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0. Introduction

In our previous paper [9] we initiated a study of the Ahlfors Laplacian L =
S*S, that is, the symmetric and trace-free part of the covariant derivative
acting on vector fields on a Riemannian manifold M. Here S is the Ahlfors
operator: SX =0 means that the vector field X on M is conformal. The
size of SX (in the infinity norm) measures the degree to which X is quasi-
conformal (the constant of quasi-conformality). Thus a good understand-
ing of the operators S and L is desirable in connection with studies of quasi-
conformal transformations and their geometry.

In this paper we extend some of our earlier results to the case where M
has a boundary £ = dM # @. We investigate the behavior of S on a general
hypersurface, thus relating the intrinsic conformal geometry of L with that
of M. In this way we find geometrically natural boundary conditions for L,
giving rise to self-adjoint and elliptic extensions of L up to the boundary.
One such condition consists of the elasticity condition investigated by Weyl
[16] in dealing with vibrations of an elastic body in the Eulidean space R3, We
are thus able to generalize and sharpen the asymptotic distribution of eigen-
frequencies found by Weyl, in a sense finding the “vibrational spectrum” of
M. Note that L does not have scalar leading symbol, so that both the spec-
tral asymptotics as well as the boundary conditions are a more delicate mat-
ter than, for example, for the Laplacian. Another question we address is
that of unique continuation for conformal vector fields given a certain be-
havior on L; this is directly related to the existence of a Poisson kernel for
L and for S.

It turns out that the basic formulas of Green’s type for S and L are par-
ticularly simple. We derive these and show how similar formulas hold for
any generalized gradient [14], based on a universal Green’s formula for the
covariant derivative. Such formulas were in a special case considered by
Weyl and also by Yano in [17], where he used them to characterize con-
formal vector fields and their boundary values.

These general Green’s formulas are remarkably simple and could in par-
ticular be applied to finding natural boundary conditions of a geometric
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nature for any generalized gradient. Since our emphasis is on elliptic bound-
ary value problems, we extend and clarify Yano’s results; also, our proofs
and formulations are more conceptual, so that many of our results will carry
over easily to other gradients. A particularly interesting prospect is that of
considering higher Ahlfors operators, that is, gradients on differential forms.

After establishing notation, we derive the relevant formulas giving the
interplay between S near X and the intrinsic geometry of £. Then, based on
the Green’s formulas mentioned above, we formulate three basic boundary
conditions: Dirichlet, Neumann, and elasticity, and show that they are self-
adjoint and elliptic in the strong sense of the usual pseudodifferential calcu-
lus; see [5]. Finally, in Section 5 we give the leading asymptotics for the heat
semigroup exp(—¢L) for some of the boundary conditions.

The authors thank Prof. Thomas P. Branson for many remarks on the
subject of this paper, in particular in connection with fundamental solutions
and heat asymptotics. Also, the second-named author thanks the University
of Odense for hospitality and support while this work was being finished.

Since this work was completed, a preprint has appeared (“Heat Equation
Asymptotics of the Generalized Ahlfors Laplacian on a Manifold with
Boundary” by Branson, Gilkey, @rsted and Pierzchalski) in which other
methods are used to calculate more terms in the heat asymptotics for bound-
ary conditions of a similar nature. However, those methods do not apply,
for example, to the Dirichlet conditions discussed in the present paper.

1. Preliminaries and Notation

Let (M, g) be a Riemannian manifold (with or without boundary), that is, a
C* manifold M equipped with a C* metric tensor g = (g,;) which is sym-
metric and positive definite. Many results extend (but we do not go into this)
to the pseudo-Riemannian case, where g is symmetric and nondegenerate.
The variable n will always denote the dimension of M. For pe M, T,, and TS
denote the tangent and the cotangent space at p, respectively.

The space of all C* vector fields will be denoted by . The space of C*-
p-forms will be denoted by D”, and M will denote the space of all symmet-
ric C* tensor fields of zero trace with respect to g.

Take V, the Levi-Civita connection of the metric g, and extend it natu-
rally to the whole tensor algebra over M. Then, for each # € C*(§¢) where &
is an arbitrary tensor bundle over M, Vh is a section of C®(T*®£) where T*
is the cotangent bundle of M. For example, for a I-form o we have that

(Va)(X,Y) = Vx(a(Y)) —a(VxY), X, YedX,
while, for a 2-tensor ¢ € M,
(VXX Y, Z) =Vx(o(Y, Z))—o(VxY,Z)— (Y, VxZ), X,Y,ZeX.

Extend also g naturally onto arbitrary tensor fields and denote the ex-
tended g by the same letter. Consider, for example, the cases of 1-forms and
symmetric 2-tensors as follows. If, in coordinates (x, ..., x"),
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o =a,dx’, B = B.dx®
(summation convention), then

gle, B) =g"a,Bs,
where (g”¥) is the inverse matrix of (g,,) = (g(3/dx’, 3/9x°)). Also, if
¢ =@ dx"®dx’, Y =yY,dx'Qdx",
then
gle, V) =8"8" " ors¥iu-

For simplicity we assume that M is orientable. It can then be covered by
neighborhoods U with coordinates (x!, ..., x") such that each two of them
with a nonempty intersection are related by a diffeomorphism with a posi-
tive Jacobian. The volume form is defined locally by

volysy = Gdx'A -+ Adx™, (1.1)
where

G = «/det(g,,). (1.2)

Now we define the global scalar product of two tensors V, W (e.g. V,WeX
or D! or M) by

vV, W) = fM g(V, W)vol,,. (1.3)

In the case of compact M (with or without boundary), (1.3) is always finite.

An essential role in the theory of quasi-conformal deformations of a Rie-
mannian manifold is played by the Ahlfors differential operator S (of [1; 2;
10; 11; 12]) from the space X of all vector fields (= deformations) Z into the
space I of all symmetric trace-free tensors, defined by

SZ(X,Y) = %[g(VxZ, Y)+g(X,VyZ)] —% divZg(X,Y) (1.4)
or, equivalently, in a more consistent form by
1 1
7 =— ——divZ 1.
S 5 L8 — div Zg, (1.5)

where £ is the Lie derivative in direction Z:
£28(X,Y)=2g(X,Y)—-g(lZ,X],Y)-g(X,[4,Y]), X Y,ZeX, (1.6)
and div Z denotes the divergence of Z:
divZ=tr(X—-VyxZ). (1.7)
If « is the 1-form dual to Z in the sense that

a(X)=g(Z,X), XeX, (1.8)
then
3£7g=Va¢ and da=—divZ, (1.9)
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where V° denotes the symmetrized V:
(V') (X, Y) = 3((Vxa) (Y) + (Vya) (X)), (1.10)
and d« denotes the codifferential of «. In coordinates,
da = —Via;. (1.11)

Consequently, by the duality (1.8), S may be realized as an operator acting
on 1-forms «:

Sa =Vsa+711-6oz-g. (1.12)
In what follows we will use both SZ and Sa.
The operator S*, formally adjoint to S in the sense that the equality
(Sa, @) = (a0, S*p), aeD!, e, (1.13)

holds if « or ¢ is of compact support (not intersecting oM if oM # @), is of
divergence type:

S*o =0, eM (1.14)
where, in coordinates, the 1-form 6¢ is defined by
dp =—Vip,. (1.15)
The operator
L =S"S,

called the Ahlfors Laplacian, is a formally self-adjoint nonnegative differ-
ential operator on M. It is of the form (cf. [9])

L=16d+(1——1—)d6—R. (1.16)
2 n
Here R denotes the Ricci action on 1-forms «:

Roa=R(Z,"), (1.17)

where Z is the field dual to « in the sense of (1.8) by the decomposition for-
mula (1.16). The symbol o; is of the form

o7 (wW)a = i(w)e(w)a +(2 — %)e(w) (w)a

= g(w, w)a+ (1 —%)(i(w)a) ‘w, a,weD!,

where i(w) and e(w) denote (respectively) the interior and exterior product
by w. S may be treated as a generalized gradient in the sense of Stein and
Weiss [14]. At each point p e M, the space of all two tensors at p decom-
poses into three g,-orthogonal subspaces invariant under the natural ac-
tion of the orthogonal groups O(g,): skew-symmetric tensors, symmetric
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and trace-free tensors, and traces. Accordingly, the covariant derivative of
a € D! decomposes into three pieces:

Vo =la’a+Sa—l6a'g. (1.18)
2 n

The decomposition formula (1.18) may be briefly interpreted as follows: If
we look at « as an infinitesimal deformation of M (the vector field Z dual to
o generates a flow of transformations of M), then da “measures” a rotation,
S« an elastic distorsion, and d« a stretching caused infinitesimally by «.

2. Behavior on a Hypersurface

Consider the decomposition (1.18). The exterior derivative d is independent
of the geometric structure of M. The geometric properties of V are then
determined by S and é or, equivalently, by V* and é. Thus these two opera-
tors determine the behavior both of V and S. Our next aim is to describe
their local properties on a hypersurface £ C M.

By a hypersurface £ of M we mean an (n —1)-dimensional C*-submani-
fold of M. We treat ¥ as a Riemannian manifold with the scalar product g
induced by g. All objects related to £ will be denoted by ~; for example, we
will use the symbols v, a“i;, and S, for the Levi-Civita connection, the di-
vergence, and the Ahlfors operator, respectively, with respect to g on Z.

Since only local properties of L will be investigated in this section, we ac-
cept, without loss of generality, some technical assumptions. We may there-
fore assume that I is an imbedded submanifold and that it is contained in &
single neighborhood U with coordinates (x!, ..., x"~!, x"). Moreover, we carn
choose the coordinates in such a way that the last one, r = x”, denotes the
geodesic distance to X. The vector fields

L I R P
are tangent to ¥ while

d
N=en=5

is orthogonal to it at each point. Moreover, M is a geodesic field in the sense
that
VwN =0 in U. (2.1
In particular,
g(N,N) =1 (2.2)
that is, NV is a field of unit vectors.

Take now two arbitrary vector fields tangent to X: X, Ye 9C(X). By the
Gauss and Weingarten formulas (cf. [6, p. 15]) and (2.1), we have that

ViY=VyY+h(X,Y)-N (2.3)
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and
VxN=—-ANX, g(VxN,N)=0, (2.9

at every point of £, where 4 is a symmetric bilinear form (called the second
SJundamental form of £) h: X (L) X X(X) - C*(M) and A is a linear endo-
morphism Ay : L(X) = X(X) conjugate to A in the sense that

gANX,Y)=h(X)Y), X, YeX(X). (2.5)

Assume that indices i, j, k,/ run over the range 1, ..., n—1 while s, ¢, u, v
run over 1, ..., n. The summation convention will be used for indices of both
kinds. By the assumptions on the coordinates in U, the following relations
may be obtained from (2.3), (2.4), and (2.5).

LEMMA 2.1. At every point of ¥ we have:
8(Vee) er) = &(Ve, ) €x), (2.6)
g8(Vee;, e,) = —g(V, ey, e) = —g(V, e;, e;) = h(e;, ), 2.7
&(Ve,en; €n) = (Ve €, €,) = 8(Ve, €0, €) = 8(Ve,€,€,) =0 (2.8)
fori,j=1,...,n—1.
Take now an arbitrary vector field Z in U. In the basis ey, ..., e,_1, €,
Z=2Ze,+Z",. (2.9)
If we let
ZT=Zke,, ZN=2Z",, (2.10)
then we obtain the decomposition
zZ=Z"+2z"V (2.11)

in the whole neighborhood U of E. Moreover, at every point of £, Z T is tan-
gent while Z" is orthogonal to L.
Extend 4 to arbitrary vector fields along £ (not necessarily tangent), setting

hX,Y)=h(XT,YT). (2.12)
For such # we have, for example,
h(X,N)=0. (2.13)

Let us first observe how the divergence behaves on I. By (1.7), the orthog-
onality relations e, Le; (i=1,...,n—1) and Lemma 2.1, we obtain the fol-
lowing after direct calculations.

LeEmMA 2.2. For an arbitrary vector field Z in U,
divZ=divzT-2" trh+%(z") (2.14)

at each point of L. (Note that Z" is well-defined in the whole neighborhood
Uof L.
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Now observe how V* behaves on E. Here again V° denotes the symmetrized
V; that is, V°Z is the tensor field defined by

VZ(X,Y)=3[8(VxZ, V) +&(VyZ, X)), X,Y,ZeX(M); (2.15)

cf. (1.10).
Equations (2.15) and (2.9) together with Lemma 2.1 establish the follow-
ing lemma.

LeEMMA 2.3. For an arbitrary vector field Z in U, at each point of ¥ we
have:

(VSZ)(ei,e) =(VZT)(e;, e))— Z"h(e;, €)), (2.16)
(V5Z)(e;, e,) = 3lei(Z™) +e,(Z%) g(e,, €))]

= 1[e;(Z") +g(IN, Z1, )], (2.17)

(V3Z)(ens &) = o Z"8(ens ) 2.18)

Jori,j=1,...,n—1.

ReEMARK 2.3". In (2.18) g(e,, e,) =1, but we have retained it in order to
stress the tensorial character of V°Z.

CoroLLARY 2.1. For an arbitrary vector field Z in U,

& 1 —
SZ(e,-, ej) = SZT(e,-, ej)+ n(n——l) div ZTgij
n 1 n 1 a n
—Z h(e,-,ej)+;z—Z trh-g,-j—;ﬁl 8ij» (2.19)
SZ(e;, eq) = 312" +e,(Z")g1i]
= 3[e/(Z") +&(IN, Z], &), - (2.20)
1IN ., 1\ == _7.1_,
SZ(e,,e,))=(1——)—2Z"——divZ'+—Z"trh (2.21)
njor n n

at each point of E.

Proof. The formulas (2.19)-(2.21) are a simple consequence of Lemmas 2.2
and 2.3. O

Let us next investigate the behavior of SZ on ¥ under different assumptions
on Z itself. The results obtained will be applied in formulating self-adjoint
and elliptic boundary conditions (Section 4).

First, observe that the restricting of a conformal field to hypersurfaces
preserves conformality. This may be stated more precisely as follows.

LeEMMA 2.4. If Z is a conformal vector field on M (i.e., SZ = 9 on M) and
if Z is tangent to T (i.e., Z" =0 on X), then the vector field Z € (L), the
restriction of Z to X, is a conformal vector field on X:
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~

SZ=0
at each point of Z.

Proof. Since ZN =0, by (2.19) and (2.21) we obtain
~ 1
SZ(e;, e)) = SZ(e;, ej)+ n_—ISZ(e"’ €n)8ij
at each point of X. The assumption SZ = 0 now implies (2.22).

LEmMA 2.5. If Z,, Z, are arbitrary vector fields on M such that
Z,=2Z,=0o0nZk,
then
SZ(Z,,N)=0
at each point of Z.

Proof. This is a simple consequence of SZ, being a tensor field.

LEMMA 2.6. If Z,, Z, are vector fields on M such that

ZN=2N=0 and (VyZ))"=0 onzx,
then
8Z\(Z,,N) =3h(Z,, Z,)
at each point of L.

Proof. Since g(Z,, N) =0, by (1.4) we obtain that
SZ\(Z3,N) = 318(V2,Z,, N)+ g(Z,, VN Z,)]

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

at each point of X. Using the assumption and the Gauss formula (2.3) yields

the assertion (2.27).

REMARK 2.6". If we replace the conditions (2.26) by
ZV=27Z¥=0 and [N,Z,]7=0 onM,
then we obtain that
SZI(Zz, N) =0 onk
instead of (2.27).

LeEMMA 2.7. If Z,, Z, are arbitrary vector fields on M such that

ZI=27=0 and divZ,=0 onZ,
then
SZ\(Z,,N)=Z{Zjtrh
at each point of L.

O

(2.26")

(2.27")

(2.29)

(2.30)
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Proof. By assumptions (2.29) and formula (2.14), we obtain that

D zi=zrtn (2.31)
or
at each point of . Using formula (2.21) then yields (2.30). O

ReEMARK 2.7. If we replace the conditions (2.29) by

n

ZI'=2ZT=0 and divz,=- Z"trh onZ, (2.29')

we obtain that
SZ(Z,,N)=0 (2.30%)
on X instead of (2.30).

3. Green’s Formulas

In this section we are going to derive Green-type formulas for the operators
S,S* and L = §*S. Some of them were used implicitly by mathematicians
considering conformal Killing vector fields on manifolds with boundary (cf.
e.g. Yano [17] and references mentioned there). We decided to formulate
them explicitly because our formulation extends automatically to all gen-
eralized gradients in the sense of Stein and Weiss [14], that is, differential
operators as projections of V onto irreducible pieces of arbitrary tensor (or
spin) bundles over M.

This last point is important enough that we want to stress it in the be-
ginning of this section: For each Stein-Weiss gradient corresponding to a
connection V, there is a Green-type formula as follows: Let £ be an arbi-
trary tensor (spinor) bundle over M. Then V: C®(£) - C®(T*®¢£). At each
point p € M, the orthogonal group O(g,) acts naturally on T, ®%,. Denote
by Fp‘, ..., F}" all the irreducible invariant subspaces of 7T,'®%,, and by ,:
C(T*®&) - C*(F") (v =1, ..., u) the natural orthogonal projections. Con-
sider the first-order differential operators

P,=m,V, v=1,..,pu,

and denote by P, the operator formally adjoint to P,. Then our Green’s
formula is given in the following theorem.

THEOREM 3.1. IfaeC% (&) and Be C*(F"), then

(P,ot, B)—(a, P}B) = f *i(c)B

oM

where i(o) 3 denotes contraction of o and 8 to a 1-form via the metric.

Here the contraction between « and 3 is the pairing between £ and itself.
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Theorems 3.2 and 3.3 are just special cases of this general result; however,
in order to illustrate the geometry of our special situation, we give the spe-
cialization in a precise way. Hence they are also seen as consequences of the
Stokes theorem. We give the proof of Theorem 3.1 at the end of this section.

Let again M be an orientable compact Riemannian manifold with a smooth
boundary dM consisting of a finite number of (n—1)-dimensional mani-
folds. M may then be covered by a finite number of neighborhoods with
coordinates (x/, ..., x") which are of two kinds: First-kind coordinate sys-
tems map open sets in M \dM onto open sets in R” and cover an open set ¥;;
second-kind coordinate systems cover an open neighborhood V3 of dM in M
(VgUV; = M). For each boundary point p there exist coordinates (x, ...,
x" =r) in a neighborhood of p, |x;| <1 and 0 < x, <1, such that (like the
coordinate system in a neighborhood U of X in Section 2) r measures the
geodesic distance of points of Vj to the boundary dM. The last coordinates
of a point of ¥V in two overlapping systems are then the same. V' therefore
has the form of a product of dM with a half-open interval 0 < r < 1. The
vector field N = d/dr is then well-defined in the whole neighborhood V5.

For a given manifold M with boundary dM, it is possible to construct its
“double” M’, which is a compact manifold consisting of two copies of M,
suitably oriented, glued together smoothly at the boundary dM. Coordinate
systems of the second kind make the gluing process possible: two copies of
such coordinates glue together in a coordinate system of the first kind. aM
may therefore be treated as a hypersurface X of M’, and all results of Section
2 apply to oM.

Recall that M is an orientable manifold. This means that coordinates of
both kinds may be chosen in such a way that each two overlapping systems
are related by a diffeomorphism with a positive Jacobian. The volume form
vol,, can then be locally expressed by (1.3). If (x!, ..., x") are coordinates of
the second kind in U, then the local formula

volars lunam = (1)~ 1Gdx*A -+~ Adx" ! (3.1)

defines a global (7 —1)-form on dM.
We will use the following Stokes formula in this section:

fM do> = fa o (3.2)

where M and dM are oriented according to (1.3) and (3.1), respectively. In
particular, for an arbitrary 1-form o on M we obtain

f dxa= *QY, (3.3)
M oM

where *: D? - D" 7P js the Hodge star isomorphism defined by
wA*p =g(w, p)voly, w,pueDP, 3.4)
In a coordinate system (x', ..., x") in U, let
o = a.dx’. (3.5)
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By (1.3) and (3.4) one can calculate that
N
*a = Gogs (=) "ldx!A - Adx'A - AdX", (3.6)

where g%g,,, = 6, and where ~ over a factor means that this factor is missing
from the product.
Since

dox = —* dx 3.7

on 1-forms « (cf. [15, p. 220}), applying * to both sides of (3.7) and using the
fact that *f = fvol,, for fe C*(M) yields

o voly, = —* x(d * o). (3.8)
Since
* % | pn = id | pn, (3.9)
we find
d* o= —0avoly,, (3.10)
and by (3.3) we obtain
f oavoly, = —f *0L. (3.11)
M oM

Consequently, by (3.1) and (3.6) we see that

f oavoly = —f i(dr)a volyy, = —f a(N)volyy, (3.12)
M oM oM

where, for any p-form (3, i(3) denotes the inner product by 8, and where N
is the unit normal field along dM defined in the beginning of this section.

Now we are ready to prove Green-type formulas for S, S* and L = S*S.
These formulas generalize those obtained by Ahlfors in [1] in the case where
M is the Euclidean ball or by the second-named author in [10] in the case of
an arbitrary domain in the Euclidean space in R”.

THEOREM 3.2. For arbitrary 1-form o€ D' and ¢ € M,

(Sat, 9) — (@, §*0) = f *i(@) @ (3.13)
oM
by duality, for an arbitrary vector field Z,
(SZ, ) —(Z, §*¢) = f o(Z, N)volyy, (3.14)
oM

(here (Z, S*¢) = (S*¢)(Z)).

Proof. By the Stokes theorem, it is enough to show that if we express the
left-hand side of (3.13) in the integral form (1.3) then the integrand is equal
to d(*i(a)¢). By (3.9) and (3.8), we have that

d(*i(a)p) = * x(d * i(a)p) = *(xd * i(a)p) = —* bi(a) p. (3.15)
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In local coordinates,
d(i(a)p) = —V"g% 05, = =% (Vo) o5 — g%,V 0y, (3.16)
Consequently,
—*8(i(@)p) = (8" (V') psu+ 872,V 05,1 voly. (3.17)

On the other hand, using (1.12), the symmetry of ¢, and the fact that
tr ¢ =0, we obtain

ut_ sv ut,sv

g(Sa, p) =Sa,;8"'g ¢zv=%(vuas+vsau)g 8 P
= g%(V'ag) oy, \ (3.18)

After re-ordering indices, (3.18) is equal to the first summand in the brackets
of (3.17). Similarly, by (1.15), we get the other summand in (3.17):

—g(a, §*p) = —a,8°(5*0)s = 2,8V . (3.19)

By (3.17)-(3.19) we have
d(*i(a)p) = (g(Sc, ¢) — gla, S*p)) voly,. (3.20)
Now the Stokes formula (3.3) completes the proof. ]

REMARK 3.2’. By changing signs in (3.13) or (3.14), we obtain Green’s for-
mulas for S*.

Combining (3.13) or (3.14) with the analogous formula for S*, we now obtain
directly the following formula for L = S§*S.

THEOREM 3.3. For arbitrary 1-forms oy, ay € D',

(S*Say, atz) — (g, S*Ser) = fa i) Say—ife)Sen); (320

by duality, for arbitrary vector fields Z,, Z, € X(M) we have

(8*SZ,,2,)—(Z,,S*SZy) = | [SZy(Z,,N)—SZ\(Z,,N)]voly,. (3.22)
aM

It is worth noticing that the reasoning in the proof of Theorem 3.1 applies
mutatis mutandis to each orthogonal summand of V« in (1.18) and, finally,
to the Vu itself. We can therefore formally obtain Green-type formulas for
d, 6, or V by replacing S in (3.13) with d, 8, or V and suitably correcting the
range for ¢. Analogously, we can derive Green-type formulas for d*d = éd,
6*6 = dé, or V*V from (3.21).

The same theorems may also be formulated for V considered as an oper-
ator acting on arbitrary tensors (spinors), so the Green-type theorems may
be proved analogously for each of the generalized gradients in the sense
of Stein and Weiss. Recalling the notation in Theorem 3.1, we state these
more precisely. Let £ be an arbitrary tensor (spinor) bundle over M. Then




The Ahlfors Laplacian on a Riemannian Manifold with Boundary 111

V:C®(§) > C®(T*®%). At each point p e M, the orthogonal group O(g,)
acts naturally on 7;®%,. Denote by F!}, ..., F} all the irreducible invariant
subspaces of T, ®%,, and by 7,: C*(T*®¢§) - C*(F") (v =1, ..., n) the nat-
ural orthogonal projections. Consider the first-order differential operators

P,=7,V, v=1,...,u,

and denote by P the operator formally adjoint to P,.

THEOREM 3.4. IfaeC™(§¢) and Be C*(F?), then

(P,a, B) —(a, PXB) = f +i(c)B, (3.23)

oM

where i(a) 8 denotes contraction of o and 3 to a vector via the metric.
If ay, € C7(£), then

(Pv*Pvala aZ)_(a], Pv*PuaZ) = f *(i(al)PVQZ—i(aZ)Pva])' (3~24)
oM

Proof. In local coordinates and corresponding multi-indices I, we differ-
entiate

Vile'8) = (Via)Bji+a'ViBy;

and integrate over M, obtaining the universal formula

(Voo ) = (@, V°B) = [ +i()B, (3.25)
oM
from which (3.23) (i.e. Theorem 3.1) follows by applying the orthogonal
projection P,. Now (3.24) is a direct consequence of setting 8 = P,o»,. [

4. Elliptic Boundary Value Problems

For S and L, several boundary conditions are geometrically natural. We
are interested in self-adjoint and elliptic extensions of L up to the boundary,
and also in the extent to which these boundary data determine the solutions
to either SX =0 or LX =0 inside M.

In his paper on elasticity, Weyl [16] used the boundary condition of van-
ishing divergence and vanishing tangential part of the vector field at . In
our general setting these are again very natural, and together with Dirichlet
and Neumann conditions turn out to be self-adjoint and elliptic in the sense
of [5].

Let us now formulate these boundary conditions more precisely. Toward
this end we define the following subspaces of C:

Xp={ZeX|Z,=0 forall pedM} 4.1)
for the boundary problem of the Dirichlet type (D). Also, define
Ly ={ZeX|Z)=0and(VyZ)] =0 forall pe M} (4.2)
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for the boundary problem of the Neumann type (V). In coordinates, the
condition (V) reads (cf. (2.4)):

Z"=0 and %Z’(=(ANZ)" (k=1,....,n—1) on M. (4.2

Finally, define
X ={ZeX|Z)=0anddivZ,=0 forall pedoM} (4.3)

for the boundary problem of the theory of elasticity (£). In coordinates, we
obtain

Z'=...=7""1'=0 and %Z"=—Z”trh 4.3)

by (2.14).

We will use the symbol Xz when we do not distinguish any of the sub-
spaces (4.1)-(4.3) so that &z may denote any of them.

The boundary conditions of type D, N, or E are self-adjoint in the fol-
lowing sense.

Tueorem 4.1. If Z,,Z,€ Xy then
(LZ,,Z,) =(2,,LZ,). (4.4)

Proof. By (3.22), it is enough to show that
SZ,(Z,NY—SZ,(Z,,N) =0. 4.5)

This is a consequence of Lemmas 2.5, 2.6, and 2.7, respectively, and of the
symmetry of A. ]

Now we turn to the question of the elliptic properties of these boundary
conditions. We follow the definitions of [5, esp. Chap. 1.9], together with
the special geometric nature of S.

We consider a general operator with leading term L, = adé+ bdd, a, b >
0. This has leading symbol

p(&) = ae(§)i(E)+ bi(¢)e(§), (4.6)

where £ is a cotangent vector and i (resp. ¢) denotes the interior (resp. ex-
terior) product:

iv=uwv(,-), e(F)v=£Av.

Here we use the metric to identify tangent and cotangent vectors, so that
i(§)* = e(£). Also, these operators act on alternating forms, so the v in the
preceding formulas stands for (in our case) either a 1-form, a 2-form, or a
0-form. The ordinary differential equation governing the ellipticity at the
boundary is in this case the constant coefficient

P, D)o = Agp. (4.7)
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Here we again introduce normal coordinates near Z: (y,r) e R" ! xR, r =
0, where the r-coordinate is the normal distance to the boundary. Then { is
a cotangent vector to £, and D, = —id/dr. We need to solve (4.7) with 0 # A
a complex number, not in the positive real half-axis, such that

e(r)y—=-0 for r—oco, (4.8)

We recall for the convenience of the reader the notion of elliptic boundary
value problem, following [5, pp. 70-72]. Let (as in our case) P be an elliptic
formally self-adjoint second-order partial differential operator with leading
symbol p, acting on the sections of some vector bundle V over M. At the
boundary ¥ we consider the bundle of Cauchy data W=W,®oW,=V@V,
where we may restrict the value and the normal derivative of a section of V/
to I to obtain a section of W. A boundary operator

B:CX(W)—C>(W’)

is a tangential differential operator over ¥ going from the sections of W to
the sections of some auxiliary graded vector bundle over £: Wy@W)/. The
graded leading symbol of B is denoted o(B), and is at each point y and
covector { a 2 X 2 matrix. We say that (P, B) is elliptic with respect to C\R
if det(p(x, £) —A) # 0 on the interior for all (¢,A) e T*M X (C\R_)\{(0, 0)},
and if on the boundary there always exists a unique solution to the ordi-
nary differential equation (4.7) with boundary condition (4.8) such that
a(B)(y, $)v(f) = f' for any prescribed f'e W’. Here « is the restriction de-
scribed above.

As usual for constant coefficient equations, we set ¢(r) = pge’*” with g a
fixed vector and x complex. Then, with £ = (¢, u), ¢# 0, (4.7) becomes

[ae(§)i(§) + bi(§) e(£)lpo = Apo. (4.9)
In case ¢, is proportional to (¢, i), this gives
a([¢)?+p?) = A; (4.10)

that is, p is not real. Choose the unique root u of (4.10) with positive imag-
inary part. Then our solution is ¢(r) = ¢ge’*’, which is determined uniquely
by ¢q. Similarly, in case ¢ is orthogonal to ({, u), we have

b([¢]*+u?) = Ao,

where the solution satisfying (4.8), o(r) = pge’™’, is determined by ¢,.
Now the question is to what extent the boundary data determine the ¢,.
This is clear for the Dirichlet condition, which simply evaluates ¢(0).
For the elasticity condition, we first consider the form of the boundary
operator B:

B: Wo@W, - W@ Wi,

where Wy = R"” and W, = R" represent the values of a field and its r-derivative
at L. Take W3 = R"~! as the tangential part and W{ =R as the divergence
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of the field at L, respectively. Then, from (4.3’) and the definition of the
grading, the graded symbol of B in this case becomes

P, O
"g(B):( 0 P,;>

acting as Wy@W,. Here P,_, and P, denote projection on the first n—1 co-
ordinates and the last coordinate, respectively. Clearly, the value of

(o e)ie)
0  Pi/\ireg
determines ¢, given u # 0.

For the Neumann condition, we arrive in a similar way at the boundary
operator B, this time with graded symbol

P, 0
«®=(7 5 )

Again, ¢ will be uniquely determined given p # 0 from the value of this ma-
trix applied to (¢q, iteg). Thus we have established the following theorem.

THEOREM 4.2. With respect to either of the three boundary conditions D,
N, or E, the Ahlfors Laplacian L is self-adjoint and elliptic. In particu-
lar, L has a complete orthonormal system of eigenfields Z,, Z,, ... for each
boundary condition: LZ, = A\ Z;, with Z, of class C® and satisfying the
boundary condition in question. Here the eigenvalues 0 <A <A, <:--
grow exponentially.

In the rest of this section, we study the problem of uniqueness of fields on
M satisfying either SX = 0 or LX = 0 with boundary data given via D, N,
or E.

Let us first look at a special case, namely M C R3, a bounded Euclidean
domain. Here a conformal vector field has the general form

X(x) = v+ Ax+Ax+(w, X)x+x%w, (4.11)

where v,we R, AeR, A is skew-symmetric, and x2 = (x, x) is the scalar
product. (In fact, (4.11) is also the formula in R".) The zero set for this
is {x| X(x) = 0}, which entails three quadratic equations. Two of these de-
scribe, for w # 0, hyperbolic paraboloids; the third describes an ellipsoid.
The intersection of three such quadrics is generically eight isolated points,
and never a hypersurface. For isometries we have w = 0 and hence a linear
system of equations. In any case we see that if a conformal vector field van-
ishes on the boundary of M, then it is identically zero in M. A similar result
holds in R” by the same reasoning.

Thus an interesting problem would be to characterize the zero sets of con-
formal vector fields on manifolds—of course, for isometrics these are totally
geodesic—and we suspect that these are very special sets. What we address
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in the following is the slightly weaker problem: Given a conformal vector
field X on M (i.e. SX = 0) satisfying boundary conditions D, N, or E, when
is X identically zero in M? Also, we consider the same problem for the
weaker equation S*SX = 0.

THEOREM 4.3. If M and X are real analytic, SZ =0 on M, and Ze Xp, then
Z=0o0nM.

Proof. Take a point pe L and an analytic coordinate chart around p. In
this chart SZ =0 is a first-order system of differential equations with the
initial condition Z =0 on . By the Cauchy-Kowalewska theorem (of [7,
p. 36]) it follows that this initial value problem has a unique analytic solu-
tion in the small; that is, there exists a neighborhood V of p such that Z=10
in V. By [8, Lemma 2], Z = 0 everywhere on M. O

THEOREM 4.4. If M and ¥ are real analytic, SZ =0 on M, and Z e Xy,
then Z =0 on M unless h, the second fundamental form of L, is degenerate
everywhere.

Proof. The assumption Z € & means that
Z"=0 and (VyZ)'=0. (4.12)
By (1.4) and the orthogonality e; L e,, we obtain
SZ(e;, e,) = 318(Ve,Z, ;) +g(e;, V., Z)].
Now, by (4.12) and (2.7) we have that
SZ(e;, e,) =3h(Z,e).
Since SZ = 0 it follows that
h(Z,e)=0, i=1,...,.n=1

on X. If now 4 is nondegenerate in a single point then it is nondegenerate in
a neighborhood (contained in X) of this point, so Z =0 in this neighbor-
hood. Applying Theorem 4.3, we obtain our assertion. O

REMARK 4.4’. An analogous uniqueness theorem may be formulated if we
replace the condition Ze X by Z e Xy, that is, (4.12) by

Z"=0 and [N,Z]"=0. (4.12%)

THEOREM 4.5. If M and ¥ are real analytic, SZ=0 on M, and Z € X,
then Z =0 on M unless X is totally geodesic.

Proof. The assumption Z € Iz means that
ZT=0 and divZ=0 (4.13)
on L. Since divZ = 0, by (2.19) we have
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SZ(e;, ej) = Z"h(e;, €)).
By the assumption SZ = 0, it follows that at each part of &
Z"h(e,—, ej) =0. (414)

If now A # 0 in a single point, then A =0 in some neighborhood (con-
tained in X) of this point and so Z” = 0 in this neighborhood; that is, Z=0
there. Applying Theorem (4.3) we obtain that Z=0 everywhere on M. []

REMARK 4.5°. If we replace the assumption Ze Xy by Z e X/, that is,
(4.13) by

n
n—

ZT=0 and divZ=-— Z"trh, (4.13)

then we have

Z"(h(e,-,ej)— trhg,-j> =0 (4.14")

n—1
instead of (4.13), and so Z =0 on M unless

h(e;, e;) — trhg;=0, i,j=1,...,n—1,

n—1

everywhere on L.

It is worth noting that the uniqueness of the conformal extension may also
be obtained under some assumptions on the geometry of M and dM (cf. [17,
Prop. 3.7 & 3.8, p. 124]).

Consider now a more general question of uniqueness for the equation
S$*SZ = 0. Since by (3.14)

(8*SZ,Z)—(SZ,SZ)=—| SZ(Z,N)volyy, (4.15)
aM
we obtain the following lemma.

LEmMMA 4.1. IfS*SZ =0o0n M, then

O l.f Z € ErD: (l)
(SZ,8Z) =1 —3[sps P(Z, Z)vOlyspy if ZE Xp, (i)
Japs Z" tr hvolgyy if ZeXg. (iii)

Proof. Formulas (i)-(iii) are obtained by applying (4.15) and Lemmas 2.5,
2.6, and 2.7, respectively. 0

REMARK 4.1, Ifin (ii) we replace Z € X by Z € X, that is, the boundary
conditions (4.12) by (4.12’); or if in (iii) we replace Z e X by Z € X, that
is, the boundary conditions (4.13) by (4.13’), then in these two cases we also
have that S*SZ = 0 on M implies (SZ,SZ) =0.

We finish this section with the remark that when L is any of the self-adjoint
elliptic extensions assumed to be without zero modes, then we may infer
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the existence of a Poisson kernel for L. In this case, there is a kernel P(x, y)
such that

Xx)=1| Px,y»)X'(y)dy
oM

gives the unique solution to LX = 0 with boundary data X’ (considered as
an element in a complement to the boundary condition subspace Wg@ W <
Wo@W,; see above).

5. The Heat Kernel for L and its Asymptotics

In this section, L will be one of the self-adjoint elliptic extensions of the
Ahlfors Laplacian on M with boundary . We consider the heat semigroup
exp(—tL), which is a kernel operator with smooth kernel

H(t,x,y) = kE_)l e~ MZ ()R Zi(y), (5.1)

where we use notation as in Theorem 4.2. Equation (5.1) is infinitely smooth-
ing, and its trace is

trexp(—tL) = ), e Ak =f H(t, x,x)dx. (5.2)
k=1 M

It follows from general principles (see e.g. [5]) that (5.2) has an asymp-
totic expansion

trexp(—tL) ~ 3 a;t =2, ¢l0, (5.3)
i=0

where the coefficients g; are integrals of local expressions in the jets of the
symbol of L. It follows from the invariant theory in [5] that the first two
terms are given by

ap = agvol(M), a, = a;-vol(¥),
where o and «; are universal constants depending only on the dimension
(and L).
The leading term can be found by calculating the kernel for the Euclidean

case: Let Ly = add+ bdd in R" with a, b > 0. Using the Fourier transforma-
tion, the heat kernel is

Hy(t,x) = f tre~ AN dy. (5.4)

n

When a # b, A(y) is not diagonal, but we may easily diagonalize it. With
P, denoting the orthogonal projection on y, we have

A(Y) =, y)(aP,+b(I—P))),
so we obtain the trace

tre~ M) = g—any) (n— l)e—b(y,y)t.

Taking the Fourier transformation yields the following.
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PROPOSITION 5.1.  In Euclidean space R", the heat kernel has the pointwise
trace

tr Ho(t, y) = (2mw)™" (e—a(y,y)t +(n— l)e-—b(y,y)t)ei(x, ») dy
Rn
with coincidence value

tr Hy(t,0) = @) " a2 (@™ *+ (n—=1)b~"?) .t "/, (5.5)

Thus the coefficient to £~"/2 in (5.5) gives «y.

To calculate o;; we look at a model case, namely the cube M = [0, 7]" S
R”. Although the boundary of M is not smooth, its singularities will only
contribute to the higher-order terms beyond the first two. We proceed in the
usual way: Since L is constant-coefficient, we look for trigonometric solu-
tions of the form y = ve'™¥® for a fixed £ € R". Here

Loy = [ae(§)i(§) + bi(E)e(§)]¥
= A&,

so these provide eigenfunctions with eigenvalues given by those of A(£). The
problem now is to find the s satisfying the boundary conditions. This will
mean (just as in the well-known case of the Laplacian on functions) restrict-
ing £ to some integral lattice in R”.

We first find the eigenfunctions satisfying the elasticity conditions (E).
Consider

¥ = (v, cos x1&; sin x, &, sin x3¢5....,
v, sin x1&;cos x5 &5 sin x3€5....,

vy sin x; & sin x, &, cos x3é5 ...,

v, sin x;& ... cosx,&,). (5.6)

Note that if £ is integral (i.e., all £; € Z) then (5.6) is normal to the bound-
ary, has zero divergence there, and is a basis of all such fields. Now, using
Ly=bA+(a—b)dd with A the Laplacian, one calculates the action of L
on y =y, ; again to be

Lo‘.b = ¢,\(s)v,£- (5.7
(This is perhaps slightly surprising, since (5.6) is in a complicated way a

superposition of the original trigonometric solutions.) The redundancy in
the parameter £ is such that we get all solutions once by taking

U:E, £,>0; (5.83)
vLlé, (=0 (notwo ¢; are zero). (5.8b)

Collecting these facts, we may now compute the trace in (5.2) in this
case to be

S e E L T m(g)e M ED (5.9)
3 3




The Ahlfors Laplacian on a Riemannian Manifo'l'd with Boundary 119

where the sums are over (5.9a) and (5.9b), respectively, and where the multi-
plicity is m(¢) = n—1if all ¢£; = 0 and m(¢) =1 otherwise. Recall that, from
the heat equation on the circle, we know that

S e %~ 4wty V22x, tlO, (5.10)

k=~—o0

from which we can actually derive the full asymptotic behavior of (5.9) (but
we need only the first two terms): this is (note the agreement with (5.5))

(4wat)™ V%2 1_1Y
2 2

2
= (4mt) "2 .-vol(M)-[a™"?+(n—1)b~""?]

+(n—1)- ((47rbt)—1/z.2,r.l_l>” <(4 bt)2. 27 1 1)”‘1
2 2 2

+(4mt)~ "D 2.vol(0M) - [ g2 N3 e “’2]
e 4

b (5.11)

We can deal with the Neumann condition in the same way. In (5.5), simply
change all cosines to sines and vice versa; then, again for the ¢ integral,
this is tangential to the boundary and the normal derivative vanishes at the
boundary. Also, it is again an eigenvector as in (5.7), with v either parallel
to £ or orthogonal to £. This time the redundancy is taken into account by

v=E§, £, =0 (not all & are zero); (5.12a)
vLlé§, £, =0 (not all & are zero). (5.12b)
Using (5.9), (5.10), and (5.12), the asymptotics are therefore

VI U A GNP 12,5 L 1Y
((47rat) 2m-> 2) +(n l)((47rbt) 272 2) n

= (47t)"2-vol(M)-[a™"*+(n—1)b~""?]
+%<4wt)-<"-“’2-vol(6M)-[a“"“’/2+ (n=1)b="=0"2)

+ e (5.13)

Finally, in the Dirichlet case we can take all the trigonometric functions
in (5.6) as sines, and the redundancy is now removed by taking all £; > 0.
This gives the asymptotics

1 1Y 1 1Y
4 -2, - _ —1/2
(( mat)™2-2m- 2) +(n 1)((47rbt) 2w 2)
= (47t)~"2-vol(M)-[a™""*+(n—1)b~"?]
—711-(41rt)"(""”/2-v01(6M)-[a‘(”_”/2+(n—l)b"‘”")/z]

+ .- (5.14)
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Collecting the information above—especially (5.11), (5.13), and (5.14)—
establishes the following result.

THEOREM 5.1. Let L be the self-adjoint elliptic extension of the Ahlfors
Laplacian with boundary conditions D, N, or E on the manifold M. Then
the small-time asymptotics of the heat kernel have the first two terms as
Sollows.

Case D:

trexp(—tL) ~ (4wt)™"2.vol(M)-[a~"?*+(n—1)b™"?]
— 5 (@wt)y "=V 2yol(@M) - [a= "2 (n—1)b~ "7 V2],

Case N:
trexp(—tL) ~ (4wt)™"?-vol(M)-[a~"*+(n—1)b™"'?]
+5(4wt)~ "D 2. vol(@M) - [a= D2 4 (n—3)b~ 712,

Case E:
trexp(—tL) ~ (4wt)™"2.-vol(M)-[a~""*+ (n—1)b~"/?]
—(@xty "=V 2y0l(@M) - [a=" V2 4 (n—3) b~ D2),

Here a, b are the values in the Ahlfors Laplacian: a = (n—1)/n and b =1.
(Actually, in Case E they could be arbitrary positive; L would still be self-
adjoint and elliptic.)

Note that the terms agree with the pattern established in {3], even though
these authors consider only operators with metric leading symbol. From
Theorem 5.1 we may, via the Tauberian theorem, deduce the asymptotic dis-
tribution of eigenvalues, thus generalizing and sharpening the main theo-
rem in [16].

COROLLARY 5.1. Let N(A) denote the number of eigenvalues for L less than
A. Then for our three cases the first terms in the asymptotic expansion for
N(A) are as follows.

Case D:
(4m)~""? —n/2 —n/27 . y\n/2
Case N:
(4w)~"? —n/2 —n/2 /2
_~— _.vol Ja" —_ n/2y,\n/2
N(A) T(n/2+1) vol(M)-[a +(n—1)b ]-A
Case E:
—n/2
N ~ L-VOI(M)-[a“”/2+(n——1)b‘"’2] A2,

I'(n/2+1)
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When n = 3, for the coefficient (47)~3/%/T(3/2+1) we obtain the value given
by Weyl, = ~%/6.

We conclude by remarking that, with an elliptic L as above, we may use
(as in [9]) the semigroup exp(—fL) to smoothen vector fields into quasi-
conformal fields and eventually in the limit # — co to the fields in the kernel
of L. Via Sobolev estimates as in [9], one may control the constant of quasi-
conformality. We think this idea will be important in the study of 1-parameter
families of quasi-conformal transformations, and perhaps also in the theory
of moduli of Riemannian manifolds, one of our long-term motivations.

An interesting topic of further study would involve calculating the higher
terms coming from the boundary in the asymptotic expansion (5.3) as well
as interpreting these geometrically. See [3] and [9].
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