Boundary Limits of the
Bergman Kernel and Metric
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1. Introduction and Results

Bergman computed, for certain special domains, the precise boundary behav-
ior of the Bergman kernel function K(z) on the diagonal and of the Bergman
metric (see [3; 4]). Subsequently, Hormander [25] showed for any bounded
strongly pseudoconvex domain in C” that the limit of K(z)d(z)"*! at the
boundary (where d(z) is the Euclidean distance from z to the boundary)
equals the determinant of the Levi form times n!/4x". Diederich [10; 11]
computed the boundary limit of the Bergman metric for strongly pseudo-
convex domains. Later, Klembeck [29], using Fefferman’s asymptotic expan-
sion for the Bergman kernel function [16], found the boundary limit of the
holomorphic sectional curvature of the Bergman metric in strongly pseudo-
convex domains. (See {19] and [27] for more on the curvature of the Berg-
man metric.)

Although there has been considerable progress in estimating the size of
the Bergman kernel and metric on weakly pseudoconvex domains of finite
type (see e.g. [6; 13; 14; 21; 23; 24; 32; 34; 35; 36]), boundary limits in the
sense of Hormander’s result are not well understood. Examples of Herbort
[20; 22] show that in general the growth of the Bergman kernel function is not
an algebraic function of the distance to the boundary. In this paper we show
that the kernel function, weighted by a suitable power of the distance to the
boundary, does have a nontangential limit for a large class of weakly pseudo-
convex domains of finite type in C”. We also show the existence of limits for
the Bergman metric and its holomorphic sectional curvature. Moreover, we
evaluate these limits in terms of the corresponding Bergman invariants of an
unbounded local model of the finite type domain; in favorable cases, these
admit explicit computation.

Our method is based on Bergman’s original approach of minimum inte-
grals. The idea, following [43; 28], is first to localize the minimum integrals
as in [25]; then to blow up the domain via dilations, in the spirit of the scal-
ing method [2; 39]; and finally to observe that the minimum integrals of the
dilates approach the minimum integrals of the local model. In the last step,
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an ad hoc technical stability result for the minimum integrals on unbounded
domains is required.

The domains to which our technique applies (defined below) are known
variously as h-extendible [42; 43; 44] and semiregular [14]. This class in-
cludes, for example, all bounded convex domains of finite type in C” and all
bounded pseudoconvex domains of finite type in dimension 2.

Note added February 1995. (1) Diederich and Herbort have kindly informed
us of an alternative approach [15] that does not use our stability lemma; in-
stead, localization is done differently (cf. [10; 12; 38]).

(2) Recently Krantz and Yu [31] derived representations for some other in-
variants, such as the Ricci curvature, in terms of (not necessarily monotone)
domain functionals; their boundary limits were determined by methods sim-
ilar to ours.

2. Definitions and Statements of Results

Throughout the paper @ denotes a pseudoconvex domain, not necessarily
bounded, in C"*!. The objects we shall study are: first, the Bergman kernel
function Kp(z) on the diagonal, which is the sum X jl‘Pj(z)lz over an ortho-
normal basis {¢;} for the square-integrable holomorphic functions on Q; sec-
ond, the Bergman metric By(z, X) given by (2, x gz X; Xi)"/% where

. 82 log Kq(z) .
Bk = " oz,0%

and third, the holomorphic sectional curvature Rg(z, X) of the Bergman
metric, given by Bo(z, X)™* 2} j x.1 Riijxi Xn Xj Xic X), where
2 _
0“8k +3 v 3gj,z 98,i ’
3zk8z, oV aZk 321

g"* being (as usual) the inverse matrix to g;z. (With the most frequently used
normalization, the holomorphic sectional curvature is actually 2Rg(z, X).)

According to Catlin’s theory [5] of multitype, there is associated to a
smooth, finite-type boundary point p of @ a certain biholomorphically in-
variant nondecreasing sequence of numbers (g, my, ..., m,), with my=1,
such that m,_,, <A, for 1 <g <n, where A, is the g-type of p in the
sense of D’Angelo [8; 9] (roughly speaking, the maximal order of contact of
g-dimensional varieties with the boundary of { at p). In suitable local coor-
dinates (zg, 2’) = (20, 215 ---» ) in Which p =0, there exists a real-valued,
plurisubharmonic, weighted homogeneous polynomial P with no plurihar-
monic terms such that Q is defined locally near p by

n
|Zjlmj) <0.
=0

By weighted homogeneous we mean that P(x,(z’)) = tP(z’), where = is
the anisotropic dilation acting (on C"*}, or on the last n coordinates by

Rez0+P(z’)+o(
J
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restriction) via m,(z) = (fzq, "™z, ..., t""z,). The unbounded domain
D = {(z¢,2’): Rezg+ P(z’) < 0} is a local model for Q at p.

The domains we shall consider are the ones for which equality holds at p
in the inequality between the components of the multitype and the D’Angelo
type: my,_q,41=4,<o for 1 =g =<n. When this condition holds, we say
that Q is h-extendible at p. It was proved independently in [14] (where the
terminology “semiregular” is used instead of “h-extendible”) and in [44] that
Q is h-extendible at p if and only if the local model D admits a bumping
Junction a(z’) with the following properties:

(i) on C"\{0}, the function a is C* smooth and positive;
(ii) a is weighted homogeneous (with the same weights as for P); and

(iii) P(z’) —ea(z’) is strictly plurisubharmonic on C”\{0} when 0 <e=<1.
These conditions state that the model domain for  at p can be approximated
from outside by the pseudoconvex domains {(zq, 2’): Rezo+ P(2') —ea(z’) <
0} having the same homogeneity as D. In other words, the local model is
“homogeneously extendible” to a larger pseudoconvex domain—hence the
terminology “h-extendible.”

The class of h-extendible domains is quite large. It trivially contains the
strictly pseudoconvex domains (since P serves as its own bumping function
in this case). More generally, if the Levi form at the finite-type pseudocon-
vex point p has at most one zero eigenvalue, then p is an h-extendible point:
the arguments of [2, pp. 168-169 and proof of Lemma 1, p. 171] or [13, proof
of Lemma 2.1] reduce P to the form E}’;lllzj|2+‘ll(z,,, Zn), and ¥ can then
be bumped by [37, Prop. 4.1]. In particular, every pseudoconvex domain of
finite type in C? is h-extendible—for instance, the famous Kohn-Nirenberg
example [30] of a real-analytic pseudoconvex domain lacking a holomorphic
support function is nonetheless h-extendible. For similar reasons, the so-
called decoupled domains [33] of finite type in C" are h-extendible. It was
shown in [41] that convex domains of finite type in C” are h-extendible. (It
turns out that, in convex domains, it is enough to consider orders of contact
with complex linear subspaces.)

Later we will use that h-extendible domains admit peaking functions, an
important property recently shown in (14; 44]. In particular, h-extendible
domains are complete in the Carathéodory and Kobayashi metrics.

By [43], we may choose local holomorphic coordinates near the h-extend-
ible point p (which we always assume has been translated to the origin) such
that near p the domain Q is defined by the equation r < 0 with

r(zg,2’) = Rezo+ P(z’)+ O(a(z’)' *%) + O((Im z¢)?),

where the polynomial P is as described above, «a is some positive constant
(which we may assume is less than 1), and ¢(z’) = 27_;|z;|™. Rescaling the
coordinates, if necessary, we may assume that at p both the Jacobian de-
terminant of the transformation to local coordinates and the derivative of
Re zy with respect to the unit normal to the boundary of Q are equal to 1.
These normalized coordinates and the corresponding local model D are fixed
from now on. :
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THEOREM 1. Let Q be a bounded pseudoconvex domain in C"*! that is h-
extendible at the boundary point p with multitype (my, m,, ..., m,) and local
model D. If T is a nontangential cone in  with vertex at p, then

lim Ko(z)d(z)*7=°*"" = Kp(w),

Z—p
zel

where d(z2) is the distance from z to the boundary of Q and w = (-1, 0, ..., 0).

For the Bergman metric and curvature, we must weight different directions
appropriately. When X is a nonzero (tangent) vector, we set m/4;)(X) =
(d(z)7'Xy,d(z)"V™X,, ...,d(z)"Y"™X,) in the local coordinates described
above, and we define the unit vector X = lim,_, , 7 /4(5(X)/| 7100 (X)|-

THEOREM 2. Under the hypotheses of Theorem I,

Bo(z, X . , A
lim —Q—(Z———)— =Bp(w,X) and lim Ry(z,X)=Rp(w, X).
=P | 717a(2) (X)) p

€ Z€

It is not a priori obvious that the unbounded model domains have nontrivial
Bergman spaces, but we shall see in Section 3 that Kp(w) and Bp(w, X) are
in fact positive. The theorems therefore imply, in particular, sharp bounds
for the Bergman kernel and metric, so that we recover the growth exponents
recently determined by Diederich and Herbort [14].

We emphasize that although the theorems require €2 to be globally pseudo-
convex, it is only in a neighborhood of p that we need the boundary of @ to
be smooth and of finite type.

The hypothesis of nontangential approach cannot be removed in general.
It is essential, for example, for the Bergman metric on the unit ball [18]
and for the holomorphic sectional curvature on the domain {(z,, z,) € C*:
|zo|2+]z|* < 13 [1].

The theorems evaluate the boundary limit as the value at an interior point
of a model domain. This value can be computed explicitly if the model is
simple. For example, if p is a strongly pseudoconvex point, then a biholo-
morphic image of the ball serves as a local model at p. Since the curvatureis
biholomorphically invariant, it follows that lim,_, , 2Rg(z, X) = —4/(n+2)
for every direction X, since this is the curvature of the ball in C”*!. This
result for strongly pseudoconvex points is due to Kim and Yu [28]; as men-
tioned above, it was proved earlier by Klembeck [29] under the assump-
tion that the boundary is globally strongly pseudoconvex and globally C*®
smooth. Another case in which the limits in the theorems admit explicit eval-
uation is the case of models with circular symmetry; see Section 5.

3. Minimum Integrals

We first recall how the Bergman invariants are related to certain minimum
integrals; these facts can be found in [3; 4; 17; 26]. Then we will prove a
stability lemma for the minimum integrals on unbounded model domains.



Boundary Limits of the Bergman Kernel and Metric 453

For the moment, Q can be any domain in C”*! with a nontrivial Bergman
space A%(Q) of square-integrable holomorphic functions; we write | ||q for
the norm in L2(2). Let X be a (nonzero) vector in C"*, and let { be a fixed
point in Q. We define the minimum integrals

13(3) = inf{|| fl|3: fe AXQ), £§) =1},
n d
16 X0 =t {1/1B: e 4@, 1) =0, £ %2500 =1

j=0 0%
d d
I3 X) = inf{”f”%l:fEAZ(Q),f(i') = E-ZJ;O(K') =eee = a; () =0,
n a2f B
LEOX}X" 3z;0z4 ©)= 1}'

These quantities vary smoothly with respect to the point { and the nonzero
vector X, and

1 _ I3©) \?
Ko®) = 5 Bn(s“,X)—(m) ,
[I(5, X))
Ro((, X)=2— .
ol X) = 2= 1o 2, X)

It is easy to see from the definitions that the minimum integrals increase
when the domain does, and under a biholomorphic mapping F: Q; — Q, they
transform according to

I9 (D)) det JeF(§)|* = I (F()),
I (6 X)|det JoF(O? = B (F(§), Fu(X)), j=1,2,

where J¢ F({) denotes the complex Jacobian matrix of F at ¢.

We shall need some stability results for the minimum integrals under per-
turbations of the domain. Small modifications of Ramadanov’s argument
[40] show that if domains ; are all contained in a limit domain 2, and if
the {3; converge to {2 in the sense that every compact subset of  is eventually
contained in {};, then the minimum integrals for {; converge to the integrals
for 2. Moreover, the convergence is uniform for the point { in a compact
subset of ( and for the vector X on the unit sphere.

If the Q; are not contained in Q, then there is no corresponding theorem
without some further hypotheses. We prove here an ad hoc result for un-
bounded model domains that suffices for our purposes. We also verify that
h-extendible models support large numbers of square-integrable holomor-
phic functions, justifying the claim in Section 2 that K, and Bp, are nonzero.
Indeed, on an h-extendible model we can find a square-integrable holomor-
phic function with prescribed Taylor polynomial at a given point.

LEMMA. Let P be a real-valued, class C?, plurisubharmonic, weighted ho-
mogeneous function that admits a bumping function a with properties (i)-
(iii) of Section 2.
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(a) As 6 — 0, the minimum integrals for the models
D;:={(z0,2’): Rezo+ P(z") —ba(z’) < 0}

converge to the integrals for the model D,. The convergence is uni-
Jorm for z in compact subsets of Dy and for vectors X on the unit
sphere.

(b) Fix a point { in Dy, a positive integer m, and a holomorphic polyno-
mial q. There exists a function f in A*(D,,,) such that f(z)—q(z) =
O(|z—¢|™) as z— §. Moreover, the norm of f in A*(D,,,) is bounded
by a constant (depending on ¢ and m) multiplied by the sum of the
moduli of the coefficients of q.

Proof. The proof is based on Hérmander’s L? theory for solving the 8 equa-
tion with plurisubharmonic weights. We will use two related plurisubhar-
monic functions, ¥, and ¥, in proving parts (a) and (b) of the lemma.

By hypothesis, the function P(z’) —a(z’) is strictly plurisubharmonic away
from the origin in C”, so P(z’)—a(z’)+log(1+|z’|?) is strictly plurisubhar-
monic for all z’. Consequently, the function

¥a(z) := exp(Rezo+ P(z’) —a(z’) +log(1+|z’|%)

is strictly plurisubharmonic in C”*!. The homogeneous function a(z’) grows
faster than some power of |z’|, so —3a(z’) +log(1+]|z’|?) is negative outside
a compact set in C". Since Rezy+ P(z’)—3a(z’) <0 on Dy, the strictly
plurisubharmonic function y, is bounded on D,;,,, and hence is uniformly
bounded on D; for 0 < 6 < 1/2. By the same reasoning, the strictly plurisub-
harmonic function

Yp(2) :=¥,(2)+Rezo+ P(z’)—a(z’) +(2n+2m)log|z—¢|

is bounded above on D,/, (the bound depending on { and m).

We prove part (b) first. Fix a smooth cutoff function x supported in D,
that is identically equal to 1 in a neighborhood of {. By [25, Thm. 2.2.1'],
there is a solution u of the equation du = d(xq) = (0x)q on D, , satisfying
the estimate

_ Vs
f lulze—tﬁbsf laxlzlqlze ,
D,z Dy ¢

where c is a positive lower bound for the eigenvalues of the complex Hess-
ian of Y, on the support of dx. Since ¥, is bounded above on Dy, the lefi-
hand side of this inequality dominates the square of the L2(D,,,) norm of
u. Since dx vanishes in a neighborhood of ¢, the function ¢, is bounded
below on the support.of dx, so the right-hand side is bounded above by a
constant multiplied by the square of the sum of the moduli of the coeffi-
cients of the polynomial g. Consequently, the function f = xgq—u belongs
to A%(D,,,) and satisfies the required norm estimate. That u = O(|]z—{|™) as
z— ¢ follows because the left-hand side of the above inequality is finite, u
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is analytic near ¢, and e ¥» is bounded below near ¢ by a positive constant
times |z—¢|~2"~2™., This completes the proof of part (b) of the lemma.

To prove part (a), let I denote any of the quantities 7% 7', and 72 for a
fixed point { in Dy. Since Ip, = Ip (because Dy C D;), we need only show,
for an arbitrary positive ¢, that Ip, < Ip + ¢ for sufficiently small positive 6.
It will suffice to prove the following approximation property: Given a holo-
morphic function f that is square-integrable on Dy, there exists, for every
sufficiently small positive 8, a holomorphic function f; on Dj; such that f;
agrees with f at { to second order and || f3||p, = ||f||p, + O(e). The constants
involved in O may depend on f and ¢, but not on 6. Our strategy to produce
fsis to cut f off at infinity and then correct it on Dj by solving a d problem.

Fix a smooth, compactly supported function x that is identically equal
to 1in a neighborhood V of the origin in C"*!. Choose a positive ¢ so small
that the L? norm of f on D\, (V) is less than e. When A — 0 through posi-
tive numbers, the functions f(zy—A, z’) are holomorphic in a neighborhood
of the closure of Dy and converge to f(zy,z’) in LZ(DO). Fix a value of A so
small that the function f defined by f(zq, z’) = f(zo—A, z’) differs from f in
LZ(DO) by less than ¢, and the second-order Taylor polynomial at { of the
difference f— f has coefficients of modulus less than e.

When 6 is a sufficiently small positive number, the function f will be de-
fined on DsNsupp(xem,) and will have L2 norm on this set no more than
e+|f | p,- We apply Hormander’s theorem with the plurisubharmonic weight
functlon @ = Yo7, to obtain a solution # of the equation du = d((x° ) f)
on Dj satisfying the estimate

belulze“*" < fDa io

J:

—l/m 3(X 7rt)

6‘
where c is a positive lower bound for the eigenvalues of the Hessian of ¢, on
the support of x. Here we have used that the Hessian of y,° 7, evaluated at 2
and applied to a vector w is the same as the Hessian of y, evaluated at m,(z)
and applied to the vector n,(w), and we have used an anisotropic version of
Hoérmander’s theorem that is implicit in [25, Thms. 1.1.4, 2.1.4, & 2.2.1’].
This estimate reduces, by the chain rule, to

_ - -
[ 1uPee = | qaxPeml 7P~
D, D, ¢

Since ¥, is bounded on D,,,, so is ¢, and therefore the left-hand side dom-
inates the square of the L?(D;) norm of u. Because f has small norm in
L*(Do\my,,(V)) while (8x) e, is zero on m,(V), and because f has small
norm on (D;\ Dg) Nsupp(x-em,), the square root of the right-hand side is
O(e). Consequently, the function (x°w,)f—u is in A%(D;), and its norm is
1/ b+ Ote).

The function just constructed may not have the correct second-order Tay-
lor polynomial at the fixed point {. However, since the constructed func-
tion is close to f in L2(D,), it is also close to f in C? norm on a compact

e -
t M=
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neighborhood of ¢. By part (b) of the lemma, we can make the necessary
small correction in the second-order Taylor polynomial by adding a holo-
morphic function of small L2(D;) norm.

The uniformity statement in (a) is immediate from Dini’s theorem. This
completes the proof of the lemma. O

4. Proofs of the Theorems

The two theorems are proved by the same method. We will prove Theo-
rem 1 in detail and then briefly sketch what changes are needed to prove The-
orem 2. .

The idea of the proof is to localize, dilate, and pass to the limit. To make
this work, we need a barrier for the blow-ups of Q. Our first step, there-
fore, is to make a preliminary local change of coordinates to ensure that a
bumped model contains 2 locally near p.

Recall from Section 2 that near p the domain (2 is defined by the equation
r < 0 with

r(zg,2') = Rezo+ P(z') + O(a(z’) T%) + O((Im z0)?).
Let a be a bumping function for P, and suppose 0 < § < 1. Put
ps = Re(zo+kzd) + P(z') —da(z’).

We claim that there is a value of k, independent of é, such that for each é
there is a neighborhood U of the origin in C"*! for which {z € U;: p5(z) < 0}
contains QN Uj.

Indeed, p;=r—6a+O0(c' ")+ O0((Imzp)?) +k(Rezp)>—k(Imzy)? and
(Rezp)? < 4r?+4P2+0(c*+**) + O((Im z4)*), so if |Im z,| is small and & is
large then p; < r+4kr*—éa+kO(c'* ). Fixing k, we see that the first two
terms on the right-hand side sum to no more than r/2 when r is negative and
small, and the last two terms have a negative sum in a sufficiently small (de-
pending on 6) neighborhood of the origin. Consequently, there is a neigbor-
hood Uj of the origin in which ps < r/2 when r is negative.

Thus, after the local change of variables (zq,z’) = (zo+ k23, 2’), We may
assume that we have the following situation: Q has local model D = {z:
Re zo+ P(z’) < 0} at 0, and for each 6 between 0 and 1, there is a neighbor-
hood Uj of the origin such that the bumped model

D;:={z:Rezo+ P(z')—da(z’) < 0}
contains QN U;.

Our coordinate changes preserve nontangential approach to 0. Moreover,
when z — 0 in a nontangential approach region, the ratio of any two of the
quantities d(z), |Re zp|, and |r(z)] has limit 1. To prove Theorem 1, we may
compute the limit of Kq(z)|r(z)|%, where we write 8 as an abbreviation for

;_l=0 2 /mj

For the time being, we fix 6 and the neighborhood Uj. Since there exist
local peak functions at h-extendible points [14; 44], the localization lemma
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[25, Lemma 3.5.2] shows that lim,_,  Kq(z)/Kgny,(z) = 1. We have there-
fore reduced our problem to finding the limit of Kmué(zc)]r(z)l‘8 as z—0.
Because of the normalization at p of the transformation to local coordi-
nates, we need not distinguish subsequently between the original coordinates
and the local coordinates chosen above.

The factor 1/ |r(z)|'8 is precisely the square of the modulus of the complex
Jacobian determinant of the anisotropic dilation my),(;). The transforma-
tion rule for the Bergman kernel function under biholomorphic mappings
implies that the quantity we want to compute is equal to the limit as z— 0 of
K,,W (z,l(ﬂﬂua)(WI Nr(»))(2)). We will bound the lim sup and the liminf by sepa-
rate arguments.

We will write Q7 for /(2N U;) and {(2) for my),(;(z). The Bergman
kernel function increases when the domain decreases, so

lim sup Kgs({(2)) < lim sup Kqzn p($(2)),
) -0
iel‘ :."EI‘
where D is the local model for Q. Since the 22N D converge to D from inside
as z— 0, Ramadanov’s convergence theorem for the Bergman kernel (see
Section 3) applies and shows that Kgsn p(£) converges to Kp(£) uniformly
for £ in a compact subset of D. When z— 0 in a cone, the point {(z) ap-
proaches a compact portion of the line {Rezy = —1, 2’ = 0}; but Kj is inde-
pendent of the Im z, variable since D is. Consequently

lim sup Kgs($(2)) = Kp(w),
-0
iel‘

wherew = (-1, 0, ..., 0), or, equivalently,

lim sup Ko(2)|r(2)|° = Kp(@).
-0
zzel‘

On the other hand, Kgs({(z)) = Kp,({(2)) because Q2 C D;. Since D; too
is independent of the Im z, variable, it follows that

lim inf Kgs($(2)) = Kp,(w)
et
simply because K is a continuous function on the interior of D;. Equiv-
alently,
liminf Ko(z)|7(2)|? = Kp,(w).

z2—0
zel

Now we let 6 — 0 and invoke the lemma to obtain
liminf Ko(2)|7(2)|? = Kp(@).

z—0
zel

This completes the proof of Theorem 1.
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Although we have written the proof in terms of the Bergman kernel func-
tion, we could equally well have phrased it in terms of the minimum integral
I° Theorem 2 is proved by a completely analogous argument for the mini-
mum integrals /' and 72 (Localization of the minimum integrals 7! and 72
is explicit in [22; 28].) The metric is homogeneous (in the Euclidean sense) of
degree 1in X, so Bqg(z, X)/|m1/4(:)(X)| = Ba(z, X/|71/4(zy(X)|). When we ap-
ply the anisotropic dilation |, the vector X/ |71/4(2y(X )| is transformed to
w1 (X)/ |71,4(X)|, which has limit X. For the curvature, we use the same
argument together with the observation that

Rqo(z, X)) = Ro(z, X/|m1/a((X))|)s

since the curvature is homogeneous of degree 0 with respect to X.

REMARK. Theorems 1 and 2 do not generalize to unbounded domains €
without some further hypothesis, for the localization of the minimum in-
tegrals involves constants (from Hérmander’s L? estimates) that blow up
with the diameter of the domain. However, the proof carries over if Q is an
unbounded pseudoconvex domain that is h-extendible at p and is contained
in some barrier domain that supports a bounded strictly plurisubharmonic
function whose complex Hessian has eigenvalues bounded away from zero
under approach to the point p. This condition is satisfied, for example, if Q
is globally contained in some h-extendible model domain (not necessarily of
the same homogeneity as the local model for Q).

5. Explicit Formulas

If the model domain has circular symmetries, we can compute the limits
in Theorems 1 and 2 explicitly. Some related results for a special class of
models were obtained by Chalmers [7].

COROLLARY. Let Q be a bounded pseudoconvex domain in C"*'. Suppose
that Q has the local model D := {ze€ C"*': Rezy+ P(z’) < 0} at the bound-
ary point p, where P has circular symmetry in each variable. The model
D is biholomorphically equivalent to the bounded domain G := {ze C"*!:
|zol2+ P(|zi|, ..., |z2]) <1} and, with the notation of Theorem 2,

n 1
i E =02/mj —
o Ke@ @™ AVol G’
zel
. Bg(z, X) ‘\/VOIG( sy & A 2)1/2
lim = anl X +E4a X ’
z=p |Ty/a(z) (X)) 2 0| Xo| = ;1 X1
zeTl
and
4 P n - -2
. ,X =2— 4 . X. x
i Rate, ) =2 s (ol + 3 40,15

zel



Boundary Limits of the Bergman Kernel and Metric 459

X (bool)?o|4+ S 4bul X1 XP+ 2 16bu| X IXk|2)’
O<k=n 0<j=<k=n

where a;=1/|z;||}2, and bjy =1/||z;2xl|32(6)- In particular, the limiting val-

ue of the holomorphic sectional curvature 2Rq(z, X)) in the direction normal

to the boundary is 4—8bgy/ad Vol G.

Sketch of the proof. Since the weighted homogeneous polynomial P is plu-
risubharmonic and has circular symmetry, it must be positive except at the
origin. Therefore the model D is h-extendible, since P serves as its own
bumping function. Consequently, Theorems 1 and 2 are applicable.

The mapping wy = (zo—1)/(z0+1), W= (1, +1)2(z’), takes G biholomor-
phically onto the model D with the origin corresponding to the special point
w. The complex Jacobian matrix of this mapping at the origin is diagonal,
with a 2 in the upper left-hand corner and 1s down the rest of the diagonal.
Therefore the transformation rule from Section 3 for the minimum inte-
grals implies that Kp(w) = K5(0)/4, Bp(w, X) = B;(0,Y), and Rp(w, X) =
R;(0,Y), where the components of the vector Y are given by Y, = %f(o and
Y}=X’jforlsj5n.

We have reduced the problem to a computation on the bounded Reinhardt
domain G. There the monomials z* form a complete orthogonal system in
the Bergman space, and we can write the Bergman kernel function explic-
itly as a power series 3, ¢,|z%|% where ¢, = [|z*[ "% To compute the kernel,
metric, and curvature at the origin, we may truncate the series at the fourth-
order terms, and a routine calculation completes the proof. Ol
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