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for Smooth Crossed Products

LARRY B. SCHWEITZER

Introduction

By a remarkable theorem of Dixmier and Malliavin {DM, Thm. 3.3], it is
known that the convolution algebra C;°(G) of compactly supported C -
functions on a Lie group G satisfies the factorization property—namely, that
every set of C®-vectors E for the action of G is equal to the finite linear span
CZ(G)E. In this paper, we replace C:°(G) by the smooth crossed products
for transformation groups G X S(M) defined in [S1]. We define an appro-
priate notion of a differentiable G X §(M)-module, which generalizes the
notion of C®-vectors for actions of Lie groups. (This definition was first
introduced by Du Cloux [D1; D2]). Under the assumption that the Schwartz
functions S(M) vanish rapidly with respect to a continuous, proper map
g: M — [0, ), we then show that G X S(M) satisfies the factorization prop-
erty—namely, that any differentiable G X §(M)-module E is the finite span
of elements of the form ae, where ae GX 8(M) and e€ E. In the course of
doing this, we also show that if a Fréchet algebra A has the factorization
property, then the smooth crossed product G X A4 does also.

Other aspects of the representation theory of the smooth crossed products
G X 8(M) are studied in [S2]. I would like to thank Berndt Brenken for a
pleasant stay at the University of Calgary, where I wrote the first draft of
this paper.

1. Differentiable Representations and Multipliers

We define what it means for an algebra and a representation to be differen-
tiable. We shall use representation and module terminology interchangeably
throughout this paper. Everything we do will be for left modules, though
similar statements are also true for right modules.

DEerFINITION 1.1. By a Fréchet algebra we mean a Fréchet space with an al-
gebra structure for which the multiplication is jointly continuous. (We do
not assume that Fréchet algebras are m-convex.) Let 4 be a Fréchet algebra.
By a Fréchet A-module we mean a Fréchet space E that is an A-module for
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which the map (a, e) ~ ae is jointly continuous. An A-module E is nonde-
generate (differentiable) if {v e E'| Av= 0} = {0} and the image of the canon-
ical map AR E — E is dense (onto) [D2, Déf. 2.3.1]. (All tensor products will
be completed in the projective topology.) We make the same definitions for
right Fréchet A-modules. If A is differentiable both as a left and right A4-
module, then we say that the Fréchet algebra A is self-differentiable.

(In [D2, Déf. 2.3.1], a self-differentiable Fréchet algebra is called a “differ-
entiable Fréchet algebra”. However, this terminology would suggest that the
algebra has a derivation acting on it, or that it is a set of C “-vectors for the
action of a Lie group. This is not the case; any C*-algebra is a “differentiable
Fréchet algebra” since any element of the algebra can be written as a linear
combination of four positive elements, each of which has a square root. So
I prefer to say “self-differentiable” instead of “differentiable”.)

If E is nondegenerate, we let E;(A) be the image of the canonical map
AR E —E. Then E,(A) inherits the quotient topology from A®E, mak-
ing E(A) a Fréchet A-module. When A is self-differentiable, the A-module
E.(A) is always differentiable [D2, Lemme 2.3.4].

If G is a topological group, we say that a Fréchet space F is a continuous
G-module if G acts on E by continuous automorphisms and if, for each
e € E and each continuous seminorm | || on E, the map g+~ ||ge|| is contin-
vous. If G is a Lie group, we say that F is a differentiable G-module if the
action of G on E is differentiable in the usual sense.

We say that a self-differentiable Fréchet algebra A satisfies the factoriza-
tion property if every differentiable A-module E is the finite span of elements
of the form ae, where a € A and e € E. Note that in particular A will be the
finite span of products of elements of A. Note also that if A4 is a unital Fre-
chet algebra (this corresponds to the case of the group algebra of a discrete
group), then A is self-differentiable, every A-module is differentiable, and A
satisfies the factorization property.

If G is a compact Lie group and A = C*(G) is the convolution algebra of
C* functions on G, then an A-module E is differentiable if and only if the
action of G on FE is differentiable (see Theorem 5.3 below or [D2, Exemple
2.3.3]). It follows immediately from [DM, Thm. 3.3] that Schwartz func-
tions $(R) on R with convolution multiplication is a self-differentiable Fre-
chet algebra, since the canonical map S(R)&®S(R) — S(R) is onto. (Here ®
denotes the algebraic tensor product.)

ExaMpLE 1.2. We give an example of a self-differentiable Fréchet (in fact
Banach) algebra without the factorization property. Let A = /;(Z) with poini-
wise multiplication. Then c;(Z) is dense in A4, so A is nondegenerate. Since
A®A=1,(Zx1Z), and the canonical map =: AR A — A is given by evalua-
tion along the diagonal, A is self-differentiable.

A quick calculation shows that

lex¥liz=slelll¢li and [e+d|li2=2(eli2+1¥]i2)-
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Hence the algebraic span A2 is contained in /,,,(Z). Since /,,,(Z) # A, the
algebra A does not have the factorization property. Similar arguments show
that the Banach algebra /,(Z) with pointwise multiplication is an example of
a nondegenerate but non-self-differentiable Banach algebra.

DEerFINITION 1.3. We say that T is a multiplier for a Fréchet algebra A if T
acts as a continuous linear operator both on the left of A and the right of A,
and the left and right actions commute. It follows that, for every seminorm
| |lo on A, there is some C > 0 and another seminorm || ||, on A such that

max(llTalld’ ”aT"a’) = C"a“nn aeA.

ExampiE 1.4. In general, if T is a multiplier and E is a nondegenerate A-
module, the action of 7 on A does not extend to an action on E. For ex-
ample, let A be Schwartz functions $(R) on R with pointwise multiplication,
and let 7 be multiplication by the function r2. Let E be the nondegenerate
A-module Cy(R) with action of A given by pointwise multiplication. (Here
Co(R) denotes the set of continuous functions on R which vanish at infin-
ity.) Let f be any continuous function which vanishes like 1/r2 at infinity on
R. Then fe E and Tf does not vanish at infinity, so 7f ¢ E.

THEOREM 1.5. Let A be a self-differentiable Fréchet algebra and let E be a
differentiable A-module. Let T be a multiplier for A. Then there is a unique
action of T on E as a continuous linear operator, which is consistent with
the action of A on E.

Proof. Since T is a continuous linear map from A to A4, T also gives a con-
tinuous linear map of the projective completions 7°: ARE > ARE [Tr,
Prop. 43.6]. Since F is differentiable, to see that this map induces a contin-
uous linear map on E it suffices to show that T leaves the kernel of the ca-
nonical map 7: AQE — E invariant. Assume that «(5)=0 for e AQE.
Let be A. Then

bn(Tyn) = w(bTn) = bTw(n) =0,

since bT € A. Hence w(Ty) € E is annihilated by every element of A. Since E
is a nondegenerate A-module, it follows that w(7%) = 0. Hence T leaves the
kernel of 7 invariant. O

2. Smooth Crossed Products

We recall the definitions of our smooth crossed products from [S1]. First, let
H be a Lie group and let M be a locally compact space on which H acts. We
say that a Borel measurable function o: M — [0, o) is a scale on M if it is
bounded on compact subsets of M. We say that a scale ¢ dominates another
scale v if there exists C, D> 0 and d € N such that v(m) < Co(m)?+ D for
me M. We say that ¢ and vy are equivalent (0 ~+) if they dominate each
other. We may always replace a scale ¢ with the equivalent scale 1+ o0, so
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that we lose no generality by assuming ¢ =1. From now on, we will assume
this. If 4 e H, define o,(m) = o(h~'m). We say that o is uniformly H-trans-
lationally equivalent if for every compact subset K of H there exists Cx >0
and d € N such that

o(m) < Cra(m), meM, hek. 2.1)

If o is a uniformly H-translationally equivalent scale on M, we may define
the H-differentiable a-rapidly vanishing functions S$§;(M) by

SH(M)
={fe Co(M), f H-differentiable |0 ?X "f|, < o0 and X "fe Co(M)},

where X" ranges over all differential operators from the Lie algebra of H,
and d ranges over all natural numbers. We topologize $7;(M) by the semi-
norms || /|4, =|0?X "f |- Then 8 (M) is a Fréchet *-algebra under point-
wise multiplication, with differentiable action of H [S1, §5].

Next, let G € H be a Lie group with differentiable inclusion map ¢: G- H.
Let w=1 be a scale on G. Let E be any Fréchet space. We define the differ-
entiable w-rapidly vanishing functions 8“(G, E) from G to E to be the set of
differentiable functions ¢ from G to E such that

”‘P”d,y,m = S ||°3dX7¢(g)||171 dg < oo, (2.2)
G

where X7 is any differentiable operator from the Lie algebra of G acting by
left translation, || |, is any seminorm for E, and d is any natural number.
We topologize $“(G, E) by the seminorms (2.2).

We say that the action of G on a G-module E is w-fempered if for every
m e N there exists C>0, de N, and k€ N such that

lecg (@)l im = Cor(g)lellx» e€E, geG.

Simple arguments show that every closed G-submodule and every quotient
of a tempered G-module is again a tempered G-module. We say that w is
subpolynomial if there exist C >0 and d € N such that

w(gh) < Ca(g)w(h)?, g heG.

The inverse scale w_ is defined by w_(g) =w(g™!). We say that w bounds
Ad on H if there exist C >0 and d € N such that

|Ad,| = Cu(g), geG,

where || Ad,| is the operator norm of Ad, as an operator on the Lie algebra
of H. Finally, if w is a subpolynomial scale on G such that w_ bounds Ad
on H, and if o satisfies

o{gm) =< Cuw(g)%(m), geG, meM (2.3)

for some C>0 and d,/ € N, then we say that (M, o, H) is a scaled (G, «)-
space.
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THEOREM 2.4 [S1, Thm. 2.2.6, Thm. 5.17]. Let w be a subpolynomial scale
on a Lie group G such that w_ bounds Ad on G. Assume that the action of
G on a Fréchet algebra A is continuous and w-tempered. Then 8°(G, A) isa
Fréchet algebra under convolution, which we denote by G X“A. Moreover,
if (M,a,H) is a scaled (G, w)-space then the action of G on S§ (M) is dif-
ferentiable and w-tempered. In particular, G X“8¢;,(M) is a Fréchet algebra
under convolution.

See [S1, §5] or [S2] for examples.

3. Differentiable Scales for M

THEOREM 3.1. Every uniformly H-translationally equivalent scale ¢ on M
is equivalent to an H-differentiable scale 6 on M for which there is some
d e N such that, for every differential operator X" from the Lie algebra of
H, we have

(3C,>0) X"6(m)=<C,5%m), meM. (3.2)

If o is continuous to begin with, then the scale 6 produced in the proof is
continuous also.

Proof. Let o be any uniformly H-translationally equivalent scale on M. Let
K be a compact neighborhood of e in H such that

a,(m) < Ca(m)?, meM, (3.3)
and
a(m) < Cog(m)?, meM,

for every ge K. Let o e C°(H) be any nonnegative function with support
contained in K such that | ¢(g) dg =1. Define

5(m) = S o(g)o,(m) dg.

Then 6(/m) =1 and & is Borel measurable on M. If ¢ is continuous, then tak-
ing limits inside the integral shows that & is also. We show that ¢ ~ 6. By
(3.3), we have

3m) = | p(&)Colm)?dg=Co(m)’,
so o0 dominates ¢ (in particular, & is bounded on compact sets). Similarly,
o(m)"! = S o(g)o(m)"dg =< S 0(8)Cay(m)dg = C"5(m), (3.4)
so a(m) < Cé%m).

We show that & is differentiable, and that the derivatives satisfy the
bounds (3.2). We have
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X75(m) = | X (8)0y(m) dg.

Hence 6(m) is an H-differentiable function on M. Using (3.3), we bound the
derivative

X 75(m)| < S|X7¢(g)|Ca(m)d dg=C,Co(m)°.
Since ¢ dominates o (see (3.4)), we have (3.2). O

We say that a scale o: M — [0, ) is proper if the inverse image ¢ ~!(K) of
every compact subset K of [0, o) is relatively compact. The property of being
proper is preserved under equivalence.

PRroposITION 3.5. Let ¢ be a continuous uniformly H-translationally equiv-
alent H-differentiable scale on M with property (3.2). Then o is a multiplier
on 8(M). If ¢ is proper then there is a natural continuous algebra homo-
morphism S§(R) — 8%, (M) given by ¢ - @-o.

Proof. To see that ¢ is a multiplier on S§; (M), let fe 8§ (M). Then
6’ X (0/)||lw = [|l0'(X0) f+ (XN = [|6'Cof |00+ |0 T XS || oo

Similar arguments show that for higher derivatives we also have [|6'X ¥(6./)]
bounded by some linear combination of seminorms of f. The function
X7(af) is a continuous function on M, since ¢ and f are continuous and
H-differentiable. Since for each / € N and « the function ¢'XYf vanishes at
infinity (see “Added in proof” below or [S2, Proof of Prop. 5.2]), and since
| X Yo| < Cwod by (3.2), we also have X Y(af) € Co(M) for all v. Hence o€
Sz (M) and o is a multiplier on 8§, (M).

For the second statement, it suffices to show that the seminorms of ¢co in
Sz (M) are bounded by linear combinations of seminorms of ¢ in §(R), and
also that X Y(¢-0) € Co(M). We apply the chain rule. If X is in the Lie alge-
bra of H, then

X(poo)(m)=(p’e0)(m)Xo(m).
Thus

lo'X 20|l = sup|a(m) X (p-0)(m)|
meM

< sup |a’go’(o(m))Co(m)d| < sup]r’go'(r)Crd|,
meM reR

where the last expression is a seminorm of ¢ in S(R). Since ¢ is proper and
r9o’(r) vanishes at infinity,
| X (po0)(m)|=]|¢'(c(m)) Xo(m)| <|Co(m)?e’'(s(m))|

implies that X(¢e°0) € Cy(M). Similar arguments work for higher deriva-
tives. [
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EXAMPLE 3.6. We consider the case when M =R"”, and o(F)=rZ+---+r2
Then o is a differentiable scale on $(R"). The map S(R) — §(R") in Proposi-
tion 3.5 is given by o(F) = (r{+---+r?). The image of this map consists
of radially symmetric functions on R”. In this sense, a differentiable scale
can be regarded as a generalized “radial” coordinate for M, and the image
of $(R) in 8% (M) consists of functions that depend only on this radial co-
ordinate.

4. Factorization Property for Sg; (M)

We recall some of the functions on R defined in the proof of the Dixmier-
Malliavin theorem [DM]. Let A= (Ag, Ay, ..., Ag, ...) be any subsequence of
1,2,...,2% ...). For xeR, let

o 2
or(x) =kIIO<1 + —}2—) X (x) =gy (x) ™!
= k

We show that ¢, is a well-defined function from R to [1, o). For £ sufficiently
large we have x? < A%, so

2
X 1
1+ <1l+—
A%{+p 2P

for all p e N. Since

log(<1+%><l+ ;) (1+ 211,) . ) 2 10g(1+ le) p§0 211, <o

we see that ¢,(x) is well-defined for any x e R.

It is shown in [DM, §2.3] that yx, is in S(R). Also, it is shown in the proof
of [DM, Lemme 2.5, pp. 309-310] that for any sequence (B, B3y, --.) of posi-
tive numbers, there exists a sequence («g, «;, ...) of positive numbers and a
sequence (Ag,Aq, ...) as above such that o, occur in the expansion

(o]

2

or(x) = E apX "
n=0

and satisfy
< min(B,, 1/n%). 4.1)

We use this to show that Sz (M) has the factorization property.

THEOREM 4.2. Assume that o is continuous and proper. Then, for every
Junction € 8§y (M), there are 0, ¢ € 87, (M) such that y = 0¢.

Proof. Let Y € 8f(M), and let o be an H-differentiable scale as in Theorem
3.1. Define

My ,=max|e D2 xy|,.
lvl=!?

Choose A= (Ag, A}, ...) so that the sequence (g, oy, ...) satisfies
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[oe] 4

> Mg, ,<oo, d,leN. 4.3)
n=0 )
Recall that ¥¥_oa,x" is the expansion for ¢,. Define @, = ¢pyo0: M —R.
Then the series for @,y converges absolutely in 8§ (M) to an element of
8§ (M). For if |y| </, we have

odxv( > anazn)w < S alloX (02w
n=k

© =

D”UdX.Glg. . .X52n0X32n+1¢||m

A
Mg

(84

n
n=k  |Bi|+-+-+|Brns]=!

<Y a,DCmax|c%¥ e~ 'XPy[, (by (3.2))
n=k [8|=1

<> a,DCM,,;, (sinces*"'<qg?"), (4.4)
n=k

By our constraint on the «;,s (4.3), the last sum tends to zero as k — oco. Hence
@ ¥ converges to some well-defined element ¢ € 8, (M). Let 6 = x,00. By
Proposition 3.5 and since x, € S(R), we know 6 € 8§ (M). Since x,(x) =
o5 '(x), we have 0(m)@,(m) =1 for each m e M, where 1 denotes the identity
multiplier on 87, (M). It follows that §(m)¢(m) =1y (), and the theorem
is proved. ]

The following corollary was part of the motivation for this paper.

CoRroOLLARY 4.5. If ¢ is continuous and proper, then the Fréchet algebra
Sz (M) is a self-differentiable Fréchet algebra.

Proof. This follows directly from Theorem 4.2. Ll

THEOREM 4.6. Let E be any differentiable representation of S8 (M), and
assume that o is continous and proper. Then, for every ec E, there exist
0 € 84 (M) and fe E such that e=0f. In particular, S§;(M) satisfies the fac-
torization property.

Proof. We proceed very much as in the proof of Theorem 4.2. Let e€E,
and let ¢ be an H-differentiable scale as in Theorem 3.1. Since E is a differ-
entiable 8§ (M)-module, 02" is a well-defined element of E for each n (see
Proposition 3.5 and Theorem 1.5). Define

Mm,n = ”02"3”"1’

where || ||, is an increasing family of seminorms for E. Choose A = (),
A1, ...) so that the sequence («y, @, ...) satisfies

> ayM,, , <o, meN. 4.7
n=0
Recall that ¥ _, o, x2" is the expansion for ¢,. Define @, = ¢)o0. Then the
series for @g,e converges absolutely in E to an element of E. For if meN,
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[0}
( > an02">e
n=k

By our constraint on the «,,s (4.7), the last sum tends to zero as k —oo. Hence
@ e converges to some well-defined element fe E. The remainder of the
proof is just as in Theorem 4.2. ]

we have

e e] oo

é E D‘n”‘fzne“ins E O‘fn]‘lm,n- ’ (48)

m n=k n=k

5. Factorization Property for the Crosseq Product

DEFINITION 5.1. Let w be a scale on a Lie group G, and let A be a Fréchet
algebra on which G acts by algebra automorphisms o,. Assume that we
have representations of G and A on a Fréchet space E such that the action
of G on E is w-tempered and differentiable, the action of A is differentiable,
and the covariance condition

glae)=oa,(a)ge, geG, a€A, eck, (5.2)

is satisfied. We call such a representation an w-tempered differentiable co-
variant representation of (G, A).

THEOREM 5.3. Let G be a Lie group with subpolynomial scale « such that
w_ bounds Ad on G, and let A be a self-differentiable Fréchet algebra with
an w-tempered, differentiable action o, of G. Assume that we have an w-
tempered differentiable covariant representation of (G,A) on a Fréchet
space E. Then we may integrate this representation to obtain a differenti-
able representation of the smooth crossed product GX“A on E.

Conversely, if we have a differentiable representation of G X“A on E, then
there is an w-tempered differentiable covariant representation of (G, A) on
E whose integrated form gives back the original action of GX“A on E. It
Sfollows from the proof that the smooth crossed product GX“A is a self-
differentiable Fréchet algebra.

Proof. To simplify notation, we let B= G x“A. We define an action of the
algebra B on E by

Fe= SG F(g)(ge)dg. (5.4)

We estimate

I1Felle= | I1F@zelads
< g |F(&).=llgellx dg (E is a continuous A-module)
G

<C S |E()]|mw(g)|lell.dg (E is a tempered G-module)
G

SC”Flll,rn||e|lna (55)
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where ||F|; , are seminorms for B. So (5.4) is well-defined and continuous.
By the covariance condition (5.2), it follows that (F, % F,)e = F|(F,e), so E
is a continuous B-module.

We prove that E is a nondegenerate B-module. Let 7: BRE — E be the
canonical map. Let ¥, € C°(G) be a sequence of positive functions such that
supp ¥,, —» 0 and jG ¥,(g)dg=1. Let ¥,&®a denote the function g~ ¥, (g)a
in B. To see that E is a nondegenerate B-module it suffices to show that
(¥, a)e converges to ae in E for every ae A and ee F, since then 7 will
have dense image and the null space for the action of B on E will be con-
tained in the null space for the action of 4 on E. We estimate

(¥, @are—aels= | ¥,(e)lage—aelqde

< sup |age—ae|q4
gesupp ¥,

<l|la|l,, sup [ge—ell, (5.6)
gesupp ¥,

which tends to zero by the strong continuity of the action of G on E. Hence
E is a nondegenerate B-module.

Now we show that 7: BQ E — E is onto. Since G acts differentiably on E,
any element e is a finite sum of elements a,(€) € E, where fe C°(G) and
ée E [DM, Thm. 3.3]. Thus it suffices to show that elements of the form
ay(€) are inAthe image of .

Let #: AQE — E be the canonical map for the action of 4 on E. Since #
is onto by assumption, using [Tr, Thm. 45.1] we can write

~=7”r( > )\na,,@e,,),
n=0
where |A,|<1, @,—0in A4, and e, — 0 in E. Then
Qff(é-)‘_“ozf’ﬁ-< E )‘nan®en>
n=0
= 2 Aoy (@(a,®ey)). (5.7)
n=0

Since G acts differentiably on A, the function b,(g) = f(g)a,(a,) is in B. A
simple calculation shows that

qﬂﬂ%@%»5£ﬂm@%%mg

=&ﬂ@%@M@A@=%%=M%®%L (5.8)

By the product rule for differentiation, and since fe C°(G), we have
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” bn”m,'y,d= SG w(g)m”X’Ybn(g)“d dg

ﬂG ()" | X V(f()org(an)l|a dg

<C sup | XPa,(a,)]la (w is bounded on compact sets)
|8{=1v|, gesupp(f)

<C sup |og(ay)|r (G actsdifferentiably on A4)
gesupp(f)

=Dl an]|;-

So b, = 0in B as n — . Hence the sum

E )‘nbn®en
n=0

converges absolutely in B®E, and by (5.7) and (5.8) its image under = is
as(€). We have proved that 7 is onto. Thus E is a differentiable B-module.

Proof of the converse: We assume tt}at E is a differentiable B-module.
Then E is a quotient of the B-module BQ) E, where B acts on the left factor.
If we let G act on B by

(gF)(h)=a,(F(g~'h)), g heG, FeB, (5.10)

then the corresponding action of G on B®E on the left factor gives rise to
an action of G on the quotient E. Since the action (5.10) of G on B is both
differentiable and tempered, so is the action of G on E.

Similarly, the algebra A4 acts on B via

(aF)(h)=aF(h), aceA, FeB, hed. (5.11)

Using our hypothesis that A is a self-differentiable Fréchet algebra, we show
that the action (5.11) makes B into a differentiable A-module. The action
(5.11) makes the L! w-rapidly vanishing functions L{(G, A) [S1, §2] into an
A-module. By [Sc, §5], we may write L{(G, A) = LY(G)® A. Since

ARLY(G, A) = LY(G) QAR A,
and since the map AX A — A is onto, we see that the canonical map
ARL{(G, A) - LY(G, A)

is onto (the projective tensor product of surjective maps is surjective [Tr,
Prop. 43.9]); hence LY(G, A) is a differentiable A-module. It follows from
[S1, Thm. A.8] that if a G-module F is a differentiable A-module such that
the action of G on F commutes with the action of A on F, then the set of
C*-vectors F~ for the action of G is also a differentiable A-module. Thus
B is a differentiable A-module, since it is the set of C ®-vectors for the action
(gF)(h)=F(g~'h) of G on LY(G, A).
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Because AX B — B is onto, the map AR®BXE — BXE is onto [Tr, Prop.
43.9]. Hence B®E is a differentiable A-module and so, by passing to the
quotient, we obtain a differentiable action of 4 on E.

To see the covariance of the actions of G and A4 on E, it suffices to notice
that (5.10) and (5.11) give covariant actions of G and A4 on B. Also, if we
integrate (5.10) and (5.11) via formula (5.4), we get B acting on B by left mul-
tiplication. So the integrated form of our covariant actions of G and A on E
will give back the original action of B on E. This proves the converse.

Since we saw that (5.10) and (5.11) give an w-tempered differentiable co-
variant representation of (G, 4A) on B, we know by the first part of the theo-
rem that B is differentiable as a left module over itself. To see that B is self-
differentiable it suffices to show that, for every nonzero be B, b* B+ {0}.
Since A is nondegenerate, find a € A such that ba # 0 and let ¥,,e C°(G) be
as above. Then b*(¥,®a)— ba in B, so there must be some n such that
b*(¥,Qa)+0. J

THEOREM 5.12. Let G be a Lie group with subpolynomial scale » such that
w_ bounds Ad on G, and let A be a self-differentiable Fréchet algebra with
an w-tempered, differentiable action of G. If A satisfies the factorization
property, then G X“A is self-differentiable and satisfies the factorization

property.

Proof. Self-differentiability follows from the previous theorem. Let E be a
differentiable (G X“A)-module. Then there is an associated covariant repre-
sentation of (G, A) on E by the previous theorem. Since G acts differentiably
on E, we may apply [DM, Thm. 3.3] to see that E is the finite span of «y(e),
where fe C(G) and e € E. By assumption, every e € E may be written as a
finite sum of elements of the form aé, where a e A and €€ E. Define b(g) =
S(g)ag(a). Since G acts differentiably on A, be GX“A. Also, bé= as(aé),
so every element of E is a finite sum of elements of the form beé. [l

COROLLARY 5.13. Let (M, 0, H) be any scaled (G, w)-space, with ¢ a con-
tinuous, proper scale. Then the smooth crossed product G X°8f;(M) is self-
differentiable and satisfies the factorization property.

Proof. By Theorem 4.6, we know that Sf;(M) satisfies the factorization
property. Hence, by Theorem 5.12, the smooth crossed product G X“ 8, (M)
does also. D

It follows that many of the examples of smooth dense subalgebras of trans-
formation group C*-algebras in [S1, §5] satisfy the factorization property.
In particular, see Examples 5.14, 5.18-20, 5.23-24, and 5.26 if M is com-
pact. See also [S2, §10, §18, Examples 3.15, 12.25].

Added in proof. We include the portion of the proof of Proposition 3.5
which is cited from [S2]. It suffices to show that ¢9fe Cy(M) if fe S§(M).
Let Cy=|l09 ! f||o. Using fe Co(M), let K be a sufficiently large compact
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subset of M such that | f(m)|<e“*'CJ for m¢ K. Then |¢%f(m)|<e for
m ¢ K as long as o(m) < Cy/e. But if a(m) > C,/e then

|adf(m)| < eCd“IIIGdHf”m: €,

so ¢?f vanishes at infinity.
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