Geodesic Excursions into Cusps in
Finite-Volume Hyperbolic Manifolds

MARIA V. MELIAN & DOMINGO PESTANA

0. Introduction

Throughout, M¢*! will be a fixed, complete, noncompact Riemannian man-
ifold of constant negative sectional curvature and finite volume. Given a
point p on I, we denote by S(p) the unit ball of the tangent space of M at
D, and for every v e S(p) let v,(¢) be the geodesic emanating from p in the
direction v. In this paper, we study the long time behaviour of ~,(¢).
Sullivan proved in [S] that for almost every direction v € S(p), one has
diSt('Yv(t)a D) _ 1

lim su —,
Hmp log ¢ d

where dist is the distance in 9. On the other hand, for just a countable
number of directions v € S(p),
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We give a result interpolating between these two.

THEOREM 1. ForO=s«a<l,

di t
Dim{v: lim sup Ist(r, (1), p) >a

{ oo t

]=d(l—a).

Here and hereafter, Dim denotes Hausdorff dimension. Dimension refers
here to the induced distance in S(p). Also, we will use the notation M, for
a-dimensional content. We refer to [C] or [R] for definitions and back-
ground on these metrical notions.

Let H?*! be the upper half plane of R+,

H ' ={(x,, ..., xz.1) eR¥ i x>0},
and let \ be the hyperbolic metric in H?*!,
_|dx]

Xd+1

d\
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We will denote by Mob(H9Y*!) the group of orientation-preserving Mébius
transformations which map H?*! on itself. It is well known that HY*! is
the unique (up to isometries and a constant conformal factor) simply con-
nected complete Riemannian manifold of constant negative sectional curva-
ture and M+ =HY*YT, where I' is a discrete subgroup of Mob(H4*!)
with parabolic elements (since 9M¥*! is noncompact) and finite covolume;
that is, the hyperbolic volume of a Dirichlet region D, of I is finite. We
recall that

D,={xeH!: ppa+1(x, a) < pga+1(y(x), a) for all yeT},

wherg a;e H“*!is a non-fixed point of I and pga+! is the hyperbolic distance
in He ',

We remark that for the cases d =1, 2, if I' is any discrete subgroup of
Mo6b(HY*!) then we can ensure that H** YT is a Riemannian manifold. We
refer to [A] and [B] for general background on Mdbius Transformations.

Here is a brief description of the geometry at infinity of 9% =HZT. It
can be shown that M2 = X, UL, Y;, where X, is compact and Y; is isomeiric
to S X [a, + o) with the metric dr?+e~2"d? [P]. The Y;’s are usually called
cusps. Notice that the infimum of the lengths of curves in nontrivial free
homotopy classes on each cusp is zero.

Moreover, given a fixed cusp & there exists a conjugacy class of maximal
cyclic parabolic subgroups of I', usually also called a cusp, which contains
a subgroup of I' generated by a parabolic element y with fixed point £ in
the limit set of I'. Besides, there exists a Mobius transformation 4 such
that A(o) = ¢ and A~ 'eyoA is the translation z — z-+1. Also, there exists a
half-plane

U.={zeC:Imz>c},

verifying that the image of A(U.) under =: H> - H¥T, the canonical pro-
jection, is homeomorphic to & [K, p. 52].
By a theorem of H. Shimizu [K, p. 60] we have that the set

U{g(U,): g € A~ 1eT"e A\ {identity}}

consists of a pairwise disjoint and countable union of balls in H? with diam-
eter at most c¢. These balls are tangent to R in certain base-points a; which
are the parabolic fixed points fixed by the elements belonging to the con-
jugacy class in A~ 1eI'o A of the translation z —» z+1. Also, notice that

a,-=A‘1°'y,-°A(00) with 'Y,'GP\F&,

where I'; ={yeI': y(§) =&}

This description holds in higher dimensions. We have that a cusp & in
H?*YT is isometric to (S!)¥ X [a, + =), and there exists a conjugacy class of
infinite maximal parabolic subgroups of I' associated to the cusp. Since I"
has finite covolume, each parabolic subgroup in the cusp is an abelian group
with rank d. Besides, there exists a conjugate group I of I" such that the
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inverse image of & by the canonical projection consists of a semispace above
a hyperplane parallel to R? at height ¢, and a pairwise disjoint and count-
able union of (d+1)-balls in H?*! resting on R with base-points
a;=7;() where 3;e "'\,
and radii R(a;) <c/2.
Henceforth we will refer to these (d + 1)-balls as the horoballs correspond-
ing to the cusp &. The boundary of a horoball is called a horosphere.
Following [S], we will study the excursions of geodesics into the cusps of
HY+YT by translating this problem to H?*! and considering there the cor-

responding geodesics and the set of horoballs associated to each cusp. Thus,
the proof of Theorem 1 is reduced to the following theorem.

THEOREM 2. Let {&,}7-, be the set of all cusps of M. Then, for 0< 7<1, the
Hausdorff dimension of the set of £ € R such that || —a;|| < C(£)(R(a;))"'
Jor infinitely many a; is vd. Here each a; is a base-point of a horosphere corre-
sponding to some cusp & € {§,}]=, and R(a;) is the radius of the horosphere.

In fact, we can also prove the following improvement.

THEOREM 3. Let {§;}]_, be the set of all cusps of M. Then, for 0< <1,
the Hausdorff dimension of the set of £ € R? such that

1§ —a ]l < C(E)(R(au))l”

Jor infinitely many i and for all | € £, where £ is a subset of {1, 2, ..., n}, is 7d.
Here each a; ; and R(a, ;) are respectively the base-points and the radii
of the horospheres corresponding to the cusp &,.

In particular, when I' = SL(2, Z) we have that the base-points a; run over all
nonzero rationals p/q, with g.c.d.(p, g) =1 and R(p/q)=1/q>. So, one ob-
tains the following classical theorem on metrical diophantine approxima-
tion [Be; J; Ka].

CoroLLARY 1 (Jarnik-Besicovitch theorem). For A=1, the Hausdorff di-
mension of the set of the points £ € R such that

g P C()
q| lq*
Jfor infinitely many relatively prime integers p, q is 1/\.

<

IfT"=SL(2,Z[i]) or, more generally, if I' = SL(2, RN) where % is the ring of
integers of Q(~—n) and n is a positive integer which is not a perfect square
(see e.g. [PD, p. 77]), we obtain, as in [S], that the base-points a; run over
all the nonzero fractions p/q with p, g relatively prime integers in %, and

R(2)-L
q/) gl

Hence, we obtain the next corollary.
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COROLLARY 2. For A=1, the Hausdorff dimension of the set of the points
Ee Csuch that

g P C()
q |q|2)\

Sfor infinitely many p, q relatively prime integers in R is 2/\.

<

The outline of this paper is as follows: In Section 1, we give the proofs of
some lemmas on orbit distribution needed in the proof of theorems. In Sec-
tion 2 we use the concept of regular system of Baker-Schmidt in order to
prove some approximation results. In Section 3 we prove the theorems.

NotaTtion. Wewill use |||}, m, and Vol to denote Euclidean norm, Lebesgue
measure, and hyperbolic volume, respectively. The notation |z| will denote
the absolute value of the complex number z. 2, will mean the Lebesgue
measure of the unit ball of RY and dA4 will be the boundary of the set A4.
We will denote by B(a, r) the Euclidean open ball of center @ and radius r;
B(a, r) will be the corresponding closed ball. By #4 we will denote the car-
dinality of the set A.

As usual, C(a, b, ...) will denote a variable constant whose value depends
only on the arguments shown. Thus its value may vary from line to line and
even in the same line.

We take this opportunity to thank our advisor, José L. Fernandez, for sug-
gesting the problem and for his help and encouragement during the prepa-
ration of this work. Also, we thank the referee for pointing out to us a
serious mistake in the original version of this paper.

1. Distribution of Orbits

In this section we collect some known results on distribution of orbits. The
first one is an asymptotic result due to Nicholls [N1; N2, p. 204] concerning
the distribution of orbits under a discrete group I" of hyperbolic isometries
of B9—the unit ball of R? with the Euclidean metric—with finite hyperbolic
covolume. This result is an improvement of a theorem of Tsuji [T, p. 518].

Given £ € dB? and « an angle satisfying 0 < o < w/2, consider the set
Q(&, o) defined as

Q& o) ={ne B Ky, £ =] n||cos al.

Thus, Q(£, «) is the portion in B4 of the solid cone of axis Of and aperture
angle . 3
Forne B9 we define N(s, 1, £, ) as the number of elements € I" such that

v(n) € UE, a) N{x: ppa(0, x) < s},

where ppe denotes the hyperbolic distance in B¢ associated to the metric
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LeEMMA 1.1 [N1].
5 N(s,n, &, a)
im

=C(Ma’
s»o VOl{x: p(x,0)<s]}

and the convergence is uniform in &.
In the next lemma we make precise an idea of Sullivan.

LEMMA 1.2. Let H be any horoball and T be a discrete subgroup of
Mob(H9Y). Consider the following sum with py, g, € HO*!:

S= E e—ép(po,v(qo))’

veTl
v(qo) €dH

where p = pyd+t. If po& H then there exists a constant Cy= C(qy, ") such
that, for 6>d/2, '
§ < C e~ (Po,0H)

As a matter of fact, C, depends only on
w =min{p(qo,n(qo)), n € I'\{identity}}

REMARK. If pye H then there exists a constant C, = C,(w) such that, for
0>d/2,
S < Cze—(ﬁ—d)p(po,aH).

Proof. We may assume by conjugation that dH is the hyperplane of equa-
tion x;,1=1, po=Negz.;, Wwhere ez, =(0,0,...,0,1) and A<1.

There exists a = a(w) > 0 such that if P,Q € 0H and p(P, Q) = w then
|P—Q|j=a. On Q;,={Pe€dH:||P—ey.i| €lk—1,k)} there are at most
C(w)-k% ! points of I'(qy) (k=1,2,...), and if P €, then

p(pOsP)Zp(pO’ (k_19 Os'"a O’ 1))

02 2
= (N, (k—1)+1) = log L= D"+ A+

4\

Therefore, if PeQy,
N Y
e—9°(P.0g) < ¢ C( ) _

<< —_
((k=D2+N+1)2)8 — k2
Hence
S= kEI EP e %0 (ro,7(9p)) < C(w))\ﬁ kzl kzaid“ — Cl(w)e—ép(pO,BH),
= c ~
7(;0)69,(
since log(1/\) = p(pg, 0H). ]

Next, using these two lemmas, we obtain a local version of an estimate of
Sullivan {S, p. 227].

LEmMMA 1.3.  There exists p € (0, 1) such that the number v,(&, &) of horo-
balls corresponding to a cusp & of H?*YT' with base-points in a closed
ball & of RY and radii R € (u" "', "] satisfies, for all n=ny(T", &, B),



82 MARIA V. MELIAN & DoMINGO PESTANA

1Y — 1Y
u n
with constants C,= C (T, §) and C, = C,(T', &).

Proof. We may assume without loss of generality that ® is contained in the
unit ball of R? and that m(®) is small. Let T be a Mobius transformation
such that T(H?*!) = B9*+! and let {H;}, be the collection of horoballs in
H?*! corresponding to & with base-points in & and radii R; <1, say. Then
{T(H;)}%,is a new collection of horoballs in B*!. For all i, the radii R; and
R} of H; and T(H;) respectively satisfy

C{(B)R; <R/ < Co(®)R,;.

So, by conjugation, we can work in B4t Also we can assume that the
image of the origin, by the canonical projection, does not belong to & and
therefore R} < 1/2. To simplify notation we still denote by & a closed ball in
0B?*! by {H;}&, the collection of horospheres in B¢*! corresponding to &,
and by R; the radius of AH;. In this proof p means pyd+1.

Take one of these horoballs, Hy, say, and let ¢ be a point in dH,. Let
£ € 9B ! be the center of B and « be the aperture of the cone with vertex at
the origin whose intersection with dB“*! is equal to ®&. Given a, b € R with
a < b, we will use the following notation:

L(a,b)={xeB%!:1log(e?—1) < p(0, x) < log(e?—1)}
N(a)=N(a,q,%,a)
MNa,b)=#H;:e °<R;<e™ 9

We recall that N(a,q, £, o) is the number of elements v €I' such that
p(0,v(q)) <a and vy(q) belongs to the portion in B?*! of the solid cone
of axis Of and aperture angle «. #4 means the cardinality of the set A4.

Notice that the orbit of g consists of points equally spaced on each of the
horospheres dH;, and therefore there exists a constant ko= ko(I", &) such
that if H, is a horoball of radius R; = e~? then L(b, b+ k,) contains at least
a point y(q) € dH;. So, for T, K real positive numbers

INUT, T+ K)<N(log(eT X +ko—1))
and for T = 7, using that

1 T_1 Vol{x: p(0,x)<T
wy  Gim EETD oy g g OEPOOST_ g,
T— o0 T — o0 e
we have by Lemma 1.1 that
(1.2) IUT, T+K)=C(, K)aedT+K),

Next we will obtain an opposite inequality for some large enough K,

(1.3) C'(T', K)a%eT<9UT, T+K),
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and since the constants in (1.2) and (1.3) are independent of 7 we can con-
clude that, for n=0,1, 2, ...,

C'(P,K)aded(T+nK) < E)”(,(T+nK, T+(n+1)K) < C(F,K)aded(T+("+l)K).

Let n, be a positive integer such that ny K = 7. Now, let T be such that 7=
noK. Then for n= ny,

CI(P, K)adednKSm(nK’ (n+l)K) < C(F, K)aded(lH-l)K;

choosing p=e X and »,(T, 8) = 9(nK, (n+1)K), the lemma follows.
Now, we prove (1.3). Consider the following sum:
S(T,K) = E e—Bp(O,v(q)),
yel

v(@) e dH;NL(T, T+K)
e T8 <p <o T

where 6 is a real number such that d/2 < 6 < d. Notice that

S(T,K) = D e~ %(0,7(g)
yel
v(q) € 3H;
emTHK)<RiceT

and, by Lemma 1.2,
(1.4) S(T,K) < AT, T+ K)e T,

So, in order to prove (1.3), it is enough to obtain a lower bound for
S(7T, K). If we consider the sums

ST, K)= > o800, 7(@)
yel'
v(q) € dH;NL(T, T+K)
RiZQ_T
and
vel’
v(q) € dH; N L(T, T+K)

then, since 0H; NL(T, T+ K) # @ only if R; =e~ 7+ we have that

(1.5) So(T, K)—S8i(T,K) = S(T, K).
On the other hand,

[T+1]
SUT,K)= 3 D e~ %00, 7v(9) 4 D e ~%0(0,v(q)

j=2 vel' veT

¥(g) € dH; NL(T, T+K) (@) € 0H; N L(T, T+K)
e d<Rj<e~U™D e l<R;<1/2
(T+1] | .
< ¥ (e/7'=1)"°N(log(e’ — 1))+ N(log(e—1))
j=2

[T+1] . .
<28 3 e U=DN(log(e —1))
Jj=1
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and
ST, K) = e T+ (N(log(eT+¥ —1)) —~ N(log(eT—1))),

where [x] denotes the integer part of the real number x.
Using Lemma 1.1 and (1.1), we obtain

N(log(e/—1)) < Ca%%Y~D forall j.

Therefore,

[T+1] ‘
(1.6) ST, K)<sC(a? 3 e¥=dU-D=c()aetd-dT
Jj=1

and for T large enough, again using Lemma 1.1 and (1.1),
(1.7)  Sy(T,K)=C(I', K)a%e“-T+K) with (T, K)=C(T')(1—e™ ).
Thus, by (1.5), (1.6), and (1.7),
S(T, K) = a%~9T(C(T, K)e =X —c(1)).
Finally, since we can choose K large enough so that
Cc(T,K)el"9%_cmry>Cc>o0,

we obtain
(1.8) S(T,K)= Ca%'@=9T,
and (1.3) is now a consequence of (1.4) and (1.8). Ml

2. Well-Distributed Systems of Balls

Baker and Schmidt introduced in [BS] the concept of regular system of
intervals in order to get some results on diophantine approximation of alge-
braic numbers. We will extend their definition to systems of balls in R? to
obtain results of the same kind in any dimension.

DerFINITION. Let ‘W be a countable collection of Euclidean balls B; =
B(a;, R;) in RY. We will say that “W is a well-distributed system of balls with
constant O if, for every ball ® in R¥, there exists a positive number K(®)
such that for every K with K = K(®) we have a subcollection “W(K, B) =W
satisfying:

(W1) g;e® and R; =1/K for all B;e(K,®);
(W2) For all B;, B; € W(K, ®) with i # j, ||a; —a;||> min{R;, R;};
(W3) #W(K,®B)=OKm(B).

A simple example of a well-distributed system in R is the collection W of
intervals with center a nonzero rational p/q, g.c.d.(p, g) =1, and radius
1/q2. Another example is given, in R?, by the balls of center z/w and radius
1/|w)?, where z and w are Gaussian integers and w # 0. However, the collec-
tion of intervals in R with center a dyadic number r+ p/2" (withneN, reZ,
and p an odd integer) and radius 1/2%" is not a well-distributed system in R.

Using the notion of well-distributed system we obtain the following results.
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THEOREM 2.1. Let {"W'}I_, be a collection of well-distributed systems of
balls, W' = {B(ay;, Ry )=y, in R with constants ©,. Let

O =min{0,, 9,,...,0,].

Then, for 0 < a<7<1and ® a ball in R?, the (da)-dimensional content of
the set

H={te®:||t—a, ;| < C(£}R}] for infinitely many i and for alll € £},
where £ C{1,2,...,n}, is at least C(O, o)(m(®B))“.

COROLLARY 2.2. If {W/}}_,, £ and ® are as above, and if 0< <1, then
the Hausdorff dimension of the set of points ¢ € & such that

€ —ay ;|| < C(£)R}'T for infinitely many i and for alll € £

is at least 7d.

In [BS] Baker and Schmidt proved Corollary 2.2 in the case d =1, refining
some ideas of Besicovitch [Be]. Our argument is an extension of theirs.
In the proof of Theorem 2.1 we will need the following lemma.

LEMMA 2.3. Let ¢, R be positive numbers such that e = 2R, and let § be
a family of balls in R of radius R such that, for all B(a;, R), B(a;,R) €
(i#j), we have that | a;— a;|| > €. Let 8 ={S;} be a countable family of balls
in R? such that

(i) ¥;(diam(S;))*?<é, and
(i) diam(S;) <w for all S; €S,

where o, 6, w are positive numbers and diam(A) denotes the diameter of the
ball A.

If 'S § denotes the set of balls B in § such that there exists a ball S; € §
whose intersection with B contains a ball of diameter at least R/2, then

ds. d(1-a)
ygr< 87007 7
od

Proof. Let D be the collection of balls S; € § whose intersection with some

B eJ contains a ball of diameter at least R/2. For all De®, we denote

by Gp the collection of balls of F which intersect D as we have just described.
We will obtain an upper bound of #Gp, and since

2.1 #5'< > #Gp
Ded
we will get an upper bound of #3J.

Let rp be the radius of a ball D e® and let D be the ball with the same
center as D and radius rp+ R/2. It is clear that the centers c; of the balls G
in Gp belong to D and, since the distance between them is at least e, we
have that there exists a constant C > 1/2¢ such that
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d
~ Q
mD)=C 5 m(B(cg,e/2)= L #Gp.
GEgD 2
Hence,
22d _ 22d R d
| #QDS Edﬂdm(D)=—€7<rD+—2—>.
But R/2 <2rp and so we have that
6d
#Gp = — (diam(D))“.
€
Therefore, by (2.1),
d
#3'< G—d Y (diam(D))“.
€” DeD

But, by (i) and (ii),

Y (diam(D))?~*)(diam(D))%* < 9~ 9s,
De®D
and so we conclude that
d(l—a)a

’ d®
#F'<6 —7——.

O
Proof of Theorem 2.1. We can suppose, by rearrangement, that £ =
(1,2,...,p} (p=<n). If ® is a ball of radius 1 in R?, we let A denote the set
of £ € B such that there exists a sequence K;(£) tending to infinity and a sub-
sequence {B;(;,} of Ucg W/, which also depends on &, such that for all j
there exists a ball B(a,(), i(j)» R, i(j)) In W) where t(j)e L and t(j)=J
(mod p), satisfying

1 1
1£—ay,ipll <=7z and Ry, i =
Ji(j I{jl/r JhiJ Kj

Then, we will see that My, (H)= C(O, o), and since

~ 1
H= {5663: ||E—al,i(pk+1)||<7(“1,7—
lel pk+1
and Rl,i(pk+l)2 fOI'k=0,1,...}CH,
pk+1

the theorem follows for balls of radius 1.
In the general case, with 3 a ball in R with center 4 and radius r, we have
that

A/
Mda({g e®:||E—a;;||l< r(—%) for infinitely many i, for all / € J?})

ar R, : /7
=rdaMda<{n€B(_]l’1):"n_ i << l,x)
r r r

for infinitely many 7, for all/e £
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It is easy to see that the families {B(a, ;/r,R; ;/r)}i=, (Il € £) are also
well-distributed systems, with constants O, respectively, and so the theorem
follows.

Let 6 be a real number such that

O m(®)\*
2.2 <|\——F,
@2 o<(Fr)
and let ‘U = {U};} be a countable family of balls in R such that
(2.3) > (diam(U;))“* < 8.
J

We will now prove that U cannot be a covering of H and, consequently, that
M, ,(H) = 6. In order to see this, we will construct by induction a sequence
{K;}7=1 of positive numbers tending to infinity and a sequence V= {V;}7-, of
finite unions of nonempty and disjoint closed balls, V; =, I V; s» contained
in 8. We will have the following conditions on X, V- Use I V _s» and the
positive number \; defined as

2d+24ds\1/da
A= 1/ IC /d with C=<£2—3—6">
Ki'*(m(z3V; 1))V 020,

(in this proof, if A is a set which is a union of balls, A= U B(py, ry), then
we will denote the set Uy B(py, r¢/2) by 3A):

(I.1) V,cV;_

(1.2) for each Vj ., there exists a ball B(a, R) belonging to W*) with R =
1/K; such that V; ¢ = B(a, \; i);

(1.3) V; ﬂUk =4§ for all U, e U, with diam(U,) > \;;

(1.4) \; <min{1/(4K;), \;_1/4, 1/K}"};

(1.5) for allV; s, V; o with s,s’el; (s#s’), the distance between them is
at least 3/(4K;);

(1.6) m(LV;) = (1/2d+l)99d>\d1<dm( Vi_1).

Since the balls in V; are disjoint and w1th radii \; (by (I.2) and (I.5)), con-
dition (I.6) simply means that the number of balls in V; is at least

1 1
Ee](]dm<5 I/j_1>.
Notice that by (I.1), (I.2), and (I.4) we get that @+ N7_ CH and, since
by (1.4) the sequence {\;}7-, tends to zero as j— oo, we have by (I.3) that
(ﬂ;o____o I/J) ﬂUk=ﬂ for all Uk € U.
Here is the inductive construction of V.

Initial step: We take Vy=@®. Notice that, by (2.2), there exists a number

B such that
Om(®B)\*
o<p= (W) -

We define \ by the condition N4*1~®)§% = 3. Then, it is easy to see that
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(2.4) A=) < =5 1920’5 m(1V);
(2.5) & <N

Now, by (2.3) and (2.5), it is clear that

(2.6) diam(U,) <\, forall k.

Inductive step: We now f{ix j in the rest of the argument. If X, ..., K;_;
and Vy, V4, ..., V;_; have already been constructed, then we take K; large
enough so that (I1.4) is verified and K; also satisfies the following two con-

ditions:
2.7) Ki=K'"W(V;_ ) forall sel;_y,

where K“)(V;_, ) is the constant given for the ball ¥;_, ; in the definition
of the well-distributed system W) and

3 1
= —.
4K,_; T K;

(2.8)

Notice that (I.4) can be satisfied since a < 7<1.
Now, let J; be the finite collection given by
3j= U rwt(_/)( _;s 2 —l,s)-
seI~
We recall that ‘WYUK, LV S) is the subset of the well-distributed sys-
tem W) obtained by applylng the definition to each 1¥;_; ; and the num-
ber K.

Let a, ..., a,, be the centers of the balls in J;, and let §; be the collection
of closed balls B(a;, 2\;) (i=1,2,...,m). Let us observe that

m=#3;=#F= Y, #WUK;, L1V | );
ste
using (W3) (for the well-distributed system W/ )) and the fact that, by
induction, ¥;_; is a union of disjoint balls, we obtain

(2.9) #5,> 3 OKm(iVi_i ) =OK m(iV;_)).
ste

We note that if two balls in the collection F; have their centers in different
balls 2VJ 1,s» then, by (I.5) for j—1 and (2.8), the distance between them
is at least 1/K;. On the other hand, if the centers belong to the same ball
3Vi-1,s> then applymg (W1) and (W2) (for the well-distributed system W)
we get the same conclusion. So, in any case, by (I1.4) the balls in &; are dis-
joint. Also it is clear, from (I.2) for j —1 and (I.4) for j, that the balls in &;
are contained in V;_,. Hence if j > 1 then, by (1.3) (which holds for j —1by
induction), for all B(a;, 2\;) €F; we have that

2.10)  B(a;,2\)NU;=0 for all Uy e U with diam(Uy) > \;_;.
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Next we split §; into two disjoint families &7 and F;. §/ consists of those

balls Q of ; such that there exists a ball Uy € L whose intersection with Q

contains a ball of diameter at least A;. By Lemma 2.3 with §=3J;, R=2X\,,
=1/Kj, w=\j_;, and 8={U € U: diam(U) < \;_,}, we get that

HF/ < 67K NIUT s,
So, for case j =1, using (2.4), we obtain

#5{ < LOKm(LVy);
for case j > 1, using (I1.6) (which holds for j —1 by induction), we have
695 Kjd ad+1,, miv._)

N eﬂdlgd_,m(zV,_z)’

By the definition of \;_; we obtain that

#5/< LOK m(3V;_)).

HE! <

Hence, using (2.9),
#F/ < #F;,
and so
(2.11) #57= L% = 10K m(LV;_;) > 0.

If §"={Q,: s € I;}, then we define V; ;= 2Qsand Use, Vis

We need to check that the conditions (1.1)-(1.6) hold for K and Vi (L)~
(I.4) follow by construction; (I.5) follows from (1.4) because the dlstance
between the centers of the balls V ; is at least 1/K; and the radii are \;. Fi-
nally, since

AL
m(3V;) =#3/m(3V; S)-#iF”( 2’) Q4.
using (2.11) we get

m(3V;) = 2d+1 OQN K m(3V;_y),
and so (1.6) holds too. O

3. Proof of Theorems

LEMMA 3.1. Let 8 be a countable collection of balls B;=B(cj,r;) (with
ri<l)in R such that for all i, j with i + A

(3.1) |c;—¢j|| > min{r;, r;}

Then, given a number 7, 0 <7 <1, the Hausdorff dimension of the set of
points & such that

I£—cill< C(&)r™  for infinitely many c;

is at most 7d.
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Proof. Let ® be a ball in R? of radius r, and let M be a positive real num-
ber. Consider the set JC defined as

I ={te®:||&£—c;|| < Mr}'" for infinitely many B; with c; € B).

To prove the lemma it is enough to show that Dim(JC) is at most 7d.
Given a number p € (0, 1), let @,, denote the set

{BjeS8|c;e® and r; e (p"*', u"]}

It is clear that for every B;, B;e®,,, i # j,

n+1 n+l1
B<a,-, —”—2—> ﬂB(aj, ‘#2—> ={.

Comparing volumes, we have that

n+1
_Elm(B(a,-, ”—2—)) <m(B’),

where I ={i: B; e ®@,} and B’ is the ball with the same center as B and radius
r+pu"*Y2. Thus, we get

24 /1V
3.2) #Q,< Q, (—;,—) m(B’)

2d un-{-] d 1 )d
= 1 — B).
Qdud< o <#" mB)

If 2r =1, then using (3.2) we obtain

2% /1Y
(3.3) iR, < (—5> m(B) forall neN.
Qap? \ 1
If 2r € (u"0*!, u"0] with ny € N, then we also obtain (3.3) for n= n,. Further-

more, if there exist a; € ® such that B(a;, r;) €8 and r;>p"0, then for all g;
such that r; > p"0 we have that

|a;—a;|| > min{r,, r;} > p"o,

and since 2r < p"0 we conclude that a; ¢ ®. Hence, if 2r e (u"0t1 p"0] then
(3.4) Y #R,<1.

Notice that, since #4,, < o for all n € N, we have that for all £ in 3C there
exists a sequence {r;(£)} such that r; tends to zero as j—oo and ||£—¢;||<
Mrj” . Hence we get that JC is covered by the collection of balls

Skz {Bj =B(Cj, f;) lfj =Mrj1/", Cj E(B, er [,Lk}
for each positive integer k. Since
(o]
=B __ AqB B/ ) B/
%}rj—Mgrjst > r

y n=k e "
Bjesy qe% c,e®
j
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using (3.3) and (3.4) we have that, for all k= n,,
o) [LHB/T

> FP<C(M) Y —5.

J n=k H

Ej€~k

So, if B/7>d then X;, ;5 7F tends to zero as k — o, because X, p™ /7=

is convergent. Hence Mg(J3C) =0 and consequently Dim 3C =< 7d. L]

Proor oF THEOREM 1. Let {&,}7_, be the set of all cusps of M =HY+YT. For
each /, let { H/}%, denote the set of horoballs corresponding to the cusp &,.

Let v,(¢) be a geodesic in M emanating from p with direction v and such
that

(3.5) lim sup dist(v,(1), P) >

> oo t

Then we have a sequence ¢; tending to infinity such that v,(¢;) is inside some
cusp &y of M (I(i)e(l,2,...,n)}) and d; = ot;, where

di = maX[diSt(’Yv(t), p): le [Oa tl]}

Now, let 7, be a lifting to H?*! of v,. Without loss of generality we can
suppose that ¥, is a vertical ray ending at a point £ € R?. We have that

R
d,'=C[(,')+lOg k(i) (k(l)EN),
Tk(i)

where Ry ;) is the radius of the horoball H,{3 corresponding to the cusp &;
which contains %,(¢;), and ry; is the radius of the horoball, with the same
base-point ay(; as H;\3, whose projection on 9 is the region of &; not
attained by v, before the time #;. Cy;, denotes a constant which depends
only on the cusp &;. For the sake of simplicity, hereafter we will write r;
and R; instead of ry(;) and Ryg;.

It is clear that ;= Ce™', and so

R; 1\*

—=Cunl —).

I M(ﬁ')
Therefore

(3.6) £-all=r; < CHRIO,

where C =max{C,,...,C,]}.

Thus, if £ is not a base-point of a horoball corresponding to some cusp &,
then there are infinitely many solutions a; of the inequality (3.6). On the
other hand, if (3.6) has infinitely many solutions a;, where each ga; is the
base-point of a horoball corresponding to some cusp &;, then the geodesic
¥, in HY*! with endpoint £ € R? projects on a geodesic v, in 9 which satis-
fies (3.5).

Hence, the set appearing in Theorem 1 has the same Hausdorff dimension
as the set of points £ € R? such that the inequality (3.6) holds for infinitely
many «;’s. Thus, Theorem 1 follows from Theorem 2. ]
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REMARK. We can prove more than stated in Theorem 1 by using a similar
argument and Theorem 3 instead of Theorem 2.

Given a cusp &, let 7; be the set of times # such that vy,(¢) €§,;. Then the
Hausdorff dimension of the set of v € S(p) such that

lim sup dist(y,(?), p)

t—oo t
teT;

=«a forall /leLC{],?2,...,n}

isd(1—a).

Proor oF THEOREM 3. We will prove that the system W of balls B(a;, R(a;))
in R?, where g; and R(a;) are respectively the base-points and the radii of the
horoballs corresponding to a fixed cusp & of H?*YT, is a well-distributed
system. Thus the inequality Dim = 7d follows from Corollary 2.2, and the
opposite inequality is a consequence of Lemma 3.1.

Given a ball ® in RY, let pe(0, 1) and nye N be the numbers in Lemma
1.3, and let K(®) =1/p"0. Then, for K = K(®), consider the subcollection

W(K, B)={B(a;, R(a;)) |a; e B and R(a;) =1/K}

By definition, “W(K, ®) satisfies (W1). (W2) follows immediately from the
fact that the horoballs in H?*! with base-points @; and radii R(a;) come from
a cusp of H?*YT" and hence are disjoint. Finally, if 1/K € (¢"*!, "] (and so
n = ng), then #W(K, ®) is at least the number »,(&, &) appearing in Lemma
1.3 and so (W3) follows from that lemma. O

Proor or THEOREM 2. Obviously, any collection of balls which contains a
well-distributed system of balls is also a well-distributed system. Therefore,
since the family W’ of balls in R?, {B(a;, R(a;))} (where a; and R(a;) are re-
spectively the base-points and the radii of the horoballs corresponding to
any cusp of 9N) contains the family ‘W appearing in the proof of Theorem
3, W’ is a well-distributed system. Hence, the inequality Dim = 7d follows
from Corollary 2.2.

On the other hand, we can get that the horoballs corresponding to dif-
ferent cusps of M are disjoint (if they correspond to the same cusp then by
construction they are also disjoint), and therefore the balls in W’ satisfy the
condition in Lemma 3.1. Thus we obtain the inequality Dim < 7d. D
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