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1. Introduction

Wavelet decompositions have found a number of applications in recent years,
particularly in harmonic analysis, quantum field theory, and signal analysis.
In close parallel with this new development has been the construction of
bases of wavelets satisfying regularity and decay conditions of one kind or
another [1; 5; 10; 12]. Now there seems to be a growing interest in wavelet
decompositions tailored to specific problems - a basis of wavelets for a space
of functions defined by some differential constraint, for example. Our own
interest is in constructing such orthonormal bases in the space of vector
fields with vanishing divergence. Such bases should be useful in several con-
texts, including the study of incompressible fluids [7].

Since the divergence-free condition is invariant with respect to scaling
and translation, one might suppose the construction of such wavelets to be
straightforward. Surprisingly enough, this does not seem to be the case,
except in two dimensions [3]. The 3-dimensional case is already a compli-
cated case - far from trivial - and we solve the problem here. We construct a
divergence-free wavelet orthonormal basis, where the wavelets are class cN
with exponential decay - ideal for many applications.

We are currently purusing the 4-dimensional case because we expect space-
time wavelets satisfying the continuity equation to be useful in the analysis
of conserved currents. As far as other directions are concerned, one can
consider other regularity and decay properties. For example, our method of
construction may extend to divergence-free Meyer wavelets (i.e., wavelets
with Fourier transform in Cg°), but we have not pursued that possibility.
Nor have we considered the construction of C§¥ wavelets with vanishing di-
vergence. Lemarié has constructed non-orthonormal divergence-free wave-
let bases of compact support [11].

Let  be a finite index set, and for each 7 in 7 let ¥, be a vector-valued
function defined on 3-dimensional real space. For a =(r,n, ) in Zx Z3x I,
the wavelet ¢, is defined by
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Yo (x) =2%"24,(2"x—n).

The wavelet ¥, ¢, 1)(X) = ¥,(x) is said to be a “mother wavelet” of {y(x)}.
Thus, sets {y,,} of wavelets are generated by scalings and translates of a finite
set of real valued functions ¢,. If « = (r, n, #) then we will write r = r(x),
n=n(a), and ¢ =t(c). The length scale of a wavelet is 277®; r=0 is the
unit scale; wavelets of the same r value have the same scale. If the wavelets
are in an inner product space of functions, s, the set of wavelets is said to
form a basis if they are linearly independent and their span is dense in .
They form an orthonormal basis if they are in addition orthonormal.

Our construction in three dimensions is closely related to a 4-dimensional
gauge field construction, due to Federbush and Williamson in [6] and [8].
There one implicitly arrived at the set of vector wavelets {A4,} and 2-form
wavelets { B,}. We are using the notation

B,=dA,=VXA,.

(Properly we should define B, =2""® dA4_, but we suppress this normaliza-
tion factor.) The {B,} wavelets implicit in [8] satisfied:

(1a) The B, are interscale orthogonal with respect to the inner product
(By,By)= SBI -B.

That is, if B; and B, are not of the same scale, their inner product is
zero; the dot product is that of 2-forms.

(Ib)y B, is C'7e.

(Ic) B, has exponential fall-off.

(1d) The B, form a non-orthonormal basis for the set of closed 2-forms.

It is the observation that in three dimensions closed 2-forms correspond to
divergence-free vector fields that motivated the construction of this paper.
In Sections 2-4 of this paper we convert the constructions of [6] and [8] to
three dimensions with an important generalization giving additional smooth-
ness. Specifically, for each positive integer N we find 3-vector wavelets {A}
and {B,} with B, = VX A, such that the {B,] satisfy:

(2a) The B, are interscale orthogonal with respect to the inner product
(Bla BZ) = S B1 'Bz.

(2b) B, is CN 7.

(2c) B, has exponential fall-off.

(2d) The B, form a non-orthonormal basis for the set of divergence-free
vector fields.

This construction for N=1is that of [6] and [8] converted to three dimen-
sions. In [6] and [8] “gauge transformations” on A, were performed that are
not necessary for our purposes. In Section 5 we carry out the rather standard
translation-invariant orthogonalization inside each level, and we verify that
this results in a wavelet orthonormal basis {u,} satisfying:
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(A) The u, are an orthonormal set in the inner product
uj,uy) = g u;-u,.

(B) u, is CN™e,

(C) u, has exponential fall-off.

(D) The u, are an orthonormal basis for the set of divergence-free vector
fields.

(E) All moments of the u, of degree at most N are zero. That is,

fuaxf=0 if [g]=N.

The wavelets are constructed in Sections 2 and 3. The analyticity and fall-
off properties in Fourier transform space are investigated in Section 4; these
lead to properties (2¢) and (2b) respectively. Property (E) follows directly
from properties (A) and (B) by a theorem of one of the authors in [2]. Prov-
ing property (C) is the essential burden of Section 5.

We now describe the generalization, mentioned above, of the Federbush-
Williamson construction so that B, can have any degree of smoothness we
wish. Their averaging transformation, which takes a continuum vector field
to an antisymmetric tensor-valued lattice configuration, has the form

AHS A-drdx, meZ’,

®(m) g I+x
where B(m) is the unit block with minimum coordinate vertex at m, and I
is some canonical oriented loop at the origin associated with a given pair of
coordinate directions. These are (1.13)-(1.14) of [6]. This block average of
loop integrals can be written as

AHSn(x—m)S A-drdx, meZ’,
T+x
(1.1)
where 5(x)=]]x(x,),
I

and x is the characteristic function of [0, 1]. The desired generalization is
obtained by the replacement of (1.1) by an N-fold convolution (N a parame-
ter we fix)

A(p) =TI x(p)".
1!

This smoothed-out type of averaging will be useful because n(x) satisfies a
functional equation of the form

(1.2) (X)) =2 cmn(2x—m).

Any such function is also an input function to the Meyer-Mallat construc-
tion machine for scalar wavelets described so well in [5]. We show how (1.2)
is relevant to our own purpose in Section 2.
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The technique used in [6] and [8] to construct gauge field wavelets or used
in [1] to construct scalar field wavelets is called constrained minimization.
It naturally leads to wavelets that are interscale orthogonal. This is the tech-
nique that arose naturally out of the interaction between the renormaliza-
tion group and constructive quantum field theory. It might pay the reader to
skim references [1], [6], and [8] in order to become familiar with the tech-
nique of constrained minimization. The first construction of wavelets by
this technique was by Gawedzki and Kupiainen in a lattice situation [9].

Our construction is rather technical, but one should remember that in
many applications, only the existence of a basis with the above properties is
actually used. The most important estimates on u,, easily follow from these
properties. Only in numerical work would one be interested in an explicit
formula for u,.

2. The Calculation

We apply the constrained minimization technique for constructing wavelets.
We minimize the quadratic form {(V X A)? with respect to the conditions

V-A=0 and
fne—m| , Asdrdr=b,(m),

v
where dP,,(x) denotes the boundary of the oriented unit plaquette in the
(n, v)-direction with minimum coordinate vertex at x. Obviously, the so-
lution depends on the antisymmetric tensor configuration b on the lattice
(which is a pseudo-vector configuration in three dimensions) chosen for the
constraints, but b itself must satisfy the lattice exterior derivative condition

(2.1)  by3(m+eg)—by3(m)+ Dy (m+ey)— b3 (m)+b(m+e3) —b(m)=0
together with the averaging condition

2 Cmlb,,(m+2n)+b,,(m+e,+2n)
(2.2) m
+b,,(m+e,+2n)+b,,(m+e,+e,+2n)]=0.

Here

Cm = H(N> for 0=m, <N,
p=1\My

and ¢, is zero otherwise. The lattice derivative condition is necessary for the
consistency of the constraints, while the averaging condition insures orthog-
onality of solutions on different scales. For example, assuming the above
constraints, consider the same plaquette averaging for the next scale up. Let
d0Q,,(x) denote the boundary of the oriented 2 X2 plaquette in the (u,»)-
direction with minimum coordinate vertex at x. Since
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S A-dr:S A-dr+s A-dr
BQ,W(x) aP”(x) an(x+eF)
+S A-dr+§ A-dr,
oP, (x+e) oP,,(x+e,+e,)
we have
1x— A-drdx= —2n— A-drdx
Sn(;x n)SaQ - rdx %cmgn(x n m)SaQM(x)

wy

= % Cmlb,,(m+2n)+b,,(m+e,+2n)

+b,,(m+e,+2n)+b, (m+e,+e,+2n)]=0.

Thus the given A lies in the kernels of the linear functionals defining the
constraints used on the larger length scale, so the solution to minimizing
f(Vx A)* with respect to a set of larger-scale constraints is automatically
orthogonal to the given A with respect to the quadratic form. In particular,
it is orthogonal to the solution of a constrained minimization on the unit
scale. The geometric principle applied here depends on the continuity of the
linear functionals with respect to {(V x A)?, which follows immediately from
their definition in terms of plaquettes.

We now turn to the actual solution of the problem. A standard method
is to use Lagrange multipliers, but instead we choose to minimize the «-
dependent quantity

2.3)
S(VXA)2+a2 S(V-A)2+a22 ¥ Un(x—m)sap

m pa<vy uy

2
) A-drdx—bw,(m)]

(x

and take its limit as o — oo. We first interchange order of integration to write

Sn(x-—m) Sa

uy

Acdrdx= S A(X)- £4(x —m) dx;

(x

1

$M(x) = —S ndr,

8P‘w(x—eu-—ev)
and then we observe that for finite o the integral-differential equation deter-
mining minimization of (2.3) is

—AA+(1—a?)d(V-A)+a2Y 3 (- —m) § A(X)- £#(x —m) dx

m p<vyp
=a’y ¥ §*(-~m)b,,(m).

m pu<vy

Next we consider the differential operator given by the first two terms and
let C, be its inverse. The equation becomes the integral equation

A+a’y ¥ CoRippA=a?3 3 b, (m)Coil,

m u<vyp m p<vy
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where R; is just the unnormalized L2-projection onto f. Solving by multipli-
cation of Fourier series and matrices is routine. In momentum space we have

(2.4) A(p)=0o2G(p)*-[1+a*M(p)] ' Co(p) §(p),
Co(P)=A4(D)7,
Ay(Phhe=DP%0ro+ (> =1) P\ D,
(2.5) & (p) =A(P) [ (1—ePe)+5,0(e™ —1)]1R(P),
Gu(k) =3 b,,(m)e’™*,

M,uv, p,’v'(k) = % a,uv, p,'v’(m)eim'k,

(Coz fﬁ‘:y, #‘,V ) = a;w,p,'v’(m_ml):

where C,(p) acts on the ordinary vector-valued plaquette vector {(p) as
an ordinary vector and [1+o2M(p)]~! acts on {(p) as a plaquette vector.
Let G(p)* denote the complex conjugation of the plaquette vector G(p).
By Poisson summation we obtain

(2.6) M, i (P)=3 §*V(p+271)*Cy(p +2x1) ¥ (p+27).
1

On the other hand, it is easy to infer from the well-known inversion

1 1 1
Co(Pho= ;)—25)\0'{‘ <g§ — 1) Fﬁxpo
that
1
Co(Pho S (D)= r’e {H(p).

Hence (2.4) reduces to
2

A(p)= %G(p)*-[lsz(mr‘r‘(m.

Next we observe that (2.5) may be written as

&(p) = ﬂ;—? (ePe—1)(e? —1)(3,,—8,))

and introduce the shorthand (8]
Jup)=e*P—1,

X(Pu+27rlﬂ)————pﬂ+27rlﬂ, and
— 1 - 2
(h(P»—;? (pr2a])? |7 (p+27D)|*h(p+271)

to observe that (2.6) reduces to
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* * 1 1
M;,w,pt'v’(p) :f;c(p)j;/(p).f;;’(p) f;"(p) <? (a,uy' _6[,4.11') - —17(6#'V _6vv')>'
I v
Following [8], we let D(p) denote the diagonal matrix in plaquette direc-
tions such that

(2.7) D,, ..(p)=fAp) (D).
We then have M(p) =D(p){My(p))D(p)* and
11, 1 1]
2t 2 Y]
p3 D3 P3 p3
1 1 1 1
(2.8) My(p) = — —+— — ,
° p?  p: p?  p?
1 1 1 1
2 2 2tz
| P> bPi Py P |

where the ordering of our plaquette directions is (3, 2), (3,1), (2,1).

3. The Inversion

It is easy to check that My(p) is a singular matrix of rank 2, and so is the
nonnegative sum { My( p)), for the zero-eigenvalue eigenspace is generated by
1
_1 s
1

which is independent of p. This means that the limit as o — oo of
a?(1+ o’ D(pXMy(p)D(p)*)~!

cannot exist. The same sort of problem is encountered in [6; 8], and we cir-
cumvent it in the same way as therein. First note that the zero-eigenvalue
eigenspace of D(p){My(p))D(p)*is generated by

Si(p)*
_fZ(p)* ’

S3(p)*
while the dot product of this plaquette vector with G(p)* is zero. This latter
observation is just the lattice exterior derivative condition (2.1) on b,,(m)
written in terms of Fourier series. Thus the limit as o — o of the whole mo-
mentum expression (2.4) exists, and our next task is to derive the momen-
tum expression for this limit.

Let U be any unitary matrix which maps

1 0

-1} to 0 |.
1 V3
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For example, pick

W6 V6 16
U=l 0 V2 1V2
V3 T 43
We have
[ 3 3 V3 V3 oj
2ty T2
1 p; D3 Py D3
UMO(P)U_I=—2- vi V3 4 1 1 ol
272 vtz
by Py Py Py D3
i 0 0 0 |
Let 8 denote the orthogonal complement of
1
-1
1

This two-dimensional subspace is invariant under {My(p)) and to invert
(My(p)y on 8 is equivalent to inverting U{My(p))U ~! on US. The latter is
just the inversion of a 2 X 2 matrix. We obtain
4q1+qr+q; V3(g2—q3) O
I(p)=2D(p)~'| V3(q2—a3) 3(g2+q3) O,

0 0 0
1
=(—), and
K <p,%>
(3.1) D(p)=12(q192+g39:+q2q3),

so the inversion of (My(p)) on 8 yields
(3.2) L(p)=U"U(p)U
4a1+ g2+ q3 2q1+2g>— q3 —2q1+ qr—2q;
=3D(P)7!| 2q1+2q2— g3 @i+4grt+ g3 —q1+2g,+2q; |
=2+ g,—2q3; —q1+2q;+2q; Q1+ g+44q;
Let 8( p) denote the orthogonal complement of

Si(p)*
—f2(p)*
S3(p)*
Then the inversion of D(p){My(p)>D(p)* on 8(p) yields
D(p)""L(p)D(p)™".
In summary, the solution A in the o = oo limit is given by

Ap)= %G(p)*-D(p)"l*L(p)D(p)"‘f(p);
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() S3(P) f2(p)(83\—82))
P =" S(P) i) (5= 1)
" L £2D) £1(P) (62n— 1)

But as we have already indicated in the introduction, V X A is the function
we are after. A straightforward calculation yields

A(p)

(3.3) ipxXA(p)= P G(p)**D(p) ™ L(p)My(p) E(p);
p2ps O 0
(3.4) E(p)=\ 0 -—-pspp 0 |,

0 0 ) 2922

where we have written the (plaquette) dot product with the column vector
G(p)* as the matrix product with the row vector G(p)**.

4. Real Analyticity in Momentum Space

To establish exponential decay of B=V XA, we show that B(p) is real-
analytic and satisfies the appropriate decay bounds. We discuss the momen-
tum decay leading to the class CV~¢ smoothness of B(x) at the end of the
section. Consider ﬁ’l( p); the analysis of B,(p) and B3( p) is essentially the
same. Now, by equations (2.7), (2.8), (3.1), (3.2), (3.3) and (3.4) together
with the exterior derivative condition,

Gs2(p) f1(p) — G3(p) f2(p) + Gu(p) f3(p) =0,

and we have the decomposition

Bi(x) =Bj(x)+B{(x),

5/ 1(p) P2 P3 1 *( 1 1 1 )
4.1 Bi{(p)= D G —+q¢—+q,— ),
(4.1) i(p) 2250 f() (P)" G(p)'| a 3 q2 3 a 7
1(p) P23 - ( 1 1 )
4.2 B =1 D g g — ).
(4.2) 1(p) 22 D) D) (P)Ga(p)| a2 3 q3 3

First we control (4.1) - the easier quantity to control.
In addition to establishing analyticity on a strip 2, X Q, X Q, with

Q,=R+i[—e, €],
we require decay with respect to the variables Rez,. Our first observation
is that the factor
7(z)
J2(—2) f3(—2)
satisfies all of the desired properties on such a strip because

3 N
(.3) #(2) = E(M> .

p=1\ 1%,

2223
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71(z) =0 for z, =2wm, m € Z\{0}, while the zero of f,(z) = e%—1at z,=0
is handled by the elementary cancellation

=1i.

Z
4.4 li
4 zl—rflo fu( zZ)

Therefore we may focus on

-1
. (1)1 N 1)1
*-3) (E"') D) <z§<z12+z22>+Z%<z%>>

with the aim of obtaining only a uniform bound over a strip @, xQ, xQ,.
Our next observation is that

zf(;%} > 22 =i(z)A(—2)(1+8,(2));
vi o p

6,(2)=z3<%z3>2 H< Z, )ZN 1 1

120 » \Z,+27l, E#(z#+27rl”)2 (z,+27l)?%"
Thus

2
1222353(2)<Ezﬂ> =i(2)*1(=2)* Y X zp(145,(2))(1+6)(2)),

P>N pEVA

and so

2.2.2 2
212525 0(2) Y 2,

-1
=ﬁ(z)2ﬁ(—z)2[(2z,f) > X Zf(l+5u(2)+5)\(Z)+5y(2)5>\(2))]-
i

v>N p#Er N
Similarly,

2.2 2(1 /1 1N 1/1
""Zﬂ3(z;<z%+zg>+z§<z%>>
-1
=ﬁ(z)ﬁ<—z>[1+(2z3) (zzal(z)+z%62(z)+z361(z))]
)

These equations motivate the idea of multiplying both numerator and denom-
inator of (4.5) by zfz%z% The point is that, on a narrow strip 2, X2, X 2.,
the quantity (4.5) is clearly analytic except possibly in a small neighborhood
of each z =2~l, and our algebraic trick is designed to establish analyticity in
the 1= 0 neighborhood, where we have to worry about the manifolds z, =
0, X, z 2 — (. But analyticity there follows now from the observation that
(2,2 ) 15,(z) is small in neighborhoods of these manifolds for small Imz,
The analytlc1ty in any other 2wxl-neighborhood becomes manifest by mul—
tiplying numerator and denominator by (2,4 2#7/)% (22 +27l,)* (23 +27l;)?
instead. Indeed, this is less interesting because the z, and %, z,f are bounded
away from zero in this case. Finally, since (4.5) consists of factors that are
either periodic or have decay, it follows that (4.5) is also uniformly bounded

on the strip.
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We now turn to the problem of controlling (4.2), which is a little different.
First consider only one of the two terms. We have

1(2)2223 4 1/1
SN2 =) z§<z§>’
but this time we can only separate out %(z)z,23//f2(—z) and must analyze
-1
f;(z)“(E zi) ®(z)-1i2<-1—2>.
i 23 \%3
As before, the only possible regions for analyticity problems are small neigh-
borhoods of the points z =21, provided Im z,, is sufficiently small, and the
most interesting case is 1 =0. We multiply numerator and denominator by

z#z273 to obtain

(4.6)

(2, 27) 22 (1+65(2))

1(2)i(—2) [i(Z) 1+ (2, 22 1 E o Zysn,» 220, +8,+8,8))1°
which is not analytic on the manifold ¥, zi = 0. However, the other quantity
subtracted from (4.6) involves only the replacement z5 2(z3' 2y —2Z3 2(z3_ 2y,
so that the combined expression arising from our reduction is

(2,22 '28(83(2) —8,(2))

N2 N(=2) U+ (2, 2D) T 2 on Zysn, » 22(8,+6,+8,8))]
This expression is analytic in the neighborhood. For any other 27l-neigh-
borhood we multiply numerator and denominator of the ratios by

(z1+27h) 2 (2y+27h) 2 (23 + 27l5) 2

instead, but, as before, the cancellations that fail are harmless because they
involve the factors z, and X, zf, which are now bounded away from zero.

Having established the exponential fall-off of B;(x), we turn to the smooth-
ness property. Considering Bj(x) first, we separate out the factor

1(P) D203
P2H(p)fi(p)*

from 31’( p) because we have already shown in our analyticity argument that
the rest of the expression is bounded. By (4.3) and (4.4) we know that (4.7)
has no singularities away from p = 0 and that the cancellation of poles against
the zeros of 4(p) does not affect the [I,| pu|“N decay contributed by %(p)
because f,(p)* is periodic. Now clearly we have the decay bound

cp 21 +|p, )N,
n

4.7)

and for N =2 this yields class C*~¢ smoothness in position space because

|p|N—f[p-2H<1+|pu|)-N+‘]
®

— [lplN—z—e H(1+|pul)~N+2+5N‘l] T1a _I_lpul)—l——ei\f“1
H I3
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is integrable. The point is that
-1
[TA+|p DN =cl+|p)S
n

1DV =TI +|p, )V 72, N=2.
7

For the special case N=1 we must estimate more carefully. In the region
where | p,| <1 and pj; is large, we have the bound
cp _2(1 + lpll)—l:

while in the region where | p3| <1 and p, is large, the same estimate holds. In
each instance

" lp 2+ ) =] A+ o)

is integrable over the given region. Now to handle the region where both p,
and p; are large, we consider the three terms of B{(p) separately, extracting
the factor

7(D)P2D3
PP (D) f3(p)*’

where v =2, 3, as the case may be, say, » = 2. The residual expression is peri<
odic and regular by our analyticity arguments, and (4.8) has the decay bound

cp A1+ p) A+ pa) 7R

(4.8)

Clearly,
P 721+ DT A+ 2D 721 = P T T A )T (4 [ 2™

is integrable, so we have established class CV~¢ smoothness of Bj(x) in the
special case N=1 as well.

The arguments for the contribution B{(x) are similar: We separate out
the factor #4(p)p, p3/p*fo(p)* in all cases except N=1 with p, and p; both
large, and in that special case we look at the two terms of BJ(x) and extract

#(p) P2 p3/PED*f2( D), where v=2,3.

5. Orthogonalization on a Single Scale

Our (non-orthonormal) basis of wavelets for divergence-free vector fields is
only interscale orthogonal as it stands. To orthogonalize on each scale in a
translation-invariant way is routine, provided that our translation-invariant
overlap matrix is bounded below by some ¢ > 0. We address this issue here.

As usual, we consider the unit-scale wavelets without loss of generality,
but we first notice that the “unit-scale” wavelets in this paper are actually
two-unit translates of one another. We regard them as “unit-scale” wave-
lets because they are defined by linear constraints associated with one-unit
translates of n(x), so our convention differs from the usual one. Now let
{b?} be a linearly independent set of antisymmetric tensor-valued unit lattice
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configurations satisfying both (2.1) and (2.2); in three dimensions such a set
has fourteen elements, and we shall give an example below. If B?(x) is the
“mother wavelet” constructed from b)(m), then our “unit-scale” wavelets
are the vector-valued functions

BO(x+2n), neZ? l<i<l14,

so the overlap matrix for that scale is

Si’ = S BO(x+2n)-BY)(x+2n") dx.
Obviously,
Sil' — S i N =20y P gl 1y gy

S"(p) =BO(p)-BV(p)*,

and so, by the continuity of S¥'(p), the positive lower bound on the overlap
matrix exists if the periodic matrix-valued function

Y, S(p+=l)
1e 2’
is nonsingular everywhere. This condition certainly holds if we can establish
that
2
>0

>

;B (p+7l)
| 2

i

everywhere for arbitrary #; not all zero. Let
G(p)=X by (m)e™?,
m
and following the notation of Section 3, let
G{(p)
G(p)=| G{)(p)
G{)(p)
By (3.3) the desired condition becomes

Y H(p+wA)>0,
Aef0,13?
where

H(p)= (E_ £GO(p) *)D(p)‘**L(p)
i
1 - %~ (i
X <;5M0(p)E(p)2M0(P)>L(P)D(p) 2HGO(p),
]
with matrix multiplication understood here and the dagger representing the

transpose matrix. Now, by inspection of our momentum expressions, it is
easy to see that the 3 X 3 matrix

D(p)"‘*L(p)<#Mo(p)E(p)2Mo(p)>L(p)D(p)‘1
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is certainly nonsingular on the orthogonal complement of

Ji(p)
—f2(p)
J3(p)

when no coordinate of p is an integer multiple of 2#. In particular,

My(p)E(p)*My(p)

2 2 2 2 2 2 2 2 7]
P RIER AN N P W B R
pz p3 p3 pz p3 p3 pz p2
2 2 2 2 2 2 2 2
=| 1+2.8 a4 22 PL B Py B P
p; D; p; p; pi D} Pt pj
2 2 2 2 2 2 2 2
-2 A 1+ 22 p IR IR R W
L p; P; Py P Py, pPy Dy Py
annihilates
1
-1
1
and is nonsingular on the orthogonal complement. Hence
2
H(p)zc|5t:GD(p)
I

on cubes bounded away from these planes of bad points. This follows from
the fact that every G(p) lies in the orthogonal complement of

J1(p)
—/f2(p)
JS3(p)

Thus we may finally conclude that
2
Y H(p+wA)=c max [34GY(p+7\)
ref0,1)? Aef0,133] i

everywhere. It is straightforward to show that this lower bound is strictly
positive once {G‘?(p)} has been chosen. A natural choice is

[ () f3(p) ]

GY(p)=|—fi(p)f3(p) |S,
0

and
[ 2(p)f3(p) ]
GI(p)= 0 Se>
| —S1(p) f2(p)
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where

(5.1) SO:E(_I)E,, m“ca_meim-p
= H[eip#(l —eipu)N]“g.
"

The ¢, in (5.1) have been defined after equation (2.2), and ¢ ranges over the
seven elements of {0, 1}°\{0, 0, 0} (and indexes the “mother wavelet”). Note
that both (2.1) and (2.2) are satisfied.

Finally, we observe that the wavelets we obtain when we apply the inverse
square root of the overlap matrix have exponential decay. This follows from
an argument of Thomas and Combes [4].
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