Galois
group of K(w)/K).

(P2) ForeachzeZ,, [(z) =X, fww"z (here X, means limy,_, o EweCpN)'

(P3) If f# 0 then u,(/,) achieves its minimum value W( f) for w € T, but
only finitely often. In this case we put

M(f) = max{r=0|there exists w € C,,r\ Cpr-1 with vp(fw) = W(f)}

(where, by convention, Cp,-1 = 0).

The Fourier coefficients § fw] (we T,) of f have many properties (see e.g. [3;
4; 5]) but the properties (P) are all that we need here. However, it is worth
noting that the asymptotic behavior of { £, } determines (and is determined by)
the derivative f*. In particular, for we T,, v,( f:,,) tends to inf, . z, up(f'(x))
off finite subsets of T,.

We will prove the following result (in Section 4).

THEOREM. Let f: Z,— K be a uniformly differentiable function with f # 0
and K a tame finite extenszon of Q,. Then f has no zero on some coset of
pMIZ,inZ,.

3. Examples

We first illustrate some basic features of the main theorem with several sim-
ple examples (where f is locally constant and so f'= 0).

ExampLE 1. The condition in the theorem that K be tame is a necessary
one. For let 0€ C,2\Cp,1 and put K = Q,(¢). Define f: Z, —»K by putting
f(Z)=2vec,10,w z—o *for all z € Z, where each q,, —E" o "'w'/p. Then
clearly vp(aw) =1/(p—1)—-1/(p(p— 1)) 1<0, and so M(f) —1 yet f(i)=0
forO0<si=p-1.

ExaMpLE2. Let N= 1. Define f: Z,— @, by putting f(z)= Zuec,n 0~ /p~
for all ze Z, so that fis the characterlstxc functlon of pN Zp,. Clearly M(f)=
N, f has no zero on pVv Z, but does have a zero on each coset of pN 1Z in
Z , (which shows that the theorem is “best possible” in some sense).

ExaMpPLE 3. Let K be a tame ﬁnlte extension of @, with K< C,, and let
N =1. Suppose that g(x) =3P, (P~D-1q, x* eK[x] is a nonzero poly-
nomial of degree less than pN— 1( p 1). Define f: Z,— K by putting f(z) =
EweC N q(w)w “forall z e Z,. Then a simple calculatlon shows that f(j) =

0 forp p-D=<j=<p —1 so that f has a zero in each coset of pN~1Z,
in Z,. Therefore, by the theorem, M(f) = N; that is, v,(g(w)) achieves its
minimum value for w e C,~ when we C,~»\ Cp~-1. (Note that the conditions
on g(x) given above are actually needed here.)
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We next consider the case when f is a nonconstant polynomial function and
first prove a general proposition giving an upper bound for M(f) in terms
of the behavior of f*. Note that although the asymptotic behavior of {£,] is
always controlled by f”, it is difficult to convert this into a meaningful bound
for M(f) unless f is a polynomial function (or, more generally, a locally
analytic function).

PROPOSITION. Let f: Z,— K be a nonconstant polynomial function and let
N
=3 b,(z':’) for all zeZ,
r=0

(“Mahler-type” expansion of f'). Put s=max{r|0=<r=<N and v,(b,) =
Ming<,<n Up(by)}, and

L= min (”P(b")_"”"(bs)) (take L =« if s = N).
s<isN =5

Suppose that Me N, M =1, is such that 1/(pM Y (p—1)) < L. Then M(f) <

M. (Hence, by the theorem, if K is a tame finite extension of Q,with K< C,

then f has no zero on some coset of p™ Zyin Z,.)

Proof. Using standard properties of p-adic Fourier series and the associ-
ated convolution multiplication * (see e.g. [3] or [5]), it is easily shown that

f()=c+ E b,(—=1)z*"*D  for some ceK.

Hence, for we T, (0#1), f,=3N ¢ b(—1)(0—1)""*Y (since 2,=1/(w—1)
where z: Z ——»Zp is the identity function). Now, by the hypothesis on M,
if we Cym- l(so that v,(w—1) < 1/(p™~(p—1))) then

Up(fo) = Up(Bs(—1)% (@ —1)"¢*D),

Clearly, this latter strictly increases with the order of w € T,,. Hence we im-
mediately deduce that M( f) < M, as required. O

REMARK 1. The proposition does in fact still hold for any subfield K of C,.
Indeed, by substituting the formula for fw (given in the proof) directly lnto
formula (*) of Section 4, it is easy to reduce to the case when K = Q,. (Note
that now M may be greater than M(f).)

REMARK 2. It is interesting to compare the bound 1/(pM~(p—1)) < L of
the proposition with the “trivial bound” p™ > N+1 which gives rise to the
same conclusion concerning the zeros of f (just using the fact that the de-
gree of f is at most N+1).

ExXAMPLE 4. Let p = 3 and define f: Z; — @, by putting f(z) = 23 +z%2—2z2
for all z€ Z,. Then
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won e 2F2\_4fz+1\ (240
ro=o"37) (1))
and so s=1and L =((1-0)/(2—1)) =1. Thus we can take M =1. By the

proposition it follows that M(f) <1 and so, by the theorem, f has no zero
on some coset of 3Z; in Z,. (Of course, f actually has zeros 0,1, —2 and

M(f)=1)
EXAMPLE 5. Let p=3 and define f: Z; - @Q; by putting f(z) = z3—z for

all ze Z;. Then
oy — ef 22\ _of 2+1 z+0

. 2—-0 1-0 1
s=0 and L—mln{(l_o),<2_0)}—5.

Thus we can take M = 2. Therefore, by the proposition, M(f) < 2. (Of
course, f in fact has zeros 0, 1, —1, one in each coset of 3Z; in Z; and so, by
the theorem, M(f)=2.)

and so

4. Proof of the Main Theorem

We will need the following standard result concerning the trace over a tame
finite extension K of @, (see e.g. [4, Lemma 2.1]).

LEMMA. Let weT,, w#1, have order p" (so v,(w—1) = 1/(p" " Y(p-1))).
Then, for all x e K(w),

vp(trace(x)) = v,(x)+r—1-1/(p—1)+1/(p" " Y(p-1)),

where the trace is taken from K(w) to K.

Now let f: Z,— K be uniformly differentiable with f# 0. Let M = M(f)
and suppose that f has a zero in each coset of p™Z pinZ,. In order to prove
the main theorem we must now obtain a contradiction.

Suppose then that f has a zero at each of z, g, .0y ZpM_y (say), where
vp(zi—i)= M for 0<i=<pM-1. Put X=inf et \c v Up(f,) s0 that X >
W(f) while, for some o, € C,» (say), v,(f;) =W(f).

By property (P2) of Section 2 we have

0=fz)= X Jfoo™%+ T fyo ™
geCpyM wgCpoM
for 0 < i< p*—1. Multiplying by ¢f and summing for 0 <i=< pM—1, we

obtain
M_j

. P A
0=p"fo+ X X fulaw™)

i=0 weC,M
since 0 7% = o~ for c € C,») and so
P
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R A Solow™)%
Jo=— > >
i=0 R=M weC,R+I\CpR p
Therefore, in order to obtain the required contradiction, it is clearly enough
to show that for each R = M,

pM—1 .
v,,( > > fw(onw'l)z')2X+M (*)
i=0 weCLR+I\C,R
(since X > W(f) =v,(f,))-
We consider the two cases (a) R > M and (b) R = M separately.

Case (a) R > M: In this case,
> foe™

w€CpHR+INCp,R
is clearly a “sum of traces K(w)/K” (by property (P1)) and so (by the lemma)
has v,-value at least X+R—1/(p—1)+ 1/(pR(p—1)) > X+ M. Hence ()
holds, as required.

Case (b) R = M: We first show that in this case, without loss of general-
ity, we may suppose that each z; = i. For

S foloe™i- T foe™)

weCpMH\CpM wECpMH\CpM

= ¥ foloi-wThdl

wGCpM+l\CpM

(since u,(z;—i) = M and o, € C,#). Now, by property (P1),
E f:o(w_Zi—w—i)

weCpM+l\CpM
is again a “sum of traces K(w)/K” and so, by the lemma, has up-value at
least

X+M-1/(p-1)+1/(pM(p—1))+u,(0 % —0™) > X+ M,

as required (since v,(w ¥ —w ™) =1/(p—1) as v,(z;—i) = M and w € C,m+1).
It remains therefore to show that (x) holds in the case when R = M and
each z; =i. Now
pY-1

§) E fw(alw—l)i

weC,M+I\NCpM

= Y  fO-(ee ) )1-ge )

wECpM+l\CpM

—1__1\\-I
= > fw(l—w""’M)(l—w_’)—l(l—(ol l)) o

w€CLM+1\C,M w1-1

. M e . .
(since o = 1; note that (1—o;w™')~! has been rewritten so as to avoid the
necessity of taking traces over K(o,) since in general K(g,) will not be tame
over Q@)
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==Y 3 fl-o)e -1 -1lor!
=0 weCprM+I\C,M
(on taking the binomial expansion of (1—((o;!—1)/(w™!—1)))"; note that
vp((o7' —1)/(w ™' —1)) > 0 since o) € C,m while w € Cpu+1\ Cpy).
For each / = 0, the v,-value of the internal sum above is at least

X+M-1/(p—-1)+1/(pM(p—1)+1/(p—1)-1/(pM(p—1)) =X+ M

(again using property (P1) and the lemma; note that vp(1 —w“’M) =1/(p-1)
and v,(0™'=1) =1/(p™(p—1))). Hence (*) holds in this case also, as re-
quired. O
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