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1. Introduction

Let Q be a simply connected domain in the complex plane and let f be a con-
formal mapping from Q onto the unit disk A. Let L be any straight line in
the plane. In this note we consider the following question: For which values
of pis

S |f(z)|Pds<o?
LNQ

That is, for which values of p is it true that f’e LP(L N})? Without loss of
generality, the straight line L may be taken to be the real axis R. For p=1,
Hayman and Wu [HW] proved that this integral is bounded by a universal
constant (see also [GGJ], [FHM], and [@y]). The Koebe function shows
that f’e L2(RNQ) can fail. In [Ha, p. 638], Baernstein conjectured that
f'e LP(RNQ) would be true for all pe[l,2). In the positive direction of
this conjecture, Fernandez, Heinonen, and Martio [FHM] proved that there
is an absolute constant e > 0 such that f'e L’ (RNQ) for all pe[1,1+¢€). But
in [Ba] Baernstein gave a beautiful counterexample to the conjecture. In this
paper we give several sufficient conditions which ensure that f'e L°(RNQ)
for all pe(l,2).

In Section 2 we consider quasiextremal distance (or QED) domains and
obtain some sharp estimates for the QED constants of certain domains. These
estimates have their own interest, but here they are used to prove one of our
main results on Baernstein’s disproven conjecture. In Sections 3 and 4 we give
several geometric conditions, some on f(L) and some on 2, which ensure that
S'e LP(RNQ) for all pe[l,2). For example, in Section 3 we show that if f(L)
is a Jordan curve of bounded rotation, then f'e LP(LNQ) for all pe[l1, 2).
We also show that if Q is starlike, then f'e LP(LNQ) for all pe[1, 2).

By modifying Baernstein’s example slightly, we construct in Section 5 a
chord-arc domain  such that RMNaQ contains a single point and that f'¢
LP(RNQ) for some p e (1,2). This example suggests that severe conditions
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must be posed in order to have /e LP(RNQ) for all pe[1, 2) and it justifies,
in some sense, the sufficient conditions we give in Sections 3 and 4.

2. Quasiextremal Distance Domains

A domain D C C is called an M-quasiextremal distance domain (or M-QED
domain) for 1 = M < if, for each pair of disjoint compact sets F and F;
in D,

mod(Fy, F;; C) < M mod(Fy, Fy; D). (2.1)

Here, for any open set G C C and for any disjoint compact sets Fy and F,
mod(Fy, F;; G) denotes the modulus of the family I'(Fy, F;; G) of curves that
join Fy and F; in G. The reciprocal of mod(Fy, F;; G) is called the extremal
distance between Fy and F; with respect to G. We refer the reader to [Vi]
for definition and basic properties of modulus of a curve family. This class
of domains was introduced by Gehring and Martio {[GM] (with a slightly
different definition) in connection with the theory of quasiconformal map-
pings. It is known [GM, Thm. 2.22] that if D is a finitely connected domain
in C, then D is QED & D is uniform © D is a quasicircle domain. A do-
main D C C is said to be uniform if there exists a constant ¢, 1 < c¢ < oo, such
that each pair of points x;, x, € D can be joined by a rectifiable arc v in D
for which
I(y)<c|x;—x,| and min /(y(x;, X)) < cd(x, dD)
i=1,2

for each x €y. Here /() denotes the length of v, y(x;, x) the subarc of y
joining x; and x, and d(x, D) the distance from x to dD. A domain D is
a quasicircle domain if each component of dD is either a quasicircle or a
point. For more properties of QED domains in more general settings, the
reader is referred to [GM], [HK], and [Y1]. In order to study the geometry
of QED domains D, the following QED constant was introduced [Y1]:

mod(Fy, Fy; C)
M(D) = sup ,
Fy, F, mod(Fy, Fy; D)

where the supremum is taken over all pairs of disjoint compact sets Fj and
F, in D such that mod(F,, F,; C) and mod(F,, F; D) are not simultaneously
zero or infinity. This constant reflects the geometry of D and measures how
far D is from being a disk. For example, it was shown in [Y1] that for a do-
main D C C, M(D) =2 if and only if D is M0bius equivalent to the unit disk
minus an NED set, a set which is removable for analytic functions with
bounded Dirichlet integrals (see [AB]). We refer the reader to [Y1] and [Y2]
for more properties and estimates of the QED constant M (D) in the plane
and in space.

The following notation will be used. For zoe C and r > 0, we let A(zq. 7)
denote the open disk centered at z, of radius . We also write A(r) =A(0, r)

2.2)
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and A= A(0,1). For a domain D C C, its boundary, closure, and exterior
C\ D will be denoted by dD, D and D*, respectively.

ForO<a<?2,let A,={z:0<arg(z) <aw} be the wedge of angle aw. By
[Y1, Thms. 4.16 & 4.24], for any Jordan domain D with DNA=A,NA, we
have the sharp inequality

M(D)=2/x

for 0 < o <1. The main result in this section is the following generalization
and extension of the above result. It will also be needed in the next section.

2.3. THEOREM. Suppose D is a Jordan domain in C, and suppose its bound-
ary oD has right and left tangents at a point z,. Denote the angle from the
right tangent to the left tangent by aw. Then

M(D)Z% if O<a=l; (2.4)

M(D)= if l1=sa<?2. (2.5)

2—«
Both inequalities are sharp.

The proof of Theorem 2.3 depends on the following well-known facts about
the Grotzsch ring and the Teichmiiller ring. For details we refer the reader
to [Al] and [Vu]. ForO0<r<1and ¢ >0, let R5(r) denote the Grétzsch ring
bounded by the line segment [0, ] and by the unit circle, and let R (¢) de-
note the Teichmiiller ring bounded by the line segment [—1, 0] and by the
ray {z=Xx:1 < x < o}. We define functions ®(r), u(r), and ¥(¢) by (see [Al,
Chap. 3; Vu, Chap. 2])

mod(Rg(r)) =log®(r)=p(r),  mod(Rr(¢))=log¥(¢), (2.6)

where mod(Rs;(r)) and mod(Ry(¢)) denote the conformal moduli of the
Grotzsch ring and Teichmiiller ring, respectively. It is well known that

mod(Fp, Fy; C) = 2w (mod(Rr(2))) ™' =27 (log ¥(2)) ™,

where F and F| are the two components of the complement of R(¢). We
also have the following functional identities:

1 2 w2
V(t)y=|P ; —r2)y=—-. .
(1) ((m)) wrp(WI=rh) == (2.7)
Furthermore,
. . Y(2)
lim(u(r)+logr)=1log4; lim —t—= 16. (2.8)
r—0 {— o

Proof of Theorem 2.3. Without loss of generality we may assume that z,=
0, the right tangent of dD at 0 is the positive real axis, and the left tangent
is the ray
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L,={re"®™:0<r<omj.

We may also assume that coe€ dD and that dD is parameterized by ¢(1):
[—1,1] - aD, so that

#(0) =0; ¢(—1) = ¢(1) = oo,
Next, for 6;, 0, € (—2x, 27) let A(6,, 0,) denote the wedge domain
A0y, 07) = (z: 0, <arg(z) <0,}.

Since Ly and L, are the right and left tangents of dD at 0, for r € (0, 1) there
exists e =¢(r) > 0 such that ¢(r) » 0 and r - 0 and

A(r)NA(e,ar—e) CA(r)YNDCA(r)NA(—e,am+e¢) 2.9)

when r is sufficiently small.
For the proof of (2.4), we fix r € (0,1) and let

Fo=DNA(r?, F,=D\A(r);
F{=DNoA(r?, F{=DNJA(r).

Denote the curve families I'(Fy, Fy; D) and I'(F§, F{; DN (A(r)\A(r?))) by T’
and I', respectively. Then I'' is both a subfamily and a minimizing family
of I'. Thus, by [Vd, 6.2 & 6.4],

mod(I') = mod(I"). (2.10)
By (2.9), it follows from [ V4, 6.2 & 7.7] that

—1
mod(I") < (a7r+e)(10g %) : 2.11)

On the other hand, since F; contains a continuum that contains 0 and a
point a € dA(r?) while F, | contains a continuum that contains oo and a point
b e dA(r), by the extremal property of the Teichmiiller ring (see e.g. [Al,
Chap. 3])

mod(Fy, Fy; C) = 21r(log \11( | blglal»_l. 2.12)
Since ¥(¢) is monotone, combining (2.10), (2.11), and (2.12) we obtain
mod(Fy, F;; C) - 27 log(1/r)
mod(Fy, Fi; D)  (aw+e)log¥(|b—al/|al)
27 log(1/r)

= (arte)log ¥(r+r)/r?)

By (2.8), the last expression tends to 2/« as r — 0; this proves inequality
(2.4). Its sharpness follows from the fact that M(A,)=2/a for 0<a =<1
(see [Y1, Cor. 5.3}).

We point out that the above argument for the proof of (2.4) is valid also
for o > 1. However, in this case, it does not give the sharp estimate (2.5). ‘
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For the proof of (2.5), we let r € (0, 1) and e = ¢(r) be as above. Let
D,=A(e,ar—e)={z:e<arg(z) <am—ej,

D, =A(—¢,ar+e)={z: —e<arg(z) <am-+el,
and let
F0= [0, rZeie]; Fl — [r4ei(oz1r—e)’ r3ei(a1r—e)].

Then, by (2.9), Fy, F;CDND,, and it is easy to see that for each curve
v € I'(Fy, Fy; D) either v e I'(Fy, Fy; D,) or v contains a subarc which joins
dA(r?) and dA(r). Thus, by [V4, 6.2 & 7.5],

-1
mod(Fy, F; D) <mod(Fy, F; D,) +27r(log %) .

On the other hand, since I'(Fy, Fy; D) UT'(Fy, Fy; DY) CT'(Fy, Fy; C),
mod(Fy, Fy; C) = mod(Fy, Fy; D) +mod(Fy, F; DY),
where Df = C\ D,. Thus we have
mod(Fy, F;; C) - mod(Fy, F; D{) +mod(Fy, Fy; DY)

> . 2.13
mod(Fy, F;; D) mod(Fy, Fy; D,)+ 2w (log(1/r))~! (2.13)
Next, by means of conformal mappings, we see that
mod(Fy, Fy; Dy) = m(mod(Rr(a))) ™' = w(log ¥(a)) ™,
where
_ra(l4re _om
T —rm N ar—ae
Similarly,
mod(Fy, Fy; D}) = w(log ¥(b))~,
where
b re2(l1+4+re) _ T
I T %= 27— (e —2€)
Furthermore, an elementary (but long) argument shows that
lim mod(Fy, Fy; D) —1
r—0 mOd(Fo,Fl; D2)
Therefore, by (2.13),
. -1 -1
lim sup mod(Fy, F1;C) _ lim (log ¥(a))™" + (log ¥(b)) 2.19)

r-0  mod(Fy, F;; D) o (log¥(a))~1+2(log(1/r))~!"
Since a — 0 as r — 0, it is easy to see that
lim 208 ¥(@) _
r—o log(1/r)
It follows from identities (2.6), (2.7), and (2.8) that
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. log¥(a) . p(1/(a+1)Y?)
lim ————=1lim
ro0log¥(b) .o p(1/(b+1)1?)
. p,(\/b/(b+l))+%log(b/(b+1))—%log(b/(b+l))
= lim - -
r-0 p(Va/(a+1))+3log(a/(a+1))—1 log(a/(a+1))
— im logh «
L0 loga 2—a’
Thus, by (2.14), we have

. mod(F, Fy; C) 2
lim sup = .
ro0  mod(Fy, F;D) 22—«

This proves (2.5). The sharpness of (2.5) follows from Corollary 2.18. [

Next we consider another class of domains which are closely related to QED
domains. For a Jordan domain D in C, we say that D is a K-quasiconformal
reflection domain (or that dD admits a K-quasiconformal reflection) if there
is a homeomorphism f: D— C\D such that f is K-quasiconformal in D
and f fixes the boundary of D pointwise. This class of domains was first
considered by Ahlfors [A2], who proved that D is a quasiconformal reflec-
tion domain if and only if it is a quasidisk. Thus, by [GM, Thm. 2.22], a
Jordan domain D is a quasiconformal reflection domain if and only if it is
a QED domain. For such a domain D we define its (quasiconformal) reflec-
tion constant K(D) as follows:

K(D) =inf; K(f), (2.15)

where the infimum is taken over all quasiconformal reflections f in dD and
K(f) is the maximal dilatation of f in D. More precisely,

14| k(2)}e
1—[|k(2)]|e’

where k(z) = f,/f; is the complex dilatation of the orientation-reversing ho-
meomorphism f(z). The reflection constant K(D), like the QED constant
M(D), reflects the geometry of D and measures how far D is from being a
disk of half plane (see [Y2]). It is known that for any reflection domain D
the infimum in (2.15) can be obtained by some reflection f (see e.g. [Y2,
Thm. 5.11]). This reflection is called an extremal reflection of aD. 1t is ob-
vious that

K() =

K(D)=K(D*), ‘ (2.16)
and it is also known [ Y1, Thm. 5.1] that
M(D)<K(D)+1. (2.17)

From (2.17), Theorem 2.3, and {Y1, 5.3] we obtain the next corollary.

2.18. CoroOLLARY. Let A, be the wedge domain defined above and let P,
denote a regular n-gon in C, n=3. Then
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M(A) = M(A%) =K(Ag)+1= max{i, —2—};
a 22—«
2n

M(P,)=M(P;)=K(P,)+1= .
n—2

We end this section by posing a conjecture on the relations between the
above constants for general Jordan domains D.

2.19. ConieEcTURE. For any Jordan domain D,
M(D)=K(D)+1; (2.20)
M(D)=M(D*). (2.21)

By (2.16), (2.20) obviously implies (2.21). From Corollary 2.18 and results in
[Y1] we see that (2.20) and (2.21) hold for some special domains.

3. Conditions on f(L)

In this section we give some geometric conditions on f(R) which ensure that
f'e LP(RNQ) for all pe[l,?2).

We first recall that a Jordan domain D is said to be chord-arc if there is a
constant ¢, 1 <c < oo, such that for each pair of points z, we dD

o(z, w)<c|z—w|,

where o(z, w) denotes the shorter arc length along dD between z and w. A
Jordan curve v is said to be regular (in the sense of Ahlfors) if there is a
constant ¢, 1 < c< oo, such that I(yNA(zg, 7)) <cr for all z,e C and r > 0.
It is well known that chord-arc domains are regular quasidisks.

We employ the following terminologies and results from [WS]. A recti-
fiable Jordan curve C is said to be of bounded rotation if the forward half-
tangent exists at every point and the tangent angle 7(s) that it makes with a
fixed direction may be defined as a function of bounded variation of the arc
length s. Furthermore, 7(s) is so determined that its jumps do not exceed 7
in absolute value. We assume that the arc-length parameterization corre-
sponds to the positive orientation of C. The next result is due to Warschaw-
ski and Schober [WS, Thm. 2].

3.1. Lemma [WS]. Suppose G is a chord-arc domain and its boundary C
is of bounded rotation. Let v, (s) and v_(s) be the positive and negative
variation functions of 7(s), respectively, and let

a, =sups(v,(s+0)—v, (s—0)); a_=supg(v_(s+0)—v_(s—0)).
Then, for any conformal mapping f(z) from the unit disk onto G,

27 .
sup S | f(re®®)|Pdo <o for 0<p<m/a,;
0<r<1vo
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2r .
sup S | f(re’®)|"Pdf<o for 0<p<mw/a_.
0<r<ivo

Now we present the main result in this section, which states that under cer-
tain conditions a stronger version of Baernstein’s coniecture holds.

3.2. THEOREM. Suppose that f is a conformal map of Q onto A and that
ACQ. Suppose further that f(0A) has both left and right tangents at each
point and is of bounded rotation. Then

2r
S | f(e")|P db < oo 3.3)
0 .

SJor0=<p<2.

Proof. Let G denote the domain f(A). We observe that G is 4-QED. In
fact, by conformal invariance of modulus and by the fact that A is 2-QED,
for each pair of disjoint compact sets Fy and F; in G we have
mod(Fy, Fy; C) < 2mod(Fy, Fi; A) =2mod(f ~(Fp), f ~(F1); Q)
<4mod(f ~(Fo), £~ (Fy); A) = 4mod(Fo, Fy; G).
Thus G is 4-QED, and it follows from Theorem 2.3 that at each point of

JdG the angle from the right tangent to the left tangent is at least «/2. There-
fore, in the notation of Lemma 3.1,

vi(s+0)—v,(s—0)<m—7/2=7/2

and
' a,<w/2.
Next, by the proof of Theorem 2 in [FHM, p. 125], . *~ chord-arc. Hence
(3.3) follows from Lemma 3.1 for 0 < p <2 as desired. O

3.4. CorOLLARY. Suppose g is a conformal map of a domain G onto A
and that G contains the upper half plane. Suppose further that g(R) has
both left and right tangents at each point and is of bounded rotation. Then

2 p—1
S Ig'(x)lf’(x 2“) dx < oo (3.5)
R

Jfor 0= p<2. Hence g’'(x)e LP(R) for pell,2).

This follows from Theorem 3.2 by mapping the upper half plane to the unit
disk.

4. Conditions on {2

Let w= f(z) be any conformal map from Q onto the unit disk A, z=¢(w)=
S Y(w), and L any straight line or circle. In this section we consider the
following question: What (geometric) conditions on £ will ensure that f’e
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LP(LNQ) for pel,2)? We also consider LP-integrability of f’ with respect
to the area measure on  (cf. [Br]).

We recall that a positive measure o on A is a Carleson measure if there is
a constant N(o) such that ¢(S) < N(o)h for every sector

S={re®:1-h=<r<1,|0—0y|<h}

in A. It is well known (see e.g. [Ga]) that ¢ is a Carleson measure if and only
if for some p (hence all p), 0 < p < oo,

SAlg<z)I”d0(Z> =GCpllelz

for all ge H?, where H” is the standard Hardy space on A and ||g||, is the
HP-norm of g. It is easy to verify that if ge H” then do=|g|’dxdy is a
Carleson measure on A. The argument in this section will be based on this
and the fact that the arc length measure on f(LNQ) is also a Carleson mea-
sure (see [GGJ, Thm. 5.1]).

4.1. THEOREM. If 3Q is a smooth (i.e. C') Jordan curve, then

S |f(2)|P|dz| <o forall 1< p< oo; (4.2)
LNQ

§ |f(2)|]Pdxdy <o forall 2< p<c. (4.3)
0

Proof. Since dQ is smooth, by Zygmund’s theorem (see [Ga, Cor. 2.6, p. 114])

27 . 27 .
sup S exp(—p log|¢’(re”®))dd = sup S |¢"(re™®)|~P df < o

0<r<i1v0 0<r<190

for all p <oo. Thus 1/¢’e H? for all p <. Let do be the arc-length measure
on f(LNQ). By [GGJ, Thm. 5.1], ¢ is a Carleson measure on A. Therefore
1/¢’€ H? yields that

[ 17@leiael= 1007 doon
LNQ A
=< N(o)||1/¢'(W)||B=} < o0 (4.9)
for all 1 < p < oo, This proves (4.2). Similarly, we have
Snlf "(2)|Pdxdy= SAlqb’(w)lz‘P du dv. (4.3)

Thus, (4.3) follows from (4.5) and the fact that |1/¢'(w)|? du dv is a Carleson
measure for all g > 0. O

4.6. THEOREM. If Q is starlike (or close-to-convex), then

S |f(2)|P|dz| <o forall 1< p<2; (4.7)
Lng
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S |f(z)|Pdxdy <o forall 2<p<4. (4.8)
)

Proof. We recall here that if ¢ is a conformal map of A onto 2 and ¢(0) =0,
then  (or ¢) is called starlike with respect to the origin if R[we¢’(w)/dp(w)] >0
for |w|< 1. Similarly, Q is close-to-convex if R[we’(w)/¥(w)] >0 for some
starlike function ¢¥(w). Thus every starlike domain is close-to-convex. As-
sume that ¢(0) =0 and that Q is close-to-convex with respect to the origin.
Then R[Y(w)/(wo’(w))] > 0 for some starlike function ¢ (w). By [Ga, Thm.
2.4, p. 114],

_Y(w) »
F(W)_—_qu’(w) e H?(A) for p<]l.

Since y(0) =0, it follows that 1/¢’'(w) e HP(A) for p <1. Thus (4.4) yields
(4.7), while (4.8) follows from (4.5) and the fact that |1/¢’(w)|9dudv is a
Carleson measure for all g <1. d

REMARK. Inequalities (4.3) and (4.8) were known [Br, Thms. 2 & 3], but
here we give different proofs using Carleson measure.

4.9. THEOREM. Suppose arg ¢’(e'®) exists a.e., and suppose there exist a
Jfinite number of intervals I; C [0, 2] such that UI;=[0,27] and
|arg ¢"(e") —arg ¢'(e™?)| <
Jora.e. 0,0,€l;, j=1,...,n. Then (4.7) and (4.8) hold.
Proof. Asinthe proof of Theorem 4.6, it suffices to show that 1/¢’(w) € H?

forall p<1.
By the hypothesis, there exist constants C; such that

larg¢’(e”’)—Cj|<w/2 a.e. for Oel;.
Applying Zygmund’s theorem [Ga, Cor. 2.6, p. 114] to the function
g(0y=(2/7)(argd’(e”®)—C)), Oel;, j=1,

and to its conjugate g(0), we obtain that 1/¢’(w) € H” for all p <1 as desired.

EI
REMARK. The condition in Theorem 4.9 says that 0 has a tangent almost
everywhere and that the angles the tangents make with the positive real axis
differ piecewise by at most .

4.10. THEOREM. If dQ is of bounded rotation and a_ < w/2 in the sense of
Lemma 3.1, then

S |f'(2)|P|dz| <o for 1< p<3; (4.11)
LN

S | f(z)|Pdxdy <o for 2< p<6. (4.12)
Q
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Proof. By Lemma 3.1, 1/¢’(w) € H? for p <2. Thus (4.11) follows from esti-
mate (4.4), and (4.12) follows from (4.5). O

ReMARkK. By [FHM, Thm. FH] and by the proof of [GGJ, Thm. 5.1], for
any chord-arc curve L the arc-length measure on f(LN{Q) is a Carleson
measure on A. Therefore Theorems 4.1, 4.6, 4.9, and 4.10 still hold if a
straight line L is replaced by a chord-arc curve.

5. A Counterexample
In this section we prove the following result.

5.1. THEOREM. There exist a chord-arc domain Q with RCQ except for
one point and a number p € (1,2) such that

Sm,,lf'(x)l”dxmo (5.2)

Jor all conformal mappings f of Q onto A.

The construction of  is only a small modification of Baernstein’s elegant
example [Ba]. For z; and z, in the plane, let [z, 2,] denote the straight line
segment connecting z; and z,. Fix o, A€ (0, 1/2) (eventually o and A will be
very small). Let

S=[0,—1/V3—-ilU[0,1/V3—i]
and define inductively sets Ty, T;(A), and B(k) as follows:
To=S+i={z+i:zeS8}, B0)={i}, B()=TyN{Sz=a}l;

Tk=Tk_1U[ U (OlkS‘I“b)], kZl;
beB(k)

Bk+1)=T,N{Sz=a**), k=1;

TN = U I[z—A32), 2+2S(z)], k=0.

zeTy

Next, let
T_={z=x+iy:y=—V3x+1,y=1};

T_1A) = U [2—-AF(2), z+A3(2)].
zeT_,
Then Ty (A) can be regarded as a “A-neighborhood” of 7. Define T= T(«, )
to be the closure of U{7;(A): k= —1}. It is easy to see that @=C\T is a
Jordan domain containing the lower half plane. One should note that if A is
taken to be 0 then the above domain € is the same as in Baernstein’s exam-
ple. We shall show that, for sufficiently small o and A, Q is a chord-arc do-
main and (5.2) holds for some p € (1, 2).
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To prove that 2 is a chord-arc domain, we need to show that there is a
constant ¢, 1 <c < oo, such that for each pair of points z, w e 9Q
o(z,w)=clz—w|,

where o(z, w) denotes the arc length along 9Q between z and w.

In what follows we let ¢ and ¢; denote absolute constants whose values
(possibly depending on o and A) may vary from line to line. It is not difficult
to see that dQ is locally rectifiable. It is also easy to see that all bounded com-
ponents of dQ\ R are similar 4-gonal lines with end points on the real axis.
If z, w e 92 are on the same 4-gonal line or on the same unbounded compo-
nent of IQ\ R, then o(z, w) <c|z—w| for some constant ¢, where o(z, w)
denotes the shorter arc length along 0Q2 between z and w. In other cases we
project z and w onto the real axis along shortest arcs on dQ and denote their
projections by z* and w*, respectively. Then z*+# w*, and there exists con-
stant ¢ such that

0(z,z2*)=c|z—z2*|, aw,w*)=clw—w*|, o(z*, w*)<c|z*—w*|,
and
F(z) <|z—z2*| < c3(2); F(w) <|w—w*| = cF(w).
We also see that the inner angle at w* of the triangle with vertices at z, w,
and w* is no less than a constant 8 = 8(A) > 0. Without loss of generality, we
may assume that §(w) = &(z). Then it follows that
[w—w*|<clz—w|; |z2—2%|=sclw—w*|.
If |z*—w*| < 3c|w—w?*|, then

o(z, W) <0(z,2*)+0o(z*, w*)+o(Ww*, w)
< c(|z—z*|+|*—w*|+|w—w*|) = ¢f|z2—W|.
If |z*—w*|>3c|w—w?*|, then
|z—w|=|z*—w*|=|z—2*| = |w—w*|= ¢;]z" —w*|.
Thus it follows that

a(z, w) <c(|z—z*|+|z*—w*|+|lw—w*))
<c|z*—w¥|=clz—w|.

This proves that € is a chord-arc domain.

Next let
bl= l s BI 0 — bl ;
0= 17 Vax (0) ={bg}
V3A
B'(n)={b'=b———a"i:beB for n=1.
() { 1+\/§Aal € (n)}

Then B’(n) C 32 for n=0. For each b e B(n) there is a unique simple path
in T(a) from b to . This path contains exactly one point of each B(k),
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0 < k=< n. We label b by the multiple index J = (jy, ji, ..., Jn) (i.€. let b;=b)
in such a way that j, =0 and j, =1 or 0 (1 < k < n) depending on whether the
path makes a 120-degree turn or continues in a straight line when it passes
through the point in B(X—1). For instance, we have

b(0)=b0=i, b(0,0)=—1—\[—§9(—+ai, b(0’1)=—%+ai.
Then we label the corresponding point b’e B’(n) by the same index J. For
J=(Jos J1s -++» Jn) We write |J|=n and ¢ = jo+j;+--- +j,. We see that ¢ is
the number of turns the path makes from b; to oo.
Let ¢ be a conformal map of Q2 onto the right half plane U= {z: R(z) > 0]
such that

|9(2)|

é(byp)=0 and -
12|

—1 as g > oo,

where

T= T T =tan_l( 3 ) T =tan—1( 3A )
2r— (1475 4+V3r) 7 4—V3\)
Then

1—¢(z)
1+9¢(2)

is a conformal map of Q onto the unit disk. We shall show that (5.2) holds
for this map and some number p e (1, 2).
For each bje B’(n), n= 0, define

my=R(by) =R(b,), zy=f(my),

f(z)=

and
I(b) =I(b)) =[m;—10"%a", m;+102¢."].

Fix r > 0 so that E,=93QNA(b}, r) is connected, and define
E;=3QNA(bS, a'r)

for bje B’(n), n=0. Using the comparison principle and the conformal in-
variance of harmonic measures, one can see that there exists a constant ¢ > (
such that

w(@¢(my), (Ep), U)=w(m, E;,N) =c

for all J=(jy, ji»..-,J,) and all n =0, where w(-) denotes harmonic mea-
sure. Since ¢ is bounded on bounded sets, it follows from standard distor-
tion estimates that

1—|z)|=|f(ED|=|o(E))| = R(d(m));

1—|z,]|
[1(b))|

(5.3)

|f(x)|= for x e I(b)).
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Here we use |E| to denote 1-dimensional measure of set E; the notation
A= B means that ¢c~'4 < B < cA for some constant c. Thus, by (5.3),

> S |f'(x)|dx=c 3 |p(E))|- (5.4
bje B'(n) YI(b)) ||=n

To prove (5.2) we need the following important estimates. Let Qf be the A-
shape domain

0=C\ X [z2=A3(2), 2+AJ(2)],
zeTHUT_,

where Ty and 7_, are defined as above. Let ¢§ be a conformal map of 2 onto
the right half plane U such that

$3(be)=0 and "ﬁl‘;‘l‘f” 1 as oo,
Deﬁne ﬁOs Bl € (0’ OO) by
b fim [PHQGAND L 10b@) = @b 1B

RV S P2 VATK ] L oV |z I3

We see that when A =0, Qf is the same as the “fork domain” in [Ba, §2].
Hence, by [Ba, Thm. 2], we have the following lemma.

5.5. Lemma. If A>0and o> 0 are sufficiently small, then
Bg+B{>2".
The main idea in the proof of [Ba, (2.5)] is the following estimate about har-

monic measures. In our case, it follows from [Ba] via normal families, but
we also give a direct proof which is a little different from the one in [Ba, §3].

5.6. LEMMA. Given e > 0, there exist a, A> 0 such that for T=T(a, M), all
bje B'(n), and n=|J|=0,

[B(E))| = c(e™ " a"BE B, (5.7
where J=(jo, j1s s Ju) and t = jo+j1+ -+ + .

Proof. For J=(jg, Ji5---» Jn), define
I'y={z:|z—bj|=a"""?} and
Q;=QNA(D}, " PN[A(DY,0), ") UA(D, 1), "),
and let 7 be a linear or conjugate linear conformal map of Q; onto @, with
T;(b))=by, T,(my))=my, TyT))=Ty, T,;(E))=E,.

Recall that ¢ is a conformal map of @ onto U, the right half plane, with
¢(by)=0. Let
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_ inf{{¢(2) —6(b))|: €T}
J inf{|p(z)]:z€Ty)

Then the function
$(T;'(2)) —d(b))
6J ‘
—d(T74(2)) + (b))
6y ’

s T linear,

o5(z)=

T; conjugate linear,

maps g into U with

¢5(b3) =0, |D(E))|=b;|¢;(Ep),
and

inf{|¢;(z)|: z€e Ty} =inf{|¢(z)|: 2€ T} ~ a2

Here A~ B denotes that A/B—1as a—0.
Fix A > 0 so small that Lemma 5.5 holds for all @ < ag = (A, €). We claim
that, uniformly in J and uniformly in z € Q,,
lim ¢;(z) = ¢§(2) (5.8)

a—0

in spherical metric. Here ¢3(z) is a conformal map of Qfj onto U defined
above.

Accepting (5.8) for now, we have
9(E, )| 18,7, 0 E0)| iInf{|¢(z)—b(b(y ;) 2€T ), 0}

OEN  |és(Eo)] inf{j¢(z) —p(b))|: z€ T
_ 190 jni 0B inflés(2) = 6Ty (biy, j,, ) 2€ T7 (L4, i)
|6, (Eo)| inf{|¢;(z)|: €T}

- e “a’Bg, Jns1=0,
T e a"B], Jps1=1.
By induction on J, this yields (5.7) and completes the proof of Lemma 5.6
except for the proof of (5.8).
To prove (5.8), choose r’ > r so that the components of IQNA(b}, r’) are

three nontrivial arcs Ej, E{, and E3. Then simple comparisons yield the har-
monic measure estimates

0<CISw(m0,EJf, Q)SCz, (59)
with ¢; and ¢, independent of «, and
w(mg, ToUT g,0)UT 0,1y, Qo) < 30!, (5.10)

Together (5.9) and (5.10) show there is a compact set K C U such that ¢,;(m,) €
K for all J and all small «. Also, (5.9) and (5.10) show that in the spherical
Hausdorff metric, ¢;(3Q24y) — dU uniformly in J as a — 0. Now (5.8) follows
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easily from Courant’s theorem [Ts, p. 383] on the continuity of conformal
mappings to varying domains.
It follows from (5.4) and Lemma 5.6 that

> | 1rlax= e an@s+ a1
bje B'(n) YI(b)
=c(qa)™, (5.11)
where, by Lemma 5.5,
g=1(B5+BNe 1" >2

when e > 0 is sufficiently small. By (5.11) and Hélder’s inequality, one sees
that there is a number p, € (1, 2) such that

S |f(x)|Pdx=, py<p<2. (5.12)
RNA

Finally, to obtain a domain described in Theorem 5.1, we still need 10
modify the domain Q constructed above. For this we define

I'(bj) =I'(bj) =[mj—a"37"%, mj+a"37"]

for J=(Jgo, j1, ---» Jn), n=1.Then I'(b;) contains all intervals I(b,-) for index
J’ such that the path from b, to o along T'(«) passes through b;. Using (5.4)
and (5.7), an argument similar to the above shows that

S | f'(xX)|Pdx=00, po<p<2 (5.13)
I'(bynQ

for all J, where pye (1, 2) is the same number as in (5.12).

Next we define b, € B(n), n=1, inductively as follows. Let b, be the left-
most point in B(1). Define b; to be the leftmost point in B(j +1) such that
the path from b;; to oo does not pass through any of the points by, b,, ...,
b;. Then I'(b;) N1'(by) =0 for j + k, and QXN R is contained in the closure
of U{I'(b,): n=1}. Fix pye(pg,2). By (5.13) we can choose compact sets

G, CI'(b,)NQ2, n=1,
such that

S |f(0)|Pdx>1, n=1, pj<p<2. (5.14)
G,

For n=1 define d,, = d(G,,, Q) and
Q,=QU{z=x+iy:xel'(b,),y<d,},
where d(-, -) denotes the Euclidean distance. Let

Q.=UJQ,

n=1
It is easy to see that Q, is a Jordan domain and that 8Q, N R = {1/V3)}.

Furthermore, since Q is chord-arc, it is also not difficult to see that Q. is
chord-arc.
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Let
JniQ,—=A and fi:Q.—-A

be conformal maps with f,(f ~1(0)) =0 and f.(f ~!(0))=0. Since Q C Q,C
Q., for x e G, we have

d(x,092,)<3d(x,0Q) and d(x,dQ,)=d(x,0Q,);
by Schwarz’s Lemma and Koebe’s -theorem,

| fi()| = 4 fu(x)] = & | ()]
Thus, by (5.14),

| il dxz (48)77 % Slf(x)|”dx %
RN

n=1
and
Si& LP(RNQ,) for pelpg,?2).

Finally, it is easy to see that g’¢ LP(RNQ,) for any conformal map g of
1, onto A and each p e[ pg,2). This completes the proof of Theorem 5.1.
O
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