On Entire Rational Maps in
Real Algebraic Geometry
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1. Introduction and Results

Let X < R” and Y < [R"™ be real algebraic sets. A map F': X - Y is said to be
entire rational if there exist f;, g;e R[xy, ..., x,1, i =1, ..., m, such that each
g; vanishes nowhere on X and

F= (fl/gl, ...,fm/gm).

We say X and Y are isomorphic to each other if there are entire rational maps
F: X—-Y and G:Y— X such that FoG =idy and GoF =idy. Let R(X,Y)
denote the set of all the entire rational maps from X to Y. Although the set
of polynomial maps between X and Y is not an isomorphism invariant of
the pair (X, Y), R(X,Y) is an isomorphism invariant of the pair (X, Y). In
other words, R(X, Y) is independent of the embeddings of the real algebraic
sets into the affine spaces (cf. [4, Chap. 3]).

In general, very little is known about entire rational maps between X
and Y. In [7], Loday showed that for n > 1, any polynomial map from 7" to
S™ is null homotopic, where T” is the n torus S!x---xS! and S” is the
standard n-sphere in R”*!. Let k and n be positive integers where k is odd
and k < 2n. In [3], Bochnak and Kucharz showed that any entire rational
map from X X S2”~* to $2” is null homotopic, where X is any k-dimensional
nonsingular real algebraic set. The proofs of these results use algebraic K-
theory. For a nice account of similar results, and for the results dealing with
approximations of smooth maps by entire rational maps, we refer the reader
to [1; 2; 3; 4; 7]. In all these cited results the target space is mostly the stan-
dard n-sphere S”. In this paper, by using different and rather elementary
techniques, in some cases we will prove more general results. For instance,
in the statement of the Bochnak-Kucharz result we will replace the target
space S2" with any nonsingular real algebraic set homeomorphic to S2”.

Here, a complexification X¢c € CP” of X will mean that X is embedded
in some RP" and X € CP" is the complexification of the pair X € RP".
Our main theorem follows.

THEOREM 1.1. Let X and Y be compact connected nonsingular orientable
real algebraic sets of the same dimension n. Then any entire rational map
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f: X - Y induces the zero homomorphism f.: H,(X;Z)— H,(Y; Z) in the
top homology provided that there exist nonsingular complexifications X¢
and Yg of X and Y so that the homology class [ X ] is torsion in H,(X¢; Z)
and the homology class [Y] is not torsion in H,(Y¢; Z).

The assumptions that the homology class [ X] is torsion in H,,(X¢; Z) and
the homology class [Y] is not torsion in H,,(Y¢; Z) may seem unusual. How-
ever, the propositions that follow will provide many examples of each kind.

PROPOSITION 1.2. Let Y be any nonsingular compact orientable real alge-
braic set with nonzero Euler characteristic. Then the homology class [Y]
of Y in H,(Y¢; Z) is not torsion for any nonsingular complexification Y¢
of Y.

REMARK. Since any odd-dimensional closed orientable manifold has zero
Euler characteristic, the algebraic set Y in Proposition 1.2 is necessarily of
even dimension.

Using Lefschetz’s theorem and the Euler characteristic formula for hyper-
surfaces (see e.g. [6, pp. 143, 152]), one can see that the middle homology
group H,,_1(Q?*"71;Z) of an odd-dimensional quadric Q?"~!'< CP?" is
zero. Hence we have the following proposition.

ProprosiTioN 1.3. For any n > 0 and any compact nonsingular orientable
real algebraic set X, the homology class [S*"~!x X is zero in its complexi-
fication, where S*"~ ! is the standard (2n—1)-sphere.

We have immediate corollaries of these results.

CoOROLLARY 1.4. Let n be a positive even integer, and let X be any n-dimen-
sionial compact connected orientable nonsingular real algebraic set with a
nonsingular complexification X¢ such that the homology class [ X ] is torsion
in H,(X¢; Z). Assume also that Y is a nonsingular real algebraic set homeo-
morphic to S". Then any entire rational map f: X — Y is null homotopic.

Proof. By Theorem 1.1 and Proposition 1.2, the degree of any entire ratio-
nal map f: X — 7Y is zero. Since Y is homeomorphic to $”, any degree-zero
map f: X —Y is null homotopic. O

COROLLARY 1.5. Let k and n be positive integers where k is odd and k < 2n.
Also, let X be a compact connected nonsingular orientable real algebraic
set of dimension k and let Y be any nonsingular real algebraic set homeo-
morphic to S*". Then any entire rational map from X xS*" % to Y is null
homotopic.

Proof. By Proposition 1.3, the homology class [X X S?"~#] is zero in its
complexification. Now we are done, by Corollary 1.4. O
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ReEMARK. The main difference between Corollary 1.5 and the results of
Bochnak and Kucharz (mentioned in the introduction) is that our statement
holds independent of the algebraic structure Y of S2”. Bochnak and Kucharz
prove their results mostly for the case where Y is the standard 2n-sphere
$2" and their proofs make use of the standard algebraic structure of S27.

2. Proofs
First we need a technical lemma.

LEMMA 2.1. Let X and Y be compact nonsingular orientable real algebraic
sets of dimension n, with nonsingular complexifications X¢ and Y¢, such
that the homology class | X] is torsion in H,(X¢; Z). Let f: X—Y be an
entire rational map. Then, by blowing up X¢ along some smooth centers
defined over the reals and away from X, we can assume that the complexifi-
cation map fc: X¢c — Y is well-defined on all of X¢ and that the homology
class [ X] is still torsion in H,(X¢c; Z).

Proof. Let A € X¢ be the indeterminacy set of the map f¢: X¢g — Y € CPN.
Note that AN X =@. By Hironaka’s theorem, we can desingularize the sub-
variety A by blowing up smooth centers contained in the Sing(A). Let L &
Sing(A) be such a smooth center, and let 7: Xc — X be the blow-up of X¢
along L. Let E = n~!(L) be the exceptional divisor in X, and let A be the
strict transform of A. Since E is smooth and of codimension 1, the map
Sfeew: Xec— CPN extends over E—A. Continuing this process, we make the
indeterminacy set A of fgo7: Xc— CPY smooth. Finally, by blowing up the
smooth center A, we eliminate the indeterminacy set. Note that, since X is
away from A, this blowing up process does not spoil X. Moreover, since
everything is defined over the reals, these blow-up centers are also defined
over the reals and therefore X¢ is another nonsingular complexification of
the real algebraic set X.

Now we need to show that the homology class [X] is still torsion in
H,(X¢; Z), where 7: X¢— X is the blow-up of X along some smooth
center L. Consider the exact homology sequence of the pair X € X¢:

v — Hy (Xe, X3 Z) 25 Hy(X;Z) 22> Hy( X3 Z) — -+

Since [ X'] € H,(X¢; Z) is torsion, there is a class a € H,, . (X¢, X; Z) such
that 6(a) = k[ X] for some nonzero integer k. By the Steenrod representa-
bility theorem, there exists a compact orientable smooth (7 + 1)-dimensional
manifold W with boundary W and a smooth map T': (W, dW) — (Xg, X)
such that T.([W1]) =lae H, (Xc, X;Z) for some odd integer / (cf. [5,
Cor. 15.3, p. 49]). Now make 7T': (W, dW) —» (X, X) transversal to L with-
out changing 7 on dW. Then K = T~Y(L) is a submanifold of W not inter-
secting the boundary oW. Moreover, the normal bundle N of K in W has
a complex structure. Let p: W— W be the complex blow-up of W along
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K. Studying the Mayer-Vietoris sequences for the pairs (U, W—U) and
(U, W—U), where U is a tubular neighborhood of X in W and U = p~\(U),
one can easily check that W is orientable. The map T': (W, 0W) — (X¢, X)
induces a map on the blow-ups 7: W — X¢. Now, since T, ([0W]) = kI[X] €
H,(X¢; Z) and T.([W]) = T.([0W]), we see that

T.([0W)) = kl[ X 1 € H,(X¢; Z)

and therefo~re the homology class [X] is still torsion in H,(X¢; Z). Replac-
ing X¢ by X¢ finishes the proof. O

Proof of Theorem 1.1. By the preceding lemma, we can assume that the
map f¢: X¢ — Y is defined on all of X¢. Let i: X —» X and j: Y — Y denote
the inclusion maps of X and Y into X¢ and Y, respectively. Consider the
following commutative diagram:

Hy(X;2) L~ H,(Y;2)
i,l lj.

Hy(X¢; Z) 757> Ha(Ye; 2)

By the hypotheses, (fc°i)«([X]) is a torsion element in H,(Yg; Z). How-
ever, since H,(Y; Z) = Z and [Y] is not a torsion element in H,(Yg; Z), the
homomorphism j,: H,(Y; Z) - H,(Y¢; Z) is an injection and therefore the
class f,([X]) e H,(Y; Z) should be zero. O

Proof of Proposition 1.2. To see this, first note that the normal bundle N
of Y in Y¢ and the tangent bundle 7(Y') are isomorphic via multiplication
by i = \/—1, and therefore the self-intersection number [Y]-[Y]=xx(Y)
of Y in Y¢ is not zero. Hence the homology class [Y] in H,(Y¢; Z) is not
zero. Note that this argument also implies that [Y] is not a torsion element
in H,(Yg; Z). O
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