Cyclicity and Approximation
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EVvGENY V. ABAKUMOV

Introduction

Let /» =(P(Z,), 1 < p < oo, be the classical Banach space of all p-summable
complex sequences x = {xy, X}, X3, ...}. Define the operators S and 7 on ¢? by

S[XO,XI,xZ, -"} = {Os X0s X15 ---}’
T{xg, X1, X25 ...} = {X1, X2, X3, ...}

These operators are called, respectively, the forward (right) and the back-
ward (left) shifts.

In dealing with S and T it is convenient to consider the spaces ¢4 of those
power series (or analytic functions in the unit disk D) that are the discrete
Fourier transforms of the elements of £7:

© o 1/p
f£={f=k§0f(k)z"=|lf||p=(k§0|f(k)l”) <°°}, 1< p<oo;

0= {f = éﬂ St z*: || fllo = sup| f(K)| < oo]

k=0
(we always consider £7 to be endowed with the weak* topology). Clearly,
the space £3 coincides with the well-known Hardy space H 2. We use the
same letters S and 7 for the corresponding operators on £4:

Sf =zf,
Tf = f—f(O)_
Ve

A subspace E of ¢4 is called S-invariant if SE C E, and T-invariant if
TE C E (subspace always means a closed linear subspace).

We denote by g the conjugate exponent of p (i.e., the number determined
by 1/p+1/q =1), and we identify the space £ with the dual space of ¢§ (if
p # ), with duality defined by

S0 =3 fbd, feth seth
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It is clear that S: ] — ¢] is the adjoint operator of T: ¢4 — ¢4, so that the
S-invariant subspaces of ¢ are precisely the annihilators of the 7-invariant
subspaces of (4.

The problem of characterizing shift-invariant subspaces in the spaces ¢4
was raised by Beurling [3] in 1949 and is still far from being resolved. In this
situation, some less general problems such as, for instance, that of describ-
ing S-cyclic vectors (i.e., the elements fe ¢4 such that span(S”f, n=0) =
¢%; span(-) denotes the closed linear hull of (-)) and T-cyclic vectors (f € {4
such that span(7""f, n = 0) = £4) become of great interest. Beurling’s funda-
mental result [3] consists of the description of S-invariant subspaces and
S-cyclic vectors in the space H?; namely, every nonzero S-invariant sub-
space of H? has the form 0H?, where @ is an inner function and a vector fe
H?is S-cyclic if and only if f is an outer function (see e.g. [6; 8] for details).
In fact, the latter result was first obtained by Smirnov [10] as early as 1932.

In this paper we investigate mostly 7-cyclic vectors (with a few applica-
tions to the structure of S-invariant subspaces of £J, g > 2), and we write
cyclic (vector, function, power series) for T-cyclic. An additional interest in
T-cyclic vectors (not related to invariant subspace problem) lies in a feeling
that the cyclicity of a function f € £§ means a “good approximation ability”
of f (in the sense that every element of £4 can be approximated by linear
combinations of the Taylor remainders of f).

Douglas, Shapiro, and Shields gave in [4] a description of 7-cyclic vectors
in the Hardy space H? in terms of so-called pseudocontinuation. Namely,
they proved that a function fe H? is noncyclic if and only if there exists a
Nevanlinna type meromorphic function £ in C\clos D such that the bound-
ary values of f and f coincide almost everywhere on {|z| = 1}. This result has
several interesting corollaries concerning the structure of cyclic vectors in
H?, but leaves some questions unresolved. For instance, it is still difficult to
apply the Douglas-Shapiro-Shields theorem when working with the Fourier
(Taylor) coefficients of f.

We work mainly with Fourier coefficients and consider relations between
the spectrum (frequency spectrum) of a function f e ¢4, that is, the set

o(f) = [k = 0: f(k) # 0}

and the approximation ability of f in the sense just mentioned. The first
result in this direction, that every Hadamard lacunary function is cyclic in
the space H?, was obtained in [4]. (By definition, an element f e ¢4 is called
a Hadamard lacunary function (or power series) if its spectrum o(f) is a
lacunary (in the Hadamard sense) sequence, that is, an increasing sequence
of nonnegative integers {n;}y-; such that infy(n,,,/n;) > 1. We also say
that f is a (Hadamard) lacunary function of order at least A (or, briefly, of
order A) if ny . /n, > A > 1 for all kK = 1.) This fact confirms the general prin-
ciple that “lacunary series are noncontinuable” (recall in this connection the
well-known Fabry gap theorem on the impossibility of an analytic continua-
tion of a function with a sparse spectrum across any point of the boundary
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of its circle of convergence; the reader is referred to [5] for a detailed discus-
sion and relations with the uncertainty principle in harmonic analysis). It is
curious that, as far as the author knows, there is no direct proof (i.e., not
using the shift operator, cyclic vectors, and so on) of the fact that a Hardy
space lacunary series does not admit a pseudocontinuation. We refer also to
the paper [7] by Nikolski where the cyclicity of Hadamard lacunary series
is proved for a class of weighted spaces ¢3(w,) and for a family of Fréchet
spaces, in particular, for the space of all entire functions.

The present paper is organized as follows. Section 1 includes several aux-
iliary lemmas. In Section 2 we give some generalizations of the Douglas-
Shapiro-Shields theorem on the cyclicity of Hadamard lacunary series in
H? Namely, we prove that, for cyclicity, it is sufficient for o(f) to be a finite
union of Hadamard lacunary sequences. Also we show that cyclicity is con-
served under overconvergent perturbations of lacunary series (more precisely,
the sum of a Hadamard lacunary function from A2 and a function analytic
in a neighborhood of the closed unit disk is either cyclic or rational (and
hence noncyclic)). At the end of Section 2 we present a scale of conditions
on the sparseness of o(f) and on a specific decreasing of Taylor coefficients
of f to imply cyclicity.

The main result of the paper is that cyclicity of lacunary series is not a
universal fact but depends heavily on metric properties of the space and on
a specific decreasing of Taylor coefficients of the function. In Section 3 we
give necessary and sufficient conditions for a Hadamard lacunary function
of order 2 to be cyclic in the spaces ¢4, 1 < p < oo (Theorem 3.1) and in the
space ¢4 (Theorem 3.2). The main idea allowing us to analyze approxima-
tion ability is that the spectra of the left shifts 7%f, k = 0, are “almost dis-
joint” for a lacunary (of order 2) function f; the precise meaning is revealed
by Lemma 1.5. It happens that for 2 < p < o« all Hadamard lacunary func-
tions are cyclic in the space £4, but this is not the case for 1 < p < 2 (Theo-
rem 3.3). One can say that the classical case of the Hardy space H? is a split-
ting point on the scale ¢4, 1 < p < oo, with respect to approximation ability
of lacunary series. We complete Section 3 with several examples and by con-
sidering the cyclicity problem in the space c4 of those analytic functions
whose Taylor coefficients tend to 0.

The results of Section 3 yield some information about the structure of the
set of cyclic vectors in the spaces £4, 1 < p < 2. In particular, in these spaces
there exist two noncyclic vectors whose sum is cyclic (which is impossible in
the space 2 in view of the main theorem in [4]). As a dual fact to these con-
siderations, we obtain in Section 4 the following corollary concerning the
forward shift operator S: In every space £, 2 < g < oo, there exists a family
{Ex}rec Of nonzero S-invariant subspaces such that E,N E, = {Q} whenever
A # u (Theorem 4.2). Note that in the spaces £3 and ¢} the intersection of
two nonzero S-invariant subspaces is always nonzero (for ¢ this follows
from Beurling’s theorem, and for ¢} this is obvious since £} is a convolution
algebra without zero divisors).
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The technique developed in this paper can be applied to similar problems
for a larger class of weighted sequence spaces, which will be the subject of
the paper [1].

1. Preparatory Lemmas

In this section we state several lemmas used throughout the paper. Some of
them are known.

LeEmMA 1.1.  Let {c;}5= be a sequence of positive numbers such that
Dk=1Ck <. Put Ry = cx/ Xj>x Cj, k= 1. Then the series 251 Ry
diverges.

The proof is well-known; see [9, Chap. 3, Exer. 12(a)].

REMARK 1. One can easily prove that, conversely, for every divergent series
> r=1 R, with positive terms there exists a convergent series Xr—; ¢, with
positive terms such that ¢; /(X ;54 ¢;) = Ry, kK = 1, and such a series is unique
up to multiplying by a positive constant.

REMARK 2. We refer to {R,}5-, as the remainder sequence for {c;}i-- By
the remainder sequence for a function fe ¢4 we mean the one for the se-
quence of the pth powers of the moduli of its nonzero Taylor coefficients.

LeEmMA 1.2. Let {ni}y=; be a Hadamard lacunary sequence. Then there
exists a number M such that no integer K has more than M representations
of the form K =nj—ny, j, k= 1.

The proof of this lemma is contained, for instance, in [4].

In the following three lemmas we study the intersection structure of the
spectra of left shifts of a Hadamard lacunary series of order 2. We will think
of the backward shift 7" as defined on the set of all formal power series.

LemMA 1.3. Let f be a Hadamard lacunary power series of order 2, and let
d, # d, be nonnegative integers. Then the set o(T 4 YN a(T92f) contains at
most one element.

Proof. Let d,> d,. Suppose that there exist two integers r < s such that
{r,s} C o(T%fYNo(T%f). Thens+d,, r+d,,s+d,, r+d, e a(f). Since f is
lacunary of order 2, we obtain a contradiction:

(s+d)+(r+d,) > (s+d) =3(s+d)) +1(s+d)) > (s+dy)+ (r+dy). O

LeEMMA 1.4. Let f be a Hadamard lacunary power series of order 2, and let
d,, d,, ..., d be distinct nonnegative integers such that

o(THNHNa(T4 f)#0, 1<i<s,
where d., is defined to be d,. Then M-, o(T%f) # 0.
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Proof. We denote by /;, 1 <i<s, the unique (by Lemma 1.3) element of
a(TUf)YNa(T %+1f). Set | = max,<;<,/;. We assume, without loss of gener-
ality, that dy = min;, ;¢ 74y d; and that /€ o(T92f). It is sufficient to prove
that /€ o(T%f) implies / € o(T%+'f) for i =2,3, ..., s.

For this, suppose that /€ o(T%f). Then {/} = o(T % f)No(T%f) and hence
{l+d,} = o(f)Na(T%9f). Since d;—d; > 0, it is easy to deduce from the
fact that f is lacunary of order 2 that /4+d; =mino(T%~%f) and so I =
min a(T%f). But / = [;, so that o(T%f)Na(T%+1f) = (I} and I € (T %+1f),
as required. ]

LEMMA 1.5. Let f be a Hadamard lacunary power series of order 2, and let
Dy, D,, ..., D, be mutually disjoint finite subsets of Z,. For every d, 1 <
d <r, define

Uis= U o(T*f).

keD,UD,U---UD,

Suppose that (\iep, o(T*f) # @, and that for any d, 2 < d < r, and for any
ke Dda
(T )NUy_, # 0. (*)
Then all the sets
o(T*)NU,_,, keD,,

are singletons, and the sets
o(T*f\U,_,, keD,,
are mutually disjoint.
Proof. By the hypothesis, o(T*f)NU,_; #0 for any ke D,. Fix ke D,.

For every /e o(T*f)NU,_, one can construct, using (*), the sequences of
integers {kj}{=and r > r >ry;> .- > r,=1sothatle o(T" ), k;e D,, and

o(TY -1 fYNa(T*f) =0 for 1<i<t.

Now suppose that {/,/’} C o(T*f)NU,_,. Construct the sequences {k;}’_,
for / and (k/}!_, for I’ as just described. Note that k,, k;-€ D,, and so

o(THANa(T*f) =0

by the hypothesis. If the numbers kg, k1, k3, ..., K/, ks Ki—y5 -5 Ko, Ky are
pairwise distinct, then they satisfy the conditions on {d;}/-, in Lemma 1.4;
otherwise take the minimal index / for which &/ = k; for some j, 1< j=<¢,
and apply Lemma 1.4 to ko, k{, k3, ..., ki, kj_, ..., k2, k1. In both cases we
obtain that the set o(T*f)No(T* f)N--- Na(T*f) contains a number, say
ly. Using Lemma 1.3 we conclude that

{1} =o(T*fYNa(T f) = {lp) = o(T*f)Na(T i f) = (1'}.

The first assertion of the lemma is proved.
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To establish the second one, note that, by Lemma 1.3, for any distinct
k,k’e D,, the set o(T*f)No(TXf) is either empty or contains a single ele-
ment /. In the latter case we can construct two sequences ki, k», ..., kK, and
ki, k5, ..., k/-as before and use Lemma 1.4 to show that

o(T*HNAT YN - Na(TH YN S(TKf) = {1}.

Thus, /€ U,_, and hence [o(T*f)\U,_1N[o(T*f)\U,_,] = 8, as required.

O
LEMMA 1.6. Let f=37_, f(k)z* be a T-cycle vector in the space 8, 1<
p <o, Then T"f is also cyclic for any m = 1.

Proof. 1t suffices to show that Tf is cyclic. Suppose the contrary. Then
span(T*f, k = 1) is a T-invariant subspace of £% of codimension 1. There-
fore, its annihilator is a one-dimensional S-invariant subspace of (£5)* = ¢1.
But this is impossible. O

LEMMA 1.7. Let 1< p <o, and let Q be a T-invariant subset of 5 (i.e., if
f€Q then TfeQ). Suppose that the inclusion 1€ span(T*f, k = 0) holds
Sfor any feQ. Then all elements of Q are cyclic vectors in 5.

Proof. Let
f= gof(j)zje Q.

J
By the hypothesis, 1€ span(T*f, k = 0). It suffices to prove that z lies in
span(TXf, k = 0) for all m > 0. Using an induction argument, suppose that
1,2,2% ..., 2" ! belong to span(T*f, k = 0). Denote by P the projection
>0 ()2l = 25, f(J)2/ in the space €4 (clearly Pf = S™(T™f)). By the
hypothesis, 7" f € Q and so 1 € span(T*(T"™f), k = 0). Therefore,

Z™ e span(S™(T™(T*f)), k = 0) = P(span(T*f, k = 0)).

This means that there exists a polynomial g = 2}";(,1 2(j)z’/ such that g+z"€
span(TXf, k = 0). Since g e span(T*f, k = 0) by the induction hypothesis,
we conclude that z” € span(TXf, k = 0). The lemma follows. O

REMARK. When we apply Lemma 1.7, it is usually clear what Q is consid-
ered to be (and the verification of 7T-invariance are trivial). Note that, in
particular, the classes of Hadamard lacunary series and of lacunary series
of order 2 are 7-invariant.

2. Something More about H>

In this section we consider the case of the Hardy space H>2.

Our first theorem shows that the assertion of the Douglas-Shapiro-Shields
theorem on the cyclicity of Hadamard lacunary functions [4] is still true
under weaker assumptions on the spectrum.
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THEOREM 2.1. Let {n;}i5-, be an increasing sequence of nonnegative in-
tegers that can be represented as a finite union of Hadamard lacunary se-
quences. Let f(z) =35 a2 € H? with a, # 0 for k =1. Then f is cyclic
in H?.

Proof. Let {n;}3-, be a union of r lacunary sequences of orders at least
Ao > 1. Put A = AY". One easily verifies that the sequence n, < n, < --- can be
rewritten in the form nl,l < n],z < < n1,¢(1) < nz,l < n2,2 < e < n2,¢(2) <
~-.,sothat 1< ¢(k)=<r, k=1, and ng,y,1 > Ang, gy, k= 1.

One can choose an integer M such that no positive integer K has more
than M representations of the form K= n; ;—n; ;, where [ # i, 1 =5 < ¢(/),
and 1 = j < ¢(i). (The proof is slight modification of that of Lemma 1.2.)

Fix ¢ > 0. We will construct a function g € Lin(T*f, k = 0) such that

PIHOTESHOT

(Lin(-) denotes the linear hull of (-)).
Choose 6, 0 < 6 <1, such that

2ré < €%/2. (*)
In what follows we will write f in the form f=2%;., a; ;z", and denote
by {R; ;} the remainder sequence for f: I=j=¢())
|ai j*

R,' i =
sJ ’
2!21,1555¢(1):n,‘s>n,-_j|al,s|2

i=z1, 1=sj=<¢(i).

Define for every i = 1 a set of integers A; by
A;={j:1=j=<¢() and §|a; ;> = |a; 5|* forall s, j < s =< ¢(i)}.
The next step is to prove that
2 R j=o.

izl

JEA;
Indeed, by Lemma 1.1, X, ., R; j=00. So, it suffices to show that for
every i =1 I=j=¢(i)

> R =@ T+8+-+1) I Ry
1=j=e(i) JjeA;
Let j1<jy< - <jn=¢(i) be all elements of A;. Keeping in mind that
0 < 1, it is easy to see that if all the numbers j, j+1, ..., j+#—1 are not in A4;
but j+¢is in A;, then
8la; jr 1> <|aijr il 821a; jui—2’ < @i juil’s oo 8@ i1 <|aj ju i),

and hence 6Ri,j+t-—] = Ri,j+t’ 62Ri,j+t——2 = Ri,j+!’ ceny 6’R,‘,j = Ri,j+t' ThUS,

E R,',j < (51_jl+62—j1+ b +1)R’:Jl+ b +(51_—jp+62_‘jp+ e +1)Rt,_[,,

I=<j=<e(i) 1 5
< (6 —r+6 —r+"‘+1) E Ri,j’
JjeA;
as desired.
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Hence one can choose N so large that

2M €2

< —.
ElsisNRi,j
JE€A,

()

Define the function g by

R; ;
— ,_[ -
g= X —=(T"if).
1<isN 4ij
JEA;

One sees that g = £(0) + g, + g,, where

R; ; .
1=isN\ @i, j j<s<¢(i)
JEA;

R .
g, = 2 _bJ E al,sZn"s_ni'f -
1<sisN\ Qi,j  ©:1>i
JEA, s:1=ss=¢(l)
Observe that £(0) = X,<;<n, jes, Ri,j» and estimate the norms | g, and
|lg2|l2- By the definition of A4;,

Ia' |2 172
leil.= X (Ri,j< > = > )5("5)1/2 2 R

j<s=ot) i jI?

1<isN I<isN
jEA, jEAl
Further,
2 b a s 2
lexlz=2| X2 > R ;—=
k=1|1<i=sN  II>i ai, j

JjeA; s:1ss=¢(l),

ny,s—n; j=k

2
(] a .
=DM X > R,-Z,j% (by the choice of M)
k=1 I<isN  [:1>i |ai,j|
JjeA; s:iss=¢(l),

n,.s—n,-,j=k

2
a,s|
=M 3 D R,%,-——I >=M ¥ R,;.
1<isN I s: |ai,j| 1<i<N
jEA,' n,_$>n,,j jGA,'

Using these estimates together with (*) and (#*), we obtain

2M

2i<i=NR;
JE€A;

1200 = 201 -+ 20213 < (2r6+ )|g<o>|2 < 2|20
=1

and hence || g/£(0) —1||, <e. Letting ¢ — 0 gives 1 € span(T*f, k = 0). Lemma
1.7 provides that f is cyclic. O

ReEMARK. Let {n;};>, be a Hadamard lacunary sequence, and let {d}x-;
be a sequence of positive integers. Denote by A the union of all segments
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{meZ:n,<=m<ni+d;}, k=1. It follows from Theorem 2.1 that if the
sequence {d,} is bounded, and if fe H 2 is such that o(f) is an infinite subset
of A, then f is cyclic. On the other hand, Aleksandrov [2] showed that if the
sequence {d,} is unbounded, then there exists an inner (and hence noncyclic;
see [4]) function f e H? with o(f) C A. It seems to be an interesting problem
to characterize all subsets A of Z. such that the only noncyclic H 2 power
series supported on A are the polynomials. (For instance, is it true for every
Sidon set? For the set of all perfect squares?) Note that the analogous prob-
lem of describing all A containing the spectrum of an inner function (differ-
ent from z") is also unsolved.

Before stating the next theorem, we mention one more result from [4]: If
f is analytic in a neighborhood of the closed unit disk, then either f is cyclic
in H? or f is a rational function. This class of functions consists of the ones
whose Taylor coefficients decrease rapidly (exponentially), and it is natural
to ask what happens with the cyclicity property when adding such an over-
convergent perturbation to a lacunary function. Now we will show that the
cyclicity property for the class of Hadamard lacunary series is stable in this
sense.

THEOREM 2.2. Let f=X7_ a,z" € H? with ng 1/ny>A>1 and a; #0
for all k= 1. Let h be a function analytic in a neighborhood of the closed
unit disk and let F = f+ h. Then either F is cyclic in the space H? or F is a
rational function.

Proof. By the hypothesis there exists p < 1 such thgt |ﬁ(k)| = 0(p"), k- .
We may suppose, without loss of generality, that |4(k)| < p*, k= 0. In what
follows we also assume that

|a|

lim su = o0 *
msup - (*)

(if this is not the case, then f and hence F are analytic in {z:|z]| < p '} and
the assertion of the theorem follows from the mentioned result of Douglas,
Shapiro and Shields). To prove that F is cyclic, it suffices, in view of Lemma
1.7 (applied to the set Q of all overconvergent perturbations of Hadamard la-
cunary functions with the convergence radius 1), to show that 1 e span(T*F,
k=0).

Let € > 0. It is sufficient to construct a function ge Lin(T*F, k = 0) such
that

l|s:r(m)|2 <e|(0))

We now let {R;}5=, be the remainder sequence for the function f: R; =
|ax | = ;s lai]’, k = 1. The series -, Ry diverges, by Lemma 1.1.

In view of Lemma 1.2, one can choose a number M such that no positive
integer K has more than M representations of the form K =n;—ny, j,k=1.
Choose an integer N and a number ¢ > 2 so large that

M8
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M+1 M+Dp2 (2\\/ ¢ |2
(ElsjsNRj+ 1—p2 (?) )(0_2)<E’ (*+)

and put Ay = (k: k> N and |a;|/p" > c}. The set A, is infinite, by ().
First, we prove that

2 Ry=o

kEAO

Put b; = |ay|>*—(0"%)? for k € A,. Note that all b, k € A, are positive since
¢ >1. Applying Lemma 1.1 to the convergent series ¢ 4, by gives

by

Y = =%,
ked, 2j>k bj
JEA,
and hence
S R= S o>+ by - p>"+ by
k= , >
kedq keA, Zj>k PP+ Nisk by kea, PP/ (1—p2)+ sk b;
jGAo jEAo jEAO
) b
> Y min 1—p%, —% V=0,
ked, 2>k bj
J€Ap
as desired.

Now it follows from the definition of 4, that one can choose s > 0 so large
that

N p "k
Z Rj + 2 Rk
i= | jI keAg, k<s |0k| 2
?. (%%4)
E Ri+ X Ry
=1 kEAo k<s
Define
A={j:1=j=NJUlkeAy k<s} and g= 3 ’(T”JF)
jeA G
One has
) R: . R. R: .
1800 =| 3 Laj+h(n)|=| X —La;|—| > —Lhn)
jeA Gj jeA aj jea Gj
p'Y c—2
=R —2ZR—> > Rj— ER (by (##%)) = —— X R,
jeA jeA | _}l JjeA _]EA c JjeA
and so, by the choice of M,
@ h(m+n;)|?

a
> R—+3ZR;
. . . a.
jeA aj jea j
linj—n;=m

5. atm] =

m=1

§(M+1)< > r2lal’ | SR hm+ny) >
"= l:nj—n;j=m

jeA ! a J|2 JjeA a;
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2 2 nj\2
<(M+1) E(R} > Kl )+ (M+1)2p (E R-p—-)

jea\ ’ 5 laf? l—p jea la|

<(M+1)S Rj+m(
jeA 1—

> R) (by (x*%))

JjeA

S( M+1 +(M+1)p (_%>2)< c
2ieaR; 1-p%2 \c c—2

<e|g0) (by (+%)).

) |2(0))2

The theorem follows. [l

Observe that when proving the cyclicity of a lacunary function f, the main
role is played by the remainder sequence {R;}%-; for f; namely, one uses the
fact that the series X, o Ry diverges. On the other hand, if we require that
limy , , Ry =, no assumption on the lacunarity of f is needed. The fol-
lowing theorem gives a scale of sufficient conditions on the sparseness of the
spectrum of f and on the speed of decreasing of Taylor coefficients of f (in
terms of Ry) in order for f to be a cyclic vector.

THEOREM 2.3. Let {n,}5~, be an increasing sequence of nonnegative integers,
let f=3%_1a,z"* € H* with ay#0 for k=1, and let Ry, =|a;[/ ;> ilaj]%
k = 1. Suppose that one of the following four conditions holds:
(i) imsupg_ o Ry =

(ii) liminf, o Ry >0 and limsupy_, o(ng 1—ng) =

(ii1) imsupy o Ry >0 and limy _, o(ng..1—ng) = ; or

(iv) {ny)5=1 is a finite union of Hadamard

lacunary sequences.

Then f is cyclic.

Proof. If condition (iv) holds, then the required assertion is simply that of
Theorem 2.1. In each of the other cases (i)-(iii) it suffices, in view of Lemma
1.7, to prove that 1 € span(T*f, k = 0) or, in other words, that for every e > 0
there is a function g € Lin(T*f, k = 0) such that I7,|§(j)|* < €|£(0)|%. We
consider each of the cases (i)-(iii) separately.

(i) Let € > 0. By the hypothesis there exists m = 1 such that R,, > 1/¢. Put
g=T"f. Then

0 . ] [+ o] a
Sleif= 5 jaf=12
Jj=

J=m+1 Rm

lz

<elay|* =

(Note that the assertion that R; — oo implies cyclicity is mentioned in [4].)
(ii) Let € > 0 and take a number ¢ > 0 such that R, = ¢ for k = 1. Choose
a positive integer N and 6 > 0 so that 2(1/cN+ 62) < e. We will construct
inductively two 1ncreasmg integer sequences [(k(i)}} ; and {m,;}’_, and two
sequences {g;}}"; and {h;}}, of H?-functions as follows. Put my =0 and
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k(1) =1. Suppose that k(i) and m;_; have been constructed. Then choose
m; > m;_; so large that the function A; defined by the equality

m=—L-§JC”WVHﬂﬂ

k(i) j=m;+1

satisfies the condition || 4;]|, < 8; set

L $ (rmory ()2
k(l) j=1
and take k(i +1) such that K(i+1) > k(i) and ny(;1y+1— Pgi+1) > M;(such a
choice is possible by the hypothesis).
All four sequences are thus well-defined. Note that T"+ f/a; ;) =1+ g;+h;,
1 =i < N, and, by the construction, o(g;) is contained in {n: m;_; < n < m;}
for everyi, 1 <i=<N.

8=

Setting
N "k(i)
=3 e Lin(T*f, k = 0),
i=1 Qi)

we obtain that

) N 2 N 2 N 2

Se))P = |E(gi+hi) <2\ X & +2“2hi

j=1 i=1 2 = 2 i=1 |2

2

N 2
+2( zuh,-uz)
2 i=1

N

<2|S S (Tmofy (e

i=1 j=m;_,+1 k(i)

0

2 >

21 j=1 lak

|2|(T"kmf) (j)|2+252N2—2§; - +2862N?
()

< 2(011\] +6 )N2 <eN?=¢|g(0)]%

as required.

(iii) Let e>0 and 0 < c<limsupi_ . Ry, and put A={k=1: R, =c}.
The proof of the theorem in case (iii) is almost the same as in case (ii);
the only modification is in the construction of {k(z)] —;. One must choose
this sequence in such a way that k(i) e A, 1 =i < N, in addition to the con-
ditions k(i+1) > k(i) and n(y1y+1— gi+1y > M; (this is possible because
limy _, (1441 —ng) = oo and the set A is infinite). U

3. The Case of ¢4 Spaces

In the following two theorems we characterize all cyclic and noncyclic lacu-
nary functions of order at least 2 in the spaces ¢4, 1 < p < . As will follow
from Theorem 3.3, the interesting caseis 1 < p < 2.



Cyclicity and Approximation by Lacunary Power Series 289

THEOREM 3.1. Let 1< p<oo, andlet f =37_ a,z" € bf with ny,/ng>2
and a;, # 0 for all k = 1. Then f is cyclic in {4 if and only if

k—]

where R, = |ak|p/2j>k|aj|p, k=1.

Proof. We use the notation f; = T*f, k = 0. Suppose that Z7_, RY»~ D =
co. First we show that 1 € span(f;, Xk = 0). To this end, it is sufficient to con-
struct for a given € > 0 a function g € Lin(f;, kK = 0) such that

2 |8(K)[P < €[£(0)]”.
k=1
Fix e > 0 and set y; = RY?~D, k = 1. Now choose N so large that
N I-p
( > ’Yj) <e
j=1

and put g = Z)(y,/a)) f,,. Note that the sets o(f,)\{0}, 1 < j < N, are mu-
tually disjoint by Lemma 1.3, and hence no integer £k has more than one
representation of the form k = n;—n;. It follows that

| A e a|? |al|p N YP

ek =3 > v—| = X ¥ o= > -+

k=1 k=1| 1=j=N a; 1s7en @l 21 R;
linj—n,=k (>j

N N \l-»p p
= E'Yj=(2'}’j) <€|£(0)|7.

j=1 j=1 ‘
Thus, 1€ span(f;, £ =0), and Lemma 1.7 (applied to the class of all lacu-
nary functions of order 2 such that the series S5, RY?~D diverges) yields
the cyclicity of f.

To prove the reverse implication, we will assume that

oo -1
(2 R;{/(p—l)>p < 2P

k=1

N oy
) ’if(nj)
j=14;

(If this is not the case, we can apply the arguments given below to the func-
tion fy (= TNf) for N sufficiently large to prove the noncyclicity of f, and
then use Lemma 1.6.)

CLamMm 1. Let m;, 1 <i<r, be distinct nonnegative integers and let h =
i=1Bifm with 3;#0 for 1 <i<r. Suppose that there exists an integer s =0
such that se a(f,,) foreveryi, 1<i<r. Then
|A(s)|? < 277 S |A()|P.
J#Ss
Proof. The hypotheses of the claim imply that for every i, 1 <i <r, there
exists a positive integer k; such that n; = s+ m;. It follows that
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AP =]

S pl/Ap=1) p=ly 1 |BilP | ag,|? } . .
=| X R{ E (by Holder inequality)

ki
<277 z(m,-v’ EIfm,(l)lp)
i=1 I#Ss

=277 3 |A(j)|? (by Lemma 1.3). O
J#s

In order to show that f is noncyclic, it is sufficient to prove that
2 18P =|8(0)|P
Jj=1

for every g e Lin(f;, i = 0). So, let M be a finite set of Z_, let v;, i€ M, be
nonzero complex numbers, and let g = X;c a7 7vi fi-

Define M, = {ie M: 0 e o(f;)}. We assume that M, # @ (otherwise the de-
sired inequality is obvious). One can represent g as g = g« + e m\ M, Vi Ji
where g« = X;eum,vifi- Applying Claim 1 to 4 = g, and s = 0, we obtain

|£(0)|? =|£.(0)]” = 277 3| &.(J)]”. (%)
j=1

Construct the sequence {M,} —o of subsets of Z and the sequence of func-

tions {g}72¢ of the space ¢4 as follows. Define go = 352, £.(/)z/, and if M,
and g, have been constructed then define

M!+1={i5M\ U A’fjw(fi)ﬂo(gl)¢ﬂ}; gi=g&+ X vifi
O0=<j=<l! ieM;

One easily checks that for every positive integer k the sets My, M, ..., M,
satisfy the conditions on {D;}{_; in Lemma 1.5.

Cram 2. Let!l=0. Then

> (g—g1) ()P =277 > |&14+1(8)|7.
sea(gp) seo(g1)\o(g)

Proof. For every se€ o(g;) put

As=< U U(f,-))\[s}
itieMpy,,

o(f)as
By Lemma 1.5 and Claim 1, for any s € o(g;) one has

g—g))P= T |mfF=2?3 3 |vifi)P

itieM;q,, Jj#EsitieM;,,,
a( f))as a(f)as

=277 E |§1+1(j)|p-
JeA;
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It remains to observe that (again in view of Lemma 1.5) the sets A, s € a(g)),
are mutually disjoint and that Ue ;) A5 = 0(&r4+1)\0(8))- O]

Cram 3. Letl = 0. Then at least one of the two following assertions holds:

() lelp =gl
(ll) |181||§ <2° 2sea(g,)|g1'+l(~5')|p-

Proof. Suppose that both (i) and (ii) fail. Then

1 1 R
leds> = llgrallo+ 527 2 |&41(8)|P

2 2 sea(g))

=277 S (g—g+ ) O)P+2771 3 18141(9)]P  (by Claim 2)

seolg) sea(g)

= 3 &) =gl

sea(g)
a contradiction. J

Further, let ¢ be the minimal nonnegative integer such that M,,, =0 (and
hence g,.; =g,). It follows from the construction of the sequence {g;};>-,
and from Lemma 1.5 that g(s) = g,(s) for se o(g,). Therefore,

led= 2 1gP (%

In view of Claim 3, one of the two following cases holds:
) [gollp=[l&1ll5= +- = &5 or -
(i) lgollb=<l&i]o= - <|lglb=2" Zscoeyl&i+1(s)|P for some/, 0=<I<t.
In the latter case we have
ledo= 2 12IP= 2 18P =277 g5 = 277(lgoll5-
sea(g) sea(g))

Thus, in either case (i) or (ii), we obtain by use of (*) and (**) that

2NEWDNNP = ||&ll5 = 2771 goll5 = 277 20 [8+()]P = |£(0)]”,
j=1 j=1

as required. Ol

REMARK. The sufficiency of the condition X;., RY P~ = oo for cyclicity
of f holds true under the weaker assumption that {n;}7_, is a finite union of
Hadamard lacunary sequences. We omit the proof, which is essentially the
same as for p =2 in Theorem 2.1.

THEOREM 3.2. Let f =38, apz" € tl, with ny.,/n; > 2 and a; # 0 for all
k = 1. Then f is cyclic in £} if and only if
max(Ry, 1) = o,
k=1

where Rk = Iak|/2j>k|aj|, k=1.
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Proof. First suppose that J]7—-; max(R;,1) =. Fix ¢ > 0. To prove that
1 e span(TXf, k = 0), it is sufficient to construct a function g € Lin(T*f,
k = 0) such that

S8 < clzO).
j=

It is easy to see that there exists an integer sequence {k(i)};=; such that
1< k(l) < k(2) < evey, Rk(i) >1fori= 1, and that H?=2Rk(2j) =00, We in-
troduce some further notation. Put

Aj={m:nk(j_1)<msnk(j)}, Jj=2; BJ:=UA,-, Jj=1.
i>j

Construct inductively a sequence {g,]2; of functions of ¢} satisfying the
following five conditions (for every s =1):

(a) g, Lin(T*f, k= 1),
(b) gs(o)zls
(c) U(gs)\{o} C B2s—]s
(d) > |g(m)|= X |&(m)|, t>2s,
meA, meB,
o 14+ Ry as o
(e) S |geri(m)| = =522+ 5 2 (m)).
m=1 2Rk(2s+2) m=1
First, put
1
g =—;————Tnk(”f.
1 S(neay)

Conditions (a) and (b) for the function g; hold obviously; (c) follows from
the assumption that n; —n; > n;, k= 1. In order to show that (d) holds,
take an integer ¢ > 2 and observe that

. lf(”k(z))l 1 |f("k(t))| |f(”1)| . .
&i(m)| =z = > = = —— = &i(m).
mEA,l 1(m)| |f(rea)] Rey | f ()| 15 ko) | f(nery)) mg:B,I :

Further, if g, has been constructed, we put

gs11 = 85— E ALS(’??)_Tnk(ZS‘f-Z)_mf'
meA;Uds,py J(Mi2s+2)
Assume that g, satisfies the conditions (a)-(d) and show that these four con-
ditions hold for g, ;. (a) is obvious. To verify (b) and (c), it suffices to ob-
serve that if me A, ;U A, then o(T"@s+27"™"\{m} C B,,,. For (d), one
can apply Lemma 1.5 to show that all the sets

o(g) and o(T"es+~"f\{m}, me A,,UAs5, 1,

are mutually disjoint. Using this together with condition (d) for the func-
tion g, for £ > 2s5+2 we obtain
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. . gs(m) A
S ltenm|= S am+ 5 AL S )
meA, meA, meA;UA», |f(nk(25+2))| k(t—1)<I=<k(t)

= >, |&(m)|+ D |85 (m)]| If(nk(t))l

meB, meA,UAse 4 If(nk(25+2))| Rk(f)
. &s(m) 2
- slgmr s L sy
me B, meA;UAs 4, |f(nk(25+2))| I> k(1)
= E |gs+l(m)|'
meB,

Finally, we must verify that g, satisfies (e) for every s = 1. Fix s, and set
L1 =Y mea,ua,,, |8s(m)and L, =3, .5, |&;(m)|. We have

. 1
2 |8s+1(m)| = r—2,+22 (by Lemma 1.5)
m=1

k(25s+2)

1 1 ]
<|——+—-}E{+X Yi1=X,by(d
(2Rk(2s+2) + 2)( 1+X;) (since X, » by (d))

1+R o
= -2 3 |g(m)|  (by (c)).
2Rk(25+2) m=1
Thus, conditions (a)-(e) hold for all functions g, s= 1.
Now we are in a position to prove the cyclicity of f. The assumptions that
Ryiy>1(i = 1) and TI5-; Ry25) = o imply that TTT_ (1 + Ry25))/ 2Rk (25) =
0. Choose N so large that

§ g1(m)| <e.
s=2 2Rk(2s) m=1I : l

In view of (e) and (b), we have

) N
2_:1|§N(m)| =JI

= 3 18i(m)| < e = elgn(0)]
s=2 k(2s) m=l1

This completes the proof of the inclusion 1€ span(7*f, kK = 0). Lemma 1.7
provides the cyclicity of f (note that the condition J];.; max(Ry,1) = is
invariant under 7).

Next, suppose that C = J]%-; max(Ry, 1) <. To prove that f is non-
cyclic it is sufficient to show that

A s .
E!Ig(J)I > Ez—lg(O)I

for every function g € Lin(f, k = 0) (we denote by f; the function T*f). Let
M be a finite subset of Z_, let v; (i € M) be nonzero complex numbers, and
let g =>enr vifi

Define My = {ie M: 0€ o(f;)}. We may assume that M, # 0. One has g =
8o+2iem\m, Vi where go =2cp, vifi- For every ie My, denote by k(i)
the unique integer such that ny;, = i. Using Lemma 1.3 we obtain
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X .. " 1,.
SlgoN= S vtk laal > vilakyl = = |go(0)|=—|g(0)’- (*)
Jj=1 ieMy Rk C ieM,

Construct inductively the sequences {M}7%,, {B S} Ls=1 {Ali=0 of sub-
sets of Z, and the sequence {g,}7 of functions of £} as follows. Set A, =
o(go)\{O} (note that M, and g, have been already defined). If M,;, A,, and g,
have been constructed, then define

!

M1+l = {[EM\ U 1‘41': n,+1—ieA,};
Jj=0

B — 0 if nj —seMpy,,

T oW NS > )i mp—se My,

A=AV U By gi=g+ X vifi

SEA/ iEM1+]
CramM 1. Let!l=0. Then
2 &) =max(Rip1,1) X |£141(9)].

SEA, S€A; 41

s=>1;

Proof. Itis easy to verify that for every k = 1 the sets M, M,, ..., M, satisfy
the conditions on {D;}/_, in Lemma 1.5. Using this lemma, one can obtain
that the sets A, and B,,, 5, s€ A, are mutually disjoint, and

1

2lEa®= X (&r+1—&) |+ 2 [&141(5)
max(R;;q, 1) seA,ll | seA, R1+1| 18 (9)] seA,l 1)
= 2 &N+ 2 |&41(9)]
S€A; jJEBy s SEA;
|§I+I(S)|- [
S€A;4

Now let ¢ be the minimal integer for which g, =g, 1=g,4,=""-.
CLAM 2. e 4 |8/(5)| = 251|8(5)].

Proof. Fix se A, and show that g(s) = £,(s). For this, it suffices to prove
that if s = n,,—j for some m =1 and j = 0, then je M, for some r = 0. If
s € Ay then, by the definition of M,,, either je M,, or je€\ U™, M,. Let now
se ANA,;_;, | =1. Then, by the construction, there exist ie M and k >/
that ny,—i=s and n,—i€ A,_; (and hence n; = i). It follows that n,, =5 =
ng—i>n,—n; > n;.. Thus, m > 1 and hence n,,—j=s€ A;C A,,_,. So, by
the definition of M,,, again either je M,, or je U™ 3! M,, as required. [J

Finally, Claims 1 and 2 together with (*) imply the desired inequality:

1A N 1 R
ZJeON= 2 18O 7 < (R, D 2,80
=T 2 Igo(S)I 12 |£(0)]. 0



Cyclicity and Approximation by Lacunary Power Series 295

REMARK. The statement of Theorem 3.2 can be considered as a limit case
for the one of Theorem 3.1. Indeed, for any p, 1 < p < «, the cyclicity con-
dition for a lacunary function fe ¢4 is equivalent to TT5~1(R, 1)1/(p-1) =
where {R;};~; denotes the remainder sequence for f and (-, -), stands for
the ¢"-norm of the vector (-, -) in the space R2.

Now we are able to state the following theorem, which shows the differ-
ence between the cases p=2 and p < 2.

THEOREM 3.3. (1) Let 2 < p <. If a function f €04 is such that its spec-
trum o(f) is a finite union of Hadamard lacunary sequences, then f is cyclic
in the space £5.

(2) Let 1< p<2. Then in the space {5 there are Hadamard lacunary func-
tions that are noncyclic. Moreover, for every infinite subset AC Z, there is
a noncyclic function f € (4 such that ¢(f) € A and card o(f) = .

Proof. (1) Let 2< p < oo, and let f =37, ayz" € 4, where the increasing
sequence {n; ]}z is a finite union of Hadamard lacunary sequences. Put Ry =
|ax|”” Zj>k|aj|’, k =1. By Lemma 1.1, the series 2¢-; Ry diverges, so that
Yr=1 RYP~D =00 since p =2. Theorem 3.1 and the Remark following its
proof imply that f is cyclic.

For p =, the assertion of the theorem can be proved by a similar method
as for p =2 in Theorem 2.1.

(2) Now let 1 < p < 2. Take a sequence {n;}y—, C A so that ny,/n; > 2,
k = 1. Consider the function f =37_,(1/k*)z™ e 4. A simple estimation
shows that Ry = k™2/(3 ;51 j2P) = O(k™") as k —co. It remains to apply
Theorem 3.1 (or Theorem 3.2 if p = 1) to show that f is noncyclic. O]

ExaMpLEs. Here we give some examples of cyclic and noncyclic lacunary
functions in the spaces £4, 1 < p < 2. We omit the proofs, which are mostly
simple calculations using Theorems 3.1 and 3.2.

Let A={2% k=0}C Z .. Although A is not a lacunary sequence of or-
der 2, we can, by virtue of Lemma 1.6, apply Theorems 3.1 and 3.2 to a
function f with the spectrum o(f) = A (note that the function 7f is lacunary
of order 2).

(1) 1 < p < 2. Then the function

Jo= 2

nel

1 a
nlog“nz

is cyclic in ¢4 for o = 1— p and is noncyclic for -1 < o < 1—p.
(2) p = 1. Then the function

1
fa = E _azn
neA N
is cyclic in £} for o > 1 and is noncyclic for 0 < o < 1. For an increasing se-
quence of positive integers ¢(n), the function
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lz,,

f =
*= & g
is cyclic in £} if and only if the sequence ¢(#) is unbounded.

Considering the cyclicity problem in the spaces £4, 1 < p < o, it is natural
to ask what the situation is for the space

Ca= {f = $ fuoz*: fim f) = 0}

endowed with the norm || f||. = supg=o|.f(k)|. The following theorem shows
that a function fe ¢4 is cyclic under a much weaker (than Hadamard lacu-
narity) assumption on the sparseness of the spectrum o(f).

THEOREM 3.4. Let {n,}i= be an increasing sequence of nonnegative inte-
gerssuchthatn, ,—n,—oask—-oandlet f =X7_ia,2"% € cy witha, #0
Jor k=1. Then fis cyclic in c4.

Proof. Put Ry =|ay|/max;-,|a;|, k=1, and denote by A4 the set {k=>1:
R, = 1}. Obviously, A is infinite. We construct inductively an increasing
integer sequence {k(i)};=; and a sequence {g(i)}i=; of functions of ¢, as
follows. Choose an arbitrary k(1) € A and put g, = (1/agq)) T f. Fur-
ther, if k(i) have been constructed, take k(i+1) € A such that for all j =
Ngi+1)+1— Hr(i+1) the inequality |£;(/)] < 1 holds, and put

8k+1=8&t+ TTcu+n f,

Ari+1)

Clearly, £5(0) = N for every N = 1. We use induction to prove that

max [gx(J)| < 2.

l<j<e
This inequality holds for N =1 since k(1) € A. Suppose that

max |£;(j)| =2

lsj<eco

and fix j = 1. If j = ngi1y+1— Mkiiv1)> then |£:(J)] <1 by the construction,
and hence

1
Ar(i+1)

(T"kuen fY(j) <2,

|8is1()| =1+

since k(i+1) € A. On the other hand, if 1 =< j < ng;y1y+1— Mri+1y, then
(T™u+nfY (j) =0and so |g;1(J)| =|8:(/)| = 2. Thus, the desired inequality
is proved.

Now fix € > 0. Choose N such that 2/N < e. Considering the function
gn which lies in Lin(7T*f, k = 0), we obtain that
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EN 2
— - < —<e.
Therefore, 1€ span(T*f, k = 0), and f is cyclic because Lemma 1.7 remains
true for the space cy4. O

REMARK. One can prove that, if the moduli |a,| tend to 0 monotonically
(or, more generally, if liminf, _, , Ry > 0), then it suffices to require
lim sup(n 4 —ng) =0

k-—»co

for the cyclicity of f = X~ a,z"* in the space ¢y4.

4. An Application to Invariant Subspaces

One of the consequences of the main theorem in [4] is that, in the Hardy
space H?, the sum of two noncyclic vectors is always noncyclic. Using the
results of Section 3 one can show that this is not true for the backward shift
operator on the spaces ¢4 for 1 < p < 2.

Moreover, the following statement is valid.

ProposiTioN 4.1. Letl<=p<2. Then in the space £ there exist a noncyclic
vector f and a cyclic vector g such that f+ Ag is noncyclic for every complex
number A.

Proof. First, let 1 < p < 2. Set, for example,

< WP YA = Wt
S ngjz and g ,El 5%
Fix Ae C. Obviously, the functions f and f+Ag belong to ¢4 and are lacu-
nary of order 2. Let {R;}7=, and {R}}7~, denote the remainder sequences
for the functions f and f+Ag, respectively. Then R, =27—1, k=1, and
since ;54 j 7P > const./k”~!it is easy to verify that Ry = O(k ™) as k — o,
so that S7_(R)?~VD < 0. By Theorem 3.1, f is cyclic and f+ g is non-
cyclic.
Next, if p =1, then one easily checks by using Theorem 3.2 that the
functions

f= E _.%z32/—1 and g= E ——1—.232j

provide the necessary example. a
Now we obtain the following theorem as a dual fact to this proposition.

THEOREM 4.2. Let 2 < g <. Then in the space £ (endowed with the
weak * topology in the case g = ) there exists a family {E,},.c of nonzero
S-invariant subspaces such that E\NE, = {Q} whenever A # p.



298 EVvGENY V. ABAKUMOV

Proof. Let p be the conjugate exponent of q. Since 1 < p < 2, we can apply

Proposition 4.1 and construct two functions f and g in the space ¢4 such

that g is T-cyclic and f+ Ag is noncyclic (for 7°) for every complex number A.
Denote by I, the smallest 7-invariant subspace of ¢4 containing f+Ag:

I,=span(T*(f+Ag), k=0), AeC,
and define the subspace E) of £J = (£4)* as the annihilator of /j:
Ey,={peli:(h,¢)=0forevery hel,}, AeC.

Clearly, for every Ae C, E, is an S-invariant subspace of ¢ that is nonzero
since I # €4.
Now let A # u be complex numbers. Since

_(f+Ag)—(f+ug)
g= .
i}

€ span(ly, 1,)

and span(/y, 1,) is a T-invariant subspace of ¢4, it follows that span(T ‘g,
k = 0) C span(ly, 1,). The cyclicity of g yields span(/y, 1,) = ¢4 and, by dual-
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