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0. Introduction

We study the boundary correspondence of the upper half plane under
p(z)-homeomorphisms, where |p(z)| <1 a.e. but ||u|- =1, and obtain esti-
mates on the growth of the dilatation function and of the quasisymmetric
function. Throughout this paper we denote the upper half plane by H. Let
E be a compact set in H that is of o-finite linear measure and hence of
planar measure zero. Let u(z) be a measurable function in H such that
sup{|u(z)||z€ F} <1 for every compact set FC H—E. A function f is called
a self-u(z)-homeomorphism of H if f is a homeomorphism of H onto itself
and is locally u(z)-quasiconformal in H—E.

As the definition shows, the conditions for the u(z)-homeomorphisms are
locally described. Therefore, estimates of modules by local character [4; 8]
will be an efficient tool for studying u(z)-homeomorophisms. For conve-
nience of description, we adopt the notation in [8]. Set

Il _e—Zfﬁ'u(z_i_rei@)IZ
[—[a(z+red)p?

2%

6z == [ oz r,0)ds.
27(' 0

d(z,r,0) =

0.1)

Let A(z;ry, rp) = {Z|r) <|Z—2z| < ry} be an annulus, and let f be a quasi-
conformal mapping in A with complex dilatation u(z) satisfying || p(z)]| <
1. Then

1 (= ar
27 J,, ro*(z,n)
where mod f(A(z; r;, r,)) is the module of the doubly connected domain
S(A(z; ry, rp)). For details of the definition of the module, we refer to [1,
p. 13].
By the method of Lehto [6], inequality (0.2) still holds in the case of a
1(z)-homeomorphism, where the exceptional set E is of o-finite linear mea-
sure. Furthermore, let f(z) be a self-p(z)-homeomorphism of H and let
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At (x;r, ) ={z|n<|z—x|<r,0<arg(z—x) <, xeR}
be the upper half of A(x; r;, r,). Set
vi={zl|lz—x|=r,0<arg(z—x)<w,xeR}, j=1,2.

Denote by I' the family of curves that connect f(v;) with f(v,) in f(A*(x;
ri, ry)). We define the module mod f(A*(x; ry,r,)) by A(I'), which is the
extremal length of I'. Then it is not difficult to prove that

L[ v
T j’-_l r¢*(x, r) = mod f(A (x’ rler)), (03)
where

¢*(x,r)= % J:d)(x; r,0)do, xeR. (0.4)

Similarly, for the dilatation function D(z) = (1+|u(z)])/(1—|u(z)|), we
set

2% .
D¥(z,r)= L D(z+re®®) do,
27 0
. (0.5)
D*(x,r) = _71?] D(x+re®)yds, xeRR.
0
Noting that ¢ < D and ¢* < D* and using (0.3), we deduce

lfr2L<modf(A+(xr ), xeR (0.6)
T J, rD*x,r) b I2ID ) )

For a quasiconformal mapping of H onto itself, Beurling and Ahlfors
[2] have studied its boundary correspondence and obtained fundamental
results. It will be of interest to generalize their results to the case of a u(z)-
homeomorphism. In Section 1, for a self-u(z)-homeomorphism f of H, we
give sufficient conditions so that f can be extended to a homeomorphism of
H onto itself. Denoting the boundary function by A(x) =lim,_, , f(z) and
following [2], we introduce the quasisymmetric function

_ h(x+1)—h(x)
 h(x)—h(x—1)’

In this case, p(x, f) may tend to 4+ when # — +0. In Section 2 we derive an
estimation of p(x, ) when the mean dilatation function D*(x, r) is under
certain control. In Section 3, we study the Beurling—Ahlfors extension f
of a self-homeomorphism of R with unbounded p(x, f), and obtain an esti-
mation of the dilatation function D(x+iy) of f when y is small.

t>0. (0.7)

p(x, 1)

1. Boundary Extension of u(z)-Homeomorphisms

An important difference between a quasiconformal mapping and a p(z)-
homeomorphism is that the former can be homeomorphically extended to
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the boundary, whereas that is not yet clear for the latter. Under some appro-
priate conditions, we have the following result.

THEOREM 1. Let f(2) be a self-u(z)-homeomorphism of H. If, for every
xeR,

f’z dr
rn, T(1+0%(x,r)

is positive and tends to 4+ as ry— 0 or as ry— +o, then f(z) can be ex-
tended to be a homeomorphism of H onto itself.

Proof. First we prove that for all xe R, f(z) converges when z tends to x
in H.

Otherwise, there exist two sequences {z$/’}, j =1, 2, such that f(z,(,j )) - u;
as z$) tends to x € R in H where u; and u, are different. We may as well sup-
pose that —oo < u; < u, < 4+, or we can make it so by a linear transfor-
mation. Let A* = A% (x; ry, r,) and

Ut(x,r)={z]||z—x|<r,0<arg(z—x)< 7}, xeR.

Let T' be the family of curves that connect J(v>) with the real line segment
[u, u,] in the simply connected domain f(U*(x, r,)). When r, is fixed, the
extremal length A(T") is a positive constant C independent of r;.

Since f(A*) C f(U™*(x, ry)), it is obvious that for every curve § e T there
exists a curve y eI such that y C 4. Hence I' < T, which implies [1, p. 11]

A < A(D).
It then follows from (0.3) that

L[r_ar " e
”fr. o) S mod/AN =AD) <AM) =C< e (1.2)

holds for any r; > 0. According to the conditions of the theorem, the left-
hand side of (1.2) tends to +o as r; — 0, which is a contradiction. Therefore,
f(z) converges as z — x.

From the assumption that

f T2 dr
r, r(1+0*(x, 1))

1

tends to 4o as r, — +00, we can similarly prove that f(z) converges as z — .
Now we may define the boundary function by A(x) =lim,_,, f(z). At most
by a linear transformation, 4 can be normalized by A(+0o0) = 40, A(—c0) =
—oo, Furthermore, it is not difficult to see that #(x) is continuous.

Next we shall prove that 4 is injective on R.

Otherwise, there exists € R and —o < x; < x, < 400 such that h(x;) =
h(x,) = u, which implies h(x;) = u for any x; € (x;, x,) as is known from
topology. Consider the upper half annulus A* = A*((x; +x,)/2; (x, —x;)/4,
(x,—x1)/2). By the definition of module, we have
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mod f(A*(xl+x2 Nt ol xz_x‘)) =0. (1.3)

2 7 4 2
But it follows from (0.3) and assumption (1.1) that

+ x1+x2.x2—x1 X2—X)
modf(A( T T ))>0.

The contradiction shows that # must be injective on R.

From the preceding discussion of f(z) and the well-known consequences
of topology, it is easy to see that f can be extended to a homeomorphism of
H onto itself. O

Theorem 1 provides a sufficient condition under which any self-u(z)-homeo-
morphism of H can be extended to a self-homeomorphism of H.

2. Estimates for the Growth of
Quasisymmetric Functions

Let f(z) be a self-u(z)-homeomorphism of H where u(z) fulfills condi-
tion (1.1). According to Theorem 1, f(z) can be extended to a self-homeo-
morphism of A. Then the boundary function 4,

h(x)=lim f(z), x€eR,

X
is a homeomorphism of R onto itself with c fixed. In the present section,
assume that D*(x, r) is controlled by Mlog(1/r) when r is small. Then we
shall obtain an estimate of p(x, ¢) for small 7.
Let T, be a Teichmiiller domain whose complements are [—1,0] and

[ p, +0). Set

1
mod 7, = S log ¥ (p).

Obviously, V¥ is a strictly increasing function of p.

LEMMA 1. Let f be a self-u(z)-homeomorphism of H, and let D*(x,r) be
the mean dilatation function. If f(z) can be extended to a self-homeo-
morphism ot H, then

@ I 31/2 dl‘
- <<
(exp(ft/z rD*(x—1/2,r) )> il

3t/2 dr -1
-1
S(‘I' (exp(f,/z rD*(x+1/2, r)») ’

where p(x, t) is the quasisymmetric function.

Proof. For any xeR and positive number #, consider the half annulus
AT (x+1/2;1/2,3t/2). To simplify notation, we write p = p(x, f). By the
basic properties of extremal length [1, pp. 11 & 16], we have
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t t 3t 1 1
modf(A*(x+ 5; > —-2—)) =2mod 7, = p= log ‘I’(—‘-}-)

From (0.6) it follows that

1 32 dr t t 3t
- < d At et Rt el i B
7w, Dt S meds ( (x+2 2 2))

Combining the above two inequalities, we have
1 3¢/2 dr ] 1 )
- < —logV¥|—). 2.1
T Jyy rD*(x+t/2,r)  « & ( P) (2.1)

After rearrangement, we obtain

3t/2 dr -1
-1
P 0= (‘I, (exp(fm rD*(x+1t/2,r) ))) '

With a similar discussion on another half annulus AT (x—1¢/2;¢/2,3t/2)
as above, with p still denoting p(x, ¢), we have

mod f(A+(x———' — —2—)) <2mod 7T, = —17;_- log ¥ (p)

and
1 32 dr

1
< —
T Jin rD*(x—t/Z,r) T

After rearrangement, we obtain

¥ : 3¢/2 dr D
e
px 1) = (‘”‘p(f,/z rD*(x—1/2, 1) ))

THEOREM 2. Let f be a self-u(z)-homeomorphism of H, and let D*(x, r)
be the mean dilatation function. If there exists 0 < 6 <1 such that, for any
0<r<y,

log ¥(p). 2.2)

D*(x,r)< Mlog(1/r) (2.3)
where M is a constant independent of x and r, then
(t/2)A < p(x, 1) < (t/2)™4

holds for 0 <t < 28/3 with constant A =V2Mmn?/log3, where p(x, t) is the
quasisymmetric function.

Proof. From the assumption D*(x,r) < Mlog(l/r), 0<r<$é, it follows
that when r < 26/3,

f3l/2 dr - 3172 dr
/2 rD*(xit/Z, r) - t/2 Mrlog(l/r)
1 Io |log3t/2|
~ M| Tog/2]
1 log3
=—]] 1+ —-— )|
M °g( +logt—log2)‘
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Since 0 <t < 26/3 <2/3, it is obvious that

log 3 log3
log{1+ = .
og( logt—logZ)‘ log2—logt

Hence we have

31/2 log 3
f __ar > OF 2.4)
2 rD*(xxt/2,r)  M(log2—logt)
for0<t<26/3.
If pe(0,1), we claim that
2
llog <y ‘[—’;l 2.5)

In fact, it follows from [1, p. 40] that

1 _a
Elog‘lf(p)-— 2B’
where

_ dx b +oo dx
o Vix+)x(p—x)’ p Nx+Dx(x—p)

It is not difficult to obtain the following estimates:

a<pr =fl£_ -
“Jo Vx(p—x) Nu(1—u) ’

ax _
1
i f\/(x Dxx—p) f |° Pl

Thus, (2.5) follows immediately.

Obviously, assumption (2.3) fulfills condition (1.1), so f(z) can be ex-
tended to a self-homeomorphism of A by Theorem 1. We still write p =
p(x,?) as in Lemma 1.

If p(x, £) > 1, (2.5) implies that (1/7) log ¥(1/p) < V27/|log 1/p|. Combin-
ing this inequality with (2.1) and (2.4), we have

log3 - V2=
M(log2—logt) ~|logl/p|’

1
T

Hence we obtain
p(x, 1) < (£/2)74, (2.6)

with constant A = V2Mn?/log3.
If p(x, t) <1, (2.5) implies that (1/7)log ¥(p) < V2x/|logp|. Combining
this inequality with (2.2) and (2.4), we have
1 log 3 < V2r
T M(log2—log?) ~ |logp|’

Hence, we obtain
o(x, 1) > (1/2)4. (2.7
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By (2.6) and (2.7), we finally conclude that

(t/2) < p(x, 1) < (¢/2)™4
holds for 0 < ¢ < 26/3, with constant A = V2M=?*/log3. O
REMARK. If f(z) in this theorem is K-q.c., then D*(x, r) < K. Under this
assumption, (2.1) and (2.5) yield

1log3 _ V2
T K = logil]’

V2
p < exp(log3 sz).

This inequality remains consistent on the order of log p with the best pos-
sible estimate p < (1/16)e™ [1, p. 65].

hence

3. Estimate for Growth of the Dilatation Function

Let & be a homeomorphism of R onto itself with oo fixed. Let ¢(z) be the
Beurling-Ahlfors extension of 4:

¢ (2) = u(x, y)+iv(x, y), (3.1
where

1 x+y
ut ) =5 f h(1)dt,
X—=y

v(x,y)= %}—(fﬁyh(t) dt—fx h(t) dt).
X x—y

Since ¢(z) € C, it is easy to see that ¢(z) is a homeomorphism of A onto
itself whose dilatation function D(z) is finite at every point in H. Hence
¢(z) is the so-called self-u(z)-homeomorphism of H. In this section, we
shall obtain estimates on the growth of D(x+iy) from that of p(x, ?).

Suppose that the quasisymmetric function p(x,?) = (h(x+1t)—h(x))/
(h(x)— h(x—1)) satisfies the following condition:

()7 = p(x, )= p(2) (3.3)

holds for all xe R and 0 < # < 6, where p(¢) is a decreasing function in (0, 6).
Because it is permitted that p(#) tend to +o0 in any order as ¢ — +0, condi-
tion (3.3) for A(¢) is a generalization of the ordinary p-condition of quasi-
symmetric functions. Then we have the following theorem.

(3.2)

THEOREM 3. Let h be a homeomorphism of R onto itself with h(+c0) =
+oo. If the quasisymmetric function p(x,t) of h satisfies condition (3.3),
then the dilatation of the Beurling-Ahlfors extension ¢(z) of h at point 7, =
Xo+ iy has the following estimation:

D(xo+iyo) =4p(yo)+c 3.4

Jorall xoe R and 0 < yy < 8, where the constant c can be chosen to be 4.25.
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Before we begin our proof of the theorem, we make the following remarks.
First, let h*(t) = h(yyt+x,) and denote the Beurling-Ahlfors extension of
h* by ¢*(z). Then ¢*(z) = #(¥oz+Xp), where ¢(z) is the Beurling-Ahlfors
extension of h. Because Dy+(i) = Ds(xo+iyo) and

o R+ —hY(x)
P ) = R S~ =1)

we know that it suffices to estimate the dilatation of ¢(z) at only one point
Zo = i, with the quasisymmetric function satisfying

p(Yot)™' < p(x, 1) < p(¥o?) (3.5)

for all xe R and 0 < ¢ < 8/yy, where p(¥,t) is decreasing in € (0, 6/y,).

Second, we can assume that 4 fulfills the normalized condition A(0) =0,
h(1) =1, h(eo) =oc0. Otherwise, we can choose h*(f) = (h(t)—h(0))/k(1)
instead of h(¢), which changes neither the condition (3.5) nor the dilatation
of the Beurling-Ahlfors extension at zo = i.

Let & be a normalized self-homeomorphism of R whose quasisymmetric
function p(x, t) satisfies condition (3.5), and let ¢(z) be the Beurling-Ahl-
fors extension of 4. Denote the local dilatation of ¢(z) at zp=1i by D. It
follows from [2] that

= p(YoX+Xo, Yol),

1 1 S 1 )
2 - lga 1a , 3.6
D+ E+n[ﬁ( 1)+l )] (3.6)

where 8 = —h(—1), £ =1—[} h(#)dt, and 5 =1+ (1/B) [°, h(t) dt. The fol-
lowing estimates for 3, £, n are obvious:

p(¥0) ' = B=p(¥o), (3.7

0<é&p<l. (3.8)

For the proof of Theorem 3, we need the following.

LemMMA 2. Let h be a normalized self~homeomorphism of R, and let p(t),
£,n, B be defined by (3.5) and (3.6). Then

B _ B

> . 39
[4p00) = T+p(r0) (3:9)

28+

Proof. Let te (0, 3). It follows from

h(1)—h(z)

_ -1
MO—h2i—1) = p((1-12)yo)

that
p((1=10)yo)+h(2t—1)
1+p((1-28)yo)

Integrating both sides of the above inequality with respect to ¢ € (0, 3) and
noting the decreasing property of p(#), we have

h(t) <
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172

2 p((1—=1)y0) 2 h(2t-1)
h(dt < dt
, Mods | 1+mu—nm) |, Tt
- (3.10)
<3t O)f K1) dt.
Hence
B
g4 P
S Tro00)
172 1 8 1 0
=2—2( h(t)dt+ h(t)dt)+—————(1+— h(t)dt)
0 1/2 1+p(yo) BJ,
22-—(1-{-——-1—— /’l(t)dt+l) ——ﬁ——-(1+—l- h(t)dt)
14+ p(yp) 1+ p(yo) B
___ B
1+p(»0)’
which completes the proof of Lemma 2. O

Proof of Theorem 3. We only discuss the case 1 < 8 < p(y,), because the
case p(¥o)~! =B <1 can be handled by setting #*(¢) = h(—t)/—83, which is
also a normalized self-homeomorphism of R and whose quasisymmetric
function also satisfies condition (3.5). Let ¢*(z) be the Beurling-Ahlfors
extension of A*(¢) = h(—t)/—0; then ¢*(z) = ¢(—Z)/—B. It is obvious that
Dy (i) = Dy(i). So, without loss of generality, we assume that

1= 8= p(y). (3.11)
Denote the right side of (3.6) by H(£, ), that is,
H =——|B(1+9>
(&,7) = e [B( +n)+B

By (3.8) and (3.9), we know that the point (£, ») lies in the domain bounded
by lines £ =1, =0, n =1, and 2£+B/(1+p(¥o))n = B/(1+p(¥p))- It was
pointed out in [2] that H(&,n) is convex, so H(§, 5) reaches its maximum
value at one of the four vertexes: (0, 1), (1, 1), (1,0), and (8/2(1+ (o)), 0).
Comparing the values of H(, ) at these four points, we have

1 B
D<D+—<Hl— 0
= +D< (2(1+P(}’0)) )

—2a+mh»Q+BJ

(1+§2)]. (3.12)

1
2(14+p(¥0))

where ¢ = 4.25. The proof is completed. il

< 4p(y0)+c’

REMARK. Under the condition that p~! < p(x, t) < p, where p is a constant,
Lehtinen [5] proved that the dilatation D(z) of the Beurling-Ahlfors exten-
sion of A has the estimation D(z) < 2p. Hence the constants 4 and ¢ in (3.4)
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may be not the best possible. We have reason to believe that when inequali-
ties (3.8) and (3.9) are improved, better estimation can be expected.
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