p-Dirichlet Energy Minimizing Maps
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1. Introduction

Suppose M is a compact m-dimensional @2 Riemannian submanifold of R?
with (or without) boundary dM. Suppose N is an n-dimensional C? com-
plete connected Riemannian submanifold without boundary of some Eu-
clidean space R” such that

NCN, ={yeRFP:dist(y, N) < 7(|y))}.
Here N, is a 7-tubular neighborhood of N in R” such that the nearest point
projection map
w:N, - N
(i.e., dist(y, N) = |y —=(y)| for all y € N,) exists and is as smooth as N, and
R,U{0}-R,

is a monotonically decreasing function.
The p-Dirichlet energy functional is the L”-norm of the gradient defined
on the admissible mapping space

LY"P(M,N)={ve L"?(M,R?): v(x)e N for £ a.e. xe M},

where £ is the m-dimensional Hausdorff measure induced by the metric of
M and 1< p<m.Wesayue L"P(M, N) is p-Dirichlet energy-minimizing if

f|Vu|psf |Vv|?
M M

for all ve L"?(M, N) in the same (relative) homotopy class of u.

Much work has been done regarding the existence and partial regularity of
a p-Dirichlet energy-minimizing map, in particular the case when p = 2 (see
[1] for references). For 7 > ¢ > 0, White showed in [8] that there is such a
minimizer among maps in the same [ p —1]-homotopy class. Furthermore, if
the image of a small ball of such a minimizer is contained in a compact subset
of N, where N may not be compact, then Hardt and Lin’s [4] (or Luckhaus’s
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[6]) study on the partial regularity of energy minimizing maps between two
Riemannian manifolds is readily applied to this case, that is, such a mini-
mizing map is C“ in the interior of M with the exception of a singular set
whose Hausdorff dimension is at most m —[ p] —1. Recently, Li [5] obtained
the partial regularity of a Dirichlet energy minimizing harmonic map (p =2)
with a singular set of Hausdorff dimension at most 7 —2 into a complete
manifold, which is not necessarily a uniform tubular neighborhood retract;
that is,

7(t)—>0 as t—oo,

contrary to the assumption of previous works [4; 6; 8; 9] that 7 > ¢ for some
constant ¢ > 0. Thus N may be a submanifold of R” such that its curvature
is infinite at infinity or its different branches become close near infinity, since
7(t)—>0as t - o0,

First we note that, in order to show two maps are in the same homotopy
class, it is natural to consider their affine homotopy. The image of this ho-
motopy map will not necessarily stay on N, yet a retraction map can be ap-
plied to make this homotopy map stay on N. The assumption 7> ¢ >0 is
used to ensure the existence of such a retraction map in White’s study [9]
of existence theory of p-Dirichlet energy minimizing maps. A similar tech-
nique is also used in constructing a comparison map for this minimizing
map in Luckhaus’s study [6] of its partial regularity.

Second, in the partial regularity theory of [4] and [6], the assumption
that the image of a small ball B,(a) of an energy minimizing map lies in a
compact subset of N is used to ensure that the energy of this minimizing
map will not be distributed to the infinity of N. This assumption also pro-
vides a monotonicity formula for the normalized energy of this p-Dirichlet
energy minimizing map « on B,(a),

rP-m f |Vu|?,
B, (a)

to further reduce the upper bound of the Hausdorff dimension of its singu-
lar set to m—[p]—1 (by a Federer dimension-reducing argument). In [5,
Sec. 2], Li constructed an example showing that, when this assumption is
removed, an energy minimizing harmonic map from one surface to another
exists with isolated singular point, even though the monotonicity formula
still holds. Here we notice that this monotonicity formula can be obtained
via Almgren’s “squeeze” deformation of the domain B,(a) (see [4, Lemma
4.1] for details), which still works in Li’s setting.

In this paper, we will show that White’s results on the existence of an
energy minimizing map among maps in the same homotopy class still hold in
Li’s setting. We will also show that such an energy minimizing map « is C¢
on M ~ dM ~ Z. Here Z is defined as the set of points ¢ in M for which the
normalized energy on the ball B,(a) fails to approach zero as r— 0, or for
which the supremum of the absolute value of its averaged integral on B,(a),



p-Dirichlet Energy Minimizing Maps into a Complete Manifold 35

1
l£W&w»BMﬁ
is infinity when r — 0.

The main ingredient for making the generalization of these results possi-
ble without using assumptions of previous works [4; 6; 8; 9] is that the sup-
norm of the affine homotopy map of two maps is bounded by the L? norm
of the difference of these two maps and the L? norm of their gradients. The
sizes of these quantities can be controlled when the image of one of the
maps lies in the compact subset of N. We then show that the image of the
affine homotopy still lies in N,, and the rest of the proofs simply involve
some careful modifications of the previous works.

Now we recall some definitions and notation.

DEFINITIONS.  If X is a polyhedral complex, we let X* denote the k-dimen-
sional skeleton of X. We say a d-dimensional polyhedral complex is a regu-
lar polyhedral complex if it is the union of its d-dimensional cells and if, for
every connected open set U C X, the set U ~ X972 is also connected.

From now on we will assume that M has a fixed smooth (or Lipschitz)
triangulation.

We say that two continuous maps f, g: M — N are k-homotopic if their
restrictions to M¥* are homotopic. The k-homotopy type of a continuous
map from M to N is the homotopy class of its restriction to the k-dimen-
sional skeleton of M.

NotATION. B,(x) and S,(x) (or simply B, and S, when the center is clear
from the context) will denote the ball and the sphere respectively of radius
t > 0 centered at x in M:

B,(x) = {ze M:disty(x, 2) < t}, S;(x) = {ze M: disty,(x, 2) = t},

where dist,, (-, -) is the geodesic distance function in M. By B," (z) we mean
the ball of radius # > 0 centered at z in R*, when the dimension is needed to
be specified.

Forve LY?(M,R"P), t >0, AC M, and xe M, we let

£U=£%A%Lm

the averaged integral of v over A. In particular,

when A is a ball, and

Ex,t(v) =JC |Vv|P,
B, (x)

the normalized energy of v over the ball B, (x).
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The term 3C* will denote the k-dimensional Hausdorff measure induced
by the metric of the ambient space, and [p]=n if n < p<n+1 for some
n € Z. Throughout, the letter C will represent various constants whose de-
pendence on the data will be specified in the context.

This paper is organized as follows. In Section 2, we prove the existence re-
sults for the case where N is complete without boundary and with bound-
ary. In Section 3, we prove the partial regularity of a p-Dirichlet energy
minimizing map.

2. Existence Theorem of p-Dirichlet
Energy Minimizing Maps

The proofs of many of the results in this section will be exactly the same as
in [8] and [9], particularly those involving manipulation on the domain M
only. We shall simply state such results without proof; the reader can refer
to the original papers for details. The following four lemmas are the basic
properties of functions in the Sobolev space with a polyhedral complex as
the domain; their proofs can be found in {8] and [9].

LEMMA 2.1 (Morrey-type Inequality). Let X be a regular d-dimensional
polyhedral complex, whered < p and 0<~y <1—d/p. For every ¢ >0, there
is a positive constant C(¢) such that if f: X — R is Lipschitz, then

|flo,y < e[l VA, +C @ f] - 2.1)
Consequently, if fe L"P(X,R) then f is 3C%a.e. equal to a C®" function
that satisfies (2.1).

LEMMA 2.2 (Local Poincaré Inequality). Let X be a regular d-dimensional
polyhedral complex withd+1 < p. Let

®,(x) ={yeX:dist(y,x) =r},

where dist(-, ) is the geodesic distance function on X. Then there is a posi-
tive constant C = C(X, P, p) such that for every xe X, r > 0, and Lipschitz
[ ®s,(x) > RP, there is a ve RY such that

f |f—v|psrpf V7 )”. 2.2)
&,(x)

(Bj,-(X)

LEMMA 2.3 (Fubini-type Lemma). Lef h be a Lipschitz map from a regular
d-dimensional polyhedral complex X into R, and let 6 < dist(h(X), 0Q2).
For each k, there exists a positive constant C = C(6, k) such that if Fy, ...,
Fye L', then

f|F,-(h(x)+v)|dx<oo for i=1,...k 2.3)
X

for £2 a.e. ve Bs(0), and
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[ IR+ o= clx] | | .4
X 0
on a set of v € B;(0) of positive £ measure.

LEMMA 2.4. Let X be a regular polyhedral complex and U an open subset
of RC. Let h: X —» U be Lipschitz, let fe LVP(U, R?), and let g be a distri-
bution derivative of f. Define h,: X - U by

h,(x) = h(x)+v,

for ve Bs(0), where § = dist(h(X), dU). Then, for £2 a.e. ve B;(0), foh,e
L"? and g(h,)-Vh, is a distribution derivative of f-h,.

The proofs of the next two propositions involve some modifications—see
in particular (2.7), (2.8), and (2.13)—since the retraction map 7: N,— N is
used in White’s original proofs.

PROPOSITION 2.5. Let U be an open subset of RS, and let fe L"P(U, N).
Let X be a regular polyhedral complex of dimension d < [ p—1] that is con-
tained in the d-skeleton of a regular (d+1)-dimensional polyhedral com-
plex Y. Let h: X —» U be a Lipschitz map that extends to a Lipschitz map
Jrom Y to U. Then there is a homotopy class fy[h] of continuous maps
from X into N with the following properties. For £2 a.e. ve B;(0), where
6 = dist(h(X), dU), there is a continuous map g': X — N such that:
(1) fohy(x)=g"x) for 3% a.e. xe X* (0<k <d);
(2) g"? extends to a continuous map from Y into N; and
(3) g"e fylh].
Furthermore, if Y € Lip(X, U) is homotopic to h, then f3[y] = f3lh].
Proof. Define XC X x[0,1]9 and /: X - U by
~ d o~
X=U X*x{0}*x10,11°% and #A(x,t)=h(x).
k=0
Then X is a regular polyhedral complex. By Lemma 2.4, for £2 a.e. ve

B;(0), fofz,,eLl"’(X,N). By Lemma 2.1, for such a v there is a continuous
map g¥: X — N such that

fehy(x, 1) =g"(x,1)
for 3¢9 a.e. (x, ¢) € X; that is,
Sehy(x) =g"%x,t) for 3%a.e. (x,t) e X. (2.5)
The set X, = {¢: (x, t) € X} is connected for each x, so (2.5) implies that g¥ is
a function of x alone. Thus we may write
Seohy(x) =g"(x) (2.6)

for 3¢9 a.e. (x,t) € X*x {0} %[0, 1]9% and therefore 3C* a.e. x e X*. This
proves (1).
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To prove (2), let Y:Y— U be a Lipschitz map that extends 4. Let ¥ =
X x[0,1]xY x {1} and define ¥: ¥ — U by ¥(y, t) = (). Then, for £2 a.e.
ve Bs(0), feyeL"P(Y,N). Let Vfoy, be a distribution derivative. As in
the proof of (1), fey, is essentially continuous on X X [0, 1].

Let € > 0. For re (0, 1], define H(y, t) € R that minimizes

[ fodu(2) — H(z, 0|7 dz,

zeY, dist(z, (», 1)) <er

where H(z, t) is unique by the strict convexity of L”-norm. Clearly, H(z, t)is
continuous for r > 0, and because f-y, is essentially continuous on X % [0, 1],
we may extend H continuously to all of Y so that

H(x,0) = foy,(x) for 3¢?a.e. xe X.
Now

dist(H(y, r), N) < C(er)@+D f 1F(bo(2) —H(, r)|? dz

ze¥, dist(z, (3, r)) <er

=C| |V(foy,)(2)|P dx (2.7
zeY, dist(z, (), r)) <3¢
by the local Poincaré inequality.

By taking € < min{7(|H(»,r)|): (»,r) €Y x[0,1]}, we can make the last
term in the chain of inequalities (2.7) as small as we like. In particular, H lies
in the tubular neighborhood N, of N. Then w-H(-, 0) = g"(-), which is ho-
motopic to we H(-, 1) | X, which extends to we H(+,1): Y — N. This proves (2).

To prove (3), fix a small vector € R2. Consider the map

A (X X{0HU(X x[1) - U,

by A(x, t) = h(x)+ tu, and notice that / extends to a Lipschitz map of Y =
X x[0,1] into U. By (1) and (2), for £2 a.e. (small) v, foh, is essentially
continuous and extends to a continuous map of X x[0,1] into N. But that
means feh, and f oﬁu+u are essentially continuous and homotopic in M.
Now let f;[h] be the common homotopy class. Then (3) is immediate.

To prove the last statement, let

h: X x[0,1]- U,
h(x,0) = h(x),

h(x,1) = Y(x).
Then, exactly as in the proof of (3), f-A, and f-y, are essentially contin-
uous and homotopic in N for £2 a.e. small v. Thus fy[#] = fil¥]. O

ProrosITION 2.6. Let X be a regular polyhedral complex of dimension d =
[p—11, let U be an open set in R?, and let h € Lip(X, U). For every K < o,
there is an e = e¢(p, K, ) > 0 such that if
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Sis [ L"P(U,N),
"ﬁ”l,psK (l=1’2)s

Ifi=Sallp <e
then fiy[h] = fo4lh].

Proof. Let § =dist(h(x),dU). By Lemma 2.3, there is a set of ve B;(0) of
positive measure such that

f | fiohol? = (C1K)?, (2.8)

X

[ 1fioh=fenlr < i), 2.9)
fXI(Vﬁ)°hul” <(C\K)?, (2.10)

where C, depends on X and /4 and where ¢ is to be chosen later. By Lemma
2.4 and Proposition 2.5, for almost every v € Bs(0), f;°h, is essentially con-
tinuous, has distribution derivative Vf;(h,)-Vh,, and

Jichy€ fislhl, (i=1,2). (2.11)
Let 0 <5 <1. By Lemma 2.1,
'fl°hv_f2°hv| = n”v(fl"hu)_V(f2°hu)”p+c(77)"fl°hv_f2°hu“p
< 24(Lip h)C,K+C () Cye (2.12)
and
|f2°hv| = "V(fz"hv)”p+C(1)”f2°hv“p
< (Liph)C,K+C(1)C|K = A. (2.13)
Choose > 0 so that
29(Lip h)C K < 3 min{7r(¢):te[0,A]} = L/3,

and choose € > 0 so that
C(n)Cie<L/3.
It then follows that

dist(¢f1(h,(x))+ (1 —1) fr(h,(x)), N)
< |(tfi(hy(x)) + (1 =1) fo(h,(x)) = fo(h,(x))]
= Ifl"hv'—'fz"hvl <2L/3<L

for t€[0,1] and xe X. Thus f,°h, and f,°h, are homotopic in N, and
therefore homotopic in N. This, together with (2.11), implies that (f,)s[A] =

(f2)s(h]. a

The proofs of the following results will merely consist of some easy modifi-
cations of White’s orignal proofs. We shall give only the necessary replace-
ment lists and refer to the original paper [9] for details.
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THEOREM 2.7. Letd =[p—1]. Then each fe L""?(M, N) has a d-homotopy
type fo[M?). This d-homotopy type is a homotopy class of continuous maps
from M? into N such that:
(1) if f;eL"P(M,N), |fi—fll,—0, and |Vfi||, is uniformly bounded,
then

(f)s (M = flM“]

Sor all sufficiently large i,
(2) if fe L"P(M, N) is continuous at each x € MY, then

flM9) = [fIMY];
(3) (/iM% fe L"P(M,N)} = {[¢|M]: o€ CO(MT!, N)}.

Proof. See Theorem 3.4 of [9] with Proposition 3.2 and Proposition 3.3 in
place of our Proposition 2.4 and Proposition 2.5, respectively. O

REMARK. Notice that once this compactness result is established, the exis-
tence of a minimizer for more general functionals is readily applicable. For
example,

S’(U)=f f(x, usvv):
M
with
M 1-|¢]P) < f(x, 3, §) = c(1+|€|P)

for some positive constant ¢ and all (x, y,£{)e M XN X R™P,

The next proposition shows that our assertions in Theorem 2.7 are indepen-
dent of the triangulation of M.

PROPOSITION 2.8. Let fy, f,€ L"P(M,N), let X be a regular polyhedral
complex of dimension < [ p—1], and let ¢ be a Lipschitz map from X to M.

If (SO IMP~ ] = ()4 (M2, then (f1)4le] = (f2)sle].

Proof. Replace Proposition 3.2 in the proof of Theorem 3.5 in [9] by our
Proposition 2.5. O

We are now ready to discuss the existence results regarding the Dirichlet
problems. For their proofs we will refer to Section 4 of [8] with Proposition
3.2 and Theorem 3.4 there in place of Proposition 2.6 and Theorem 2.7 of
this section. Here we say that f, g: M* — N are homotopic relative to M if
there is a homotopy H:[0,1] XM¥* > N from f to g such that H(-,x)=
S(x) =g(x) for all xeaMNM kK The corresponding equivalence class of a
continuous map f is called the homotopy class (rel 9M) and is denoted by
[f(rel oM)].

THEOREM 2.9. Let ¢ be a Lipschitz map from oM to N. Then there exists a
map feL"P(M,N) such that f|0M = ¢ if and only if ¢ can be extended
continuously from dM UM!'?) into N.
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THEOREM 2.10. Suppose ¢ € Lip(OM, N). Then each fe L"P(M,N) with
f|10M = ¢ has a [ p—1]-homotopy type fil M'P~N(reldM)]. This [p—1]-
homotopy type is a homotopy class (reldM) of continuous maps from
M~ Winto N such that:

(1) if fie L"P(M,N) so that f;|0M = o, || fi—fll,~ 0, and || f||, is uni-
Jormly bounded, then

(s IMP~U(rel aM)] = fy M'P~(rel aM)]

Sor all sufficiently large i,
(2) if fe L"P(M, N) such that f|0M = ¢ and is continuous at each x €
M= then

SilMP=(relaM)] = [(f | M'P~(rel aM)];
(3) the set
(fe[M'P~N(relaM)]: fe LVP(M, N) and f | 0M = )
is equal to

(| M (el aM)]: y e COM P~ N
and y(x) = ¢(x) for xe M'P~1U3M].

3. Interior Partial Regularity for p-Dirichlet
Energy Minimizers

Throughout this section M is assumed to be a bounded open set in R”, since
partial regularity is a local property and the modification for the M with
curvature can be easily made (as in [4, Sec. 7]).

The following lemma is a variation of Luckhaus’s lemma [6, Lemma 1].
We shall prove it (following the idea of L. Simon for the case p = 2) in de-
tail since in our setting it is slightly different from Luckhaus’s version.

LemMA 3.1. Suppose for each T',T > 0 there is an ny> 0 such that, for
fs g€ Ll,p(Sls N):

letanf|p+|vtan g|p< T, Llf_g|p< LB
I 1

and f(S;) C BE(0)NN. Then, for each o € (0, 1), there is a map
heL“?(B,(0) ~ B;_,(0), N)
satisfying the following properties:

_ g(x) i.fxeSls
h) = { f(x/(1=0)) if xeSi_;
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| 917 = C(o [ (Van £17+1%un £l S
B,(0)~ B, _,(0) S

+glP |f—g|pdS>, 3.1)
Sy
where C =C(m, p, T, N,).

Proof. With T, T given and 1o to be chosen satisfying the above properties,
we show that there is a map 4 e L"?(S, X [0, a], N) satisfying

RS\ x{0)=/f,  h|Sxlo}=g,

f |DE|Psc(af (|vm,,f|ﬂ+|vmng|p)ds+o‘—Pf |f——g|”dS),
5,%[0,0] S, S

where D is the gradient operator on S; X [0, o], and

dist(4(w, s), N) < |h(w, s) — f(w)]
1/p? (p—1)/p?
= C(f (Ivtan f|p+lvlan glp)) (f If_glp)
S, S,

1/p
+C( SIf—gl”)

for (w,s)e $;x[0, 0] and where C =C(m, p). The assertion then follows
because: (1) there is a bi-Lipschitz map ¢ from B;(0) ~ B;_,(0) to S; X[0, o]
such that ®: S,(0) —» 5,(0) x {0} and ®: S;_,(0) — S;(0) X {a] are also bi-Lip-
schitz; and (2) the left-hand side of the last inequality can be chosen so small
that 4(S, X [0, ¢]) C N, when 54 is small and taking h(x) = w(A(®~1(x))).

If m = 2 then f, g have representatives in their corresponding equivalence
classes, also denoted by f, g, which are absolutely continuous on S'. Thus,
on S! we have

_ 1
7=8l7 < [ Va7~ =al 4o [ 1=al?

v , I/p , (p—=1/p 1 ) 1)
—(Lll tan(f—g)l) (fsllf—-gl) +E(fs.|f—g| ) (3.2)

For (8, s) € S' x [0, ¢], define

w(l, s) = f(0) +s/0(g(0) — f(0)).
We have

dist(w(8,s), N) <

A)
alg(6)—f(6)]

1/p? (p—1)/p?
= Vtan - P —g|?
<(Ll' % g)|) (fsllf gl)

1 1/p 1/p
+(z2) ([17-sv)



p-Dirichlet Energy Minimizing Maps into a Complete Manifold 43

and
|Dw|? = C((|Vian S|P +|Vian &|P) +07°| f—£|?)
with C = C(p). Thus

[, 1w =C(o [ (Vun S17+1Tanel?r 0 [ |7—el?).
S'x[0, 0] s! S!

This completes the proof in the case m = 2; from now on we assume that
m=3.

Let Q be the cube centered at zero with edges E parallel to the axes and
with vertices on 8B,,,(0). Let O = 2Q. Notice that the edges E of Q have
length 1/~m.

For aeR™, |a|<1/(4vm), define E,=E+a and F'=FD4q, I=
1,2,...,m—1, where F"? is the /-dimensional face of Q. Observe that, for
any nonnegative £”-measurable function g, we have

f f g=C f g
la|<1/(4vm) YELD Q

where @ = B(0) ~ By /2y%)(0) and C is an arbitrarily large number (say, 100)
by Fubini’s theorem. Hence

[ gsce—‘fg forall 1=1,2,...,m~1
F/D Q

and |a| < 1/(4~/m’) with the possible exception of a set of £™-measure 6.

Now we extend f, g homogeneously of degree 0 so that f, g are defined
on B;(0) ~ {0}; that is, f(rw)= f(w) and g(rw) = g(w) for re(0,1] and
w € 51(0). We see that

L1 +198P <C [ [an 117+ Tean 21" (3.3)

fglf—glpsCLm_tlf—glp. (3.4)

Now we select the representatives of f, g so that f(Q), g(Q0) C N and for
£ almost all |a| < 1/(4+m') we have f, g absolutely continuous on E,. By
one-dimensional calculus,

1/p? (p—1)/p? 1/p
— < —_ P —ol? —ol?
v g"c«fggw(f g)l) (fgalf g') +(f£a|f g') )

(3.5)

where C = C(m). Let S be the set of positive £”-measure in the set faeR™:
|a| < 1/(4vm)} such that

| o iver sc | [wrie+vel,
Fq

1f-elP < [1f-gl,
FD Q

(3.6)
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and (3) holds, for all possible faces F\” and edges, for all e S. Then, for
all e S and any given ¢ > 0, we can define an R”-valued function w on
Q. X% [0, a] by the following inductive procedure. We first define w on Q, x {0}
and Q, X {o} by

w|Q,x {0} =f|Q,x {0}, WIQaX{U3=gIQa><{0}- (3.7)
Now we extend w to each F{! x [0, o] of Q, by defining

w(x, s) = f(x)+s/0(g(x) —f(x)).
By (3.5) and (3.6) we have

dist(w,N)<|w—f|< max max|f—g|<R, (3.8)
1-faces of Q, FV

where R = C((fol f—&|”) P~V (| VF 1P +|V8|")""7" + (ol S —£]7)77).
Also notice that, by (3.6) and direct computation, we have

f |vW|Psc(af(|Vf|f?+|Vg|P)+a'~Pf|f—g|ﬂ). (3.9)
le[(),o] Q Q

Assume / = 2 and that w is defined (with LP-gradient) on all FY=Vx [0, o],
so that

f IVWI”SC(G(f |Vf|P+|Vg|P)+a‘-P(f |f—g|p)) (3.10)
FU=Yx[0, 0] Q Q

for all such FY~Y, Notice that 8(F’ x [0, ¢]) is the union of some FY~V x
[0, o] together with F) x {0} and F” X {0}. Thus w is already well-defined
on 3(F x [0, ¢]), and hence we can define w on F*V x [0, ¢], with LP-gra-
dient, by using a homogeneous degree-0 extension of w|ad(F D x [0, o]) into
F %[0, o] with center at the point (g, a/2), where q is the midpoint of F,

Then by (3.10) we have

[ |vwprs c(af |Vf|"+|Vg|”)+Cf Tw]?
F"x10,0] F FU=Dx[0,0)

sCa(f |Vf|"+|Vg|”)+C 5 vw]?,  Gu1)
Q

all FU=D YFU=1) %[0, 0]

where we have used (3.6). Furthermore, we notice that the homogeneous
degree-0 extension preserves the bound (3.8), and by induction based on
(3.10) and (3.11) we conclude that w can be extended to all of dQ,%X[0,0]
such that: (3.8) holds; w has L”-gradient on all of F*"~D %[0, ¢]; and

f (Vw]? < Co [ [vr|P+Vel+Ca' 2 [ |7-gl”.
F=1x10, g] Q Q
Thus
f |vW|ﬂsc[af|Vf|P+|Vg|P+ a'-Pf|f—g|P]. (3.12)
a0 % (0, o] Q Q

Now let ¥ be the radial map from zero taking S”~! onto 4Q,. We can then
define # on S"'x[0, o] by
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h(w, s) = w(¥(w), 5).
This, together with (3.1) and (3.2), completes our proof. O

The following proposition shows that if the averaged integral of a p-Dirich-
let energy minimizing map is bounded and the normalized energy is small
on a small ball of M, then the normalized energy improves on a smaller ball
of M. The method of proof is a blowing-up argument due to Luckhaus [6].

ProprosiTION 3.2. For any positive T, there exist positive numbers e € (0,1)
and 0 € (0,1/2) such that, if u is a p-Dirichlet energy minimizing map with
the properties

|y, 0] =T, (3.13)
Ey,, o(u) <€?, (3.14)

then
Ey, 00(1) < 3Ey ,(u0). (3.15)

Proof. If the assertion were false then there would exist sequences of balls
{B,, (xx)} and of positive real numbers {e;} such that

|y, 0| < T, (3.16)
E. ,(u)=¢f—>0 ask-— oo, (3.17)
while
Ey, 65, (1) > F€f. (3.18)
Notice that

diSt(uxk,Pk’ N)p = IM —uxk,Pk]p’

and that integrating over the ball B, (x,) yields

: p _
dist(uy,,, ,N)? =< J( ju “xk.pk|
Bp‘(xk)

=Cpf™" |Vu|? = CE,,,,,
Bpk(xk)

where C is the Poincaré inequality constant. By passing to a subsequence
and rearranging the indices, we define v, : B,(0) —» R” by

(u) = Cef,

U(Xi+ppx)—y
Ve (X) = kT Pk ‘ k

€k

for xe Bj(0) and keN,

where y;, = w(uy,,, ). Then, by computation,

f |ok|? = 2”‘%;"(] |u(xy+ prx) —uxk,pk|p+f |uxk,pk—yk|p) <C
B,(0) By(0) B,(0)

by the Poincaré inequality and the previous inequality, and

f |Vue|? =1 forall keN
B,(0)
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by (3.17) and the definition of v;. Thus, by Rellich’s compactness theorem
and further passing to subsequences (without changing notations), we may
assume that

Yk VEN,
v — ve LYP(By(0), Tan(N, y,)), £™ pointwise a.e., and in the L?-norm
Vu, > Vo, weakly in L?(B,(0), RP).
Thus, by (3.17) and (3.18) we see that
Eo 1(ve) =1, (3.19)
while
Eoo(ve) = 3. (3.20)

By the lower semicontinuity of L”-norm with respect to the weak con-
vergence topology in L? spaces, we have

lim |V |P = |Vv]?  for p€l0,1]. (3.21)
k-0 Y B,(0) B,(0)
Claim 1.
lim |ka|P=f Vol
k - YB,(0) B.(0)
Claim 2:

f |vo|sz Vu|?
B,(0) B,(0)

for re(0,1/2} and & e L"P(B,(0), Tan(N, y,)) with & = v on B,(0) ~ B,,,(0).
If the claims hold then by Claim 2 v is a p-Dirichlet energy minimizing

map among maps in L"?(B,(0), Tan(N, y,)), with the same trace as v on

S,,5(0). Thus, by [7, Prop. 5.1], v is C"*in B,,,(0), so we would have

Ey ,(v) <Cr? where C=C(m,p) and 7<1/3,
which contradicts Claim 1 and (3.21) if we further choose 7 so that C7P <

1/2. The assertion of the proposition follows.

Proof of the Claims. 1t suffices, by (3.21), to show that for all such & we
have

f IVolP = lim | |Vul?, rel1/2,1]. (3.22)
B,(0) k—o YB,(0)

Fix pge[r, 1], by Fubini’s theorem, so that

f |Vvk|P+|Vv|"<Cf [Vog|? +|Vol?
Sy, B,

and

f |vk—v|”<Cf |vg—vl|”.
S B

Pa
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Let uy, = ¢, v+ y; and gy (w) = Uy (pow). Then we have
J 198l <87 [ vulP=cel | vl G.23)
S Sﬂu Spo

Let &, = 0R;/max(|d|, Ry) and 0y = (¥, + €, Ux), where Ry is so chosen
that R, — oo,

[(x —1d) | B, g (¥i) N Y+ Tan(N, yi)|l = 0(ek),
and
| V(7 —1d) | B, g, (¥k) N Yk +Tan(N, y)||w = 0(ex) /e
Thus we see that
Uy—0 and Vi—Vi

in L?” norm and pointwise £ a.e. x € B,.
Let fx(w) = Ux(pow). We have

flvfklp5p5+l—m€;€L |V7r(yk+ekt7k)-Vﬁk|p
S, »

< 2p—lpg+1—”’5,f<f ]V(?f——Id)(,Vk+6k5k)'Vﬁklp‘*‘lVﬁklp)
s

Py

<Cef f V3] +o(ef). (3.24)
Sp

(\]

Compute

flfk—gklp=95+l—mf |t — Or|”
s, s

Py

< 2p—lpg+l—ﬂielf(f Ivk_5k|p+|(7r—-ld)(yk+6k5k)lp>
Sl’u

< ce,ff |ve— |7+ o(ef). (3.25)
Sp

0

Now we may apply Proposition 3.1 to f}, gx, €; in place of f, g, ¢ and so

define
W () = U (x) if |x|= pg,
k Be(x/(1—¢€)) if |x] < (1—ex)po.

Thus we have the following chain of inequalities:

lim | |Vo)? = lim e,:Pf Vi |” < lim e,:Pf [V |?
k—ewoYB, k— o0 B,, k— o0 B,,
= lim (e,:”f |V5klp+e,:Pf |Vwk|p)
k— o0 poll —e€g) PO~BPO(|_‘A)

=f Va|?.
B

Po

This completes the proof of the claims and so the proposition. O
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PROPOSITION 3.3. For any positive T', there are positive numbers e € (0,1)
and e (0,1/2), where @ is as in Proposition 3.3, such that if u is a p-Dirichlet
energy minimizing map and if |uy 2g| <T/2 and RP~"™ [,  |Vu|P <e?, then

E, (u)<0P~""%(r/R)* forall aeBg(b) and 0<r=<R,

where Byg(b) is in the interior of M and « is given by the condition 8% =1/2.
Hence u is Holder continuous on Br(Db).

Proof. Suppose that |u; 2p| <T/2 and RP™" [,  |Vu|? < e”, with € to be

chosen later. Let I'; = 2T", and let ¢, be its corresponding positive constant as
in Proposition 3.3. Since |u,, ,| and E, ,(u) are both continuous functions of
x when ue L"P(M,R?) is given, we may choose a neighborhood U, of b
such that

|u, | <T and E, g(u) <ef

for all a e U,,.
Notice that, for 0 < s < ¢ < R, we have

[y, s— 1 o|P < 2P~ W|u—uy §|P+|u—uy ,|P).

Integrating both sides over B;(x), we have

_ t\"
|ty s—ty (|P < 27 ‘(f |u—ux,s|"+(—-> ]( |u—ux,,|">
B,(x) S/ YB,(x

< czp—‘<Ex,s(u) +<§)mEx,,(u)),

by the Poincaré inequality. Suppose E, gip(ut) < 3E, gx—15 for all k =1,2,
...,{ with / = 1. Thus, with 6%¥R and 6%—! in place of s and ¢ in the above
inequality, we obtain

|y, gk — thy gk 11| < C(PY(/2+0"™)YPE, gu-1p(u1).

Computation yields

I+1
|14y, g0+18] = qu,R|+k21|ux,0"+‘R—ux,BkRI
I+1
=T+ Y C(p)"P(1/24+07™)P(1/2)VkP)¢,
k=1
1
<T+C(m,p)ey——7-=<2I'=T,

as long as we choose ¢, so small that the last inequality holds.
For each r € (0, R), choose j e N so that 8/ T'R < r < §/R. Then we see that

E, (u) < (0/T'R)P~™(B/R)Y"~PE, yip(u) < 0°~"E, 4ip(u)
< 0P "(1/2)/eP = 0P~ MO%eP < P~ %P(r/R)".

Hence the last assertion follows from Morrey’s growth estimate lemma. [J
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REMARK. Notice that once the interior C® regularity is established here,
the proof for the Holder continuity of the gradient is exactly the same as in
[4, Sect. 3] with the assumption that the image of a small ball of a p-Dirichlet
energy minimizing map lies in a compact subset of N, since C* regularity
ensures this condition already.

THEOREM 3.5. Any p-Dirichlet energy minimizer ue L"P(M, N) is locally
Holder continuous on M ~ dM ~ Z, where

Z={aeM ~ dM:supp|u, p| =o}U{ae M ~ dM: limsup, o E, ,(u) > 0}.

Moreover, the Hausdorff dimension of Z is at most m — p.

Proof. The set [ae M:limsup,_¢E, ,(u) >0} has (m— p)-dimensional
Hausdorff measure zero by an elementary covering argument (see [4, Cor.
2.7]). The set {ae M: supg|u, | =} has (m— p+e¢)-dimensional Haus-
dorff measure zero, for all e > 0, by [3, Chap. IV, Thm. 2.1]. O
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