A Simple Proof of a Theorem
of Jean Bourgain

G. PISIER

In this note, we give a very simple proof (compared to earlier known proofs)
of Bourgain’s version of Grothendieck’s theorem for the disk algebra: Every
operator on the disk algebra with values in L, or L, is 2-absolutely summing
and hence extends to an operator defined on the whole of C. As far as we
know, the currently known proofs are essentially the original one in [B1],
the simpler one in [BD], and several new proofs given recently by Kisliakov
in [K1; K2]. This implies Bourgain’s result that L,/H! is of cotype 2. We
also prove more generally that L,/H" is of cotype 2 for 0<r<1.

We first recall the definition of a g-absolutely summing (in short, g-sum-
ming) operator for 1=g<o. Let u: X—Y be an operator between two
Banach spaces. We say that u is g-summing if there is a constant C such
that, for all finite sequences xy, x5, ..., X,, in X, we have

(Slu(x)|)4 < Csupl{( T x* (x| | x*e X+, |x*| < 1.

We denote by w,(u) the smallest possible constant C. Let us denote by 4
the disc algebra. Then, if u: A —> Y is g-summing, by Pietsch’s factorisation
theorem there is a probability measure A on the unit circle such that

1/q
VfeA, |Iu(f)]|57rq(u)<§|f|qd)\) .

We refer for example to [P1] for more information on this notion.
We will prove the following theorem due to Bourgain.

BOURGAIN’S THEOREM. There is a constant K such that any bounded
operator u: A — 1, is 2-summing and satisfies

(1) < K|ul.
Also, u extends to a bounded operator ii: C(T) — [, such that
|a] =K |ul.

Moreover, the same result holds for all operators u: A— Y if Y=1, or, more
generally, whenever Y is a Banach space of cotype 2.
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Let us recall here the definitions of the K, and J, functionals that are funda-
mental in the real interpolation method. Let Ay, A; be a compatible couple
of Banach (or quasi-Banach) spaces. For all xe Ay+ A4, and for all # >0, we
let

K(x, Ag, A)) =inf(| x| 4, + t]x1] 4, [ X = X0+ X1, Xp € Ag, X, € Ay).
For all xe AyN A, and for all £ >0, we let
Ji(x, Ag, A1) =max(|xo] 4p5 £]x1]4,)-

Recall that the (real interpolation) space (Ag, A,), , is defined as the space
of all x in Ay+ A, such that | x|, , <o, where
dr \?
Ila.p= ([~ Kiun, Ao, 475 )
We refer to [BL] for more details.

Let T be the circle group equipped with its normalized Haar measure .
Let 1= p=<o. When B is a complex Banach space we denote by L,(B) the
usual space of Bochner-p-integrable B-valued functions on (T, m), so that
L,®B is dense in L,(B) when p <co. We denote by H”(B) the subspace of
L,(B) formed by all the functions f such that their Fourier transform van-
ishes on the negative integers. When B is 1-dimensional, we write H? instead
of HP(B). When 0< p <1, we define H? as the closure in L, of the linear
span of the functions {e" |n = 0}. We refer to [G; GR] for basic informa-
tion on H”-spaces.

The next proposition, although very simple, is the key new ingredient in
our proof. We refer to [P2] for more applications of the same idea to the
interpolation spaces between H” spaces.

PROPOSITION 1. Let 1 < p < q < . Consider a compatible couple of
Banach spaces (Agy, A,); the following are equivalent:

(1) There is a constant C such that

vie HP(Ay)+H9(A4,), vt>0,
K,(f, HP(Ap), H1(Ay)) = CK,(f, LP(Ay), LY(A))).

(ii) There is a constant C such that
Vfe[LP(Ag)/H?(Ap)IN[LUA,)/HY(A], Vt>0, 3feLP(Ag)NLI(A;)
representing the equivalence class of f and satisfying
T (f, LP(Ag), LY(A))) < CI(f, LP(Ao) /HP(Ao), LUAD/HU(A))).
(iii) There is a constant C such that
Vf e [L?(Ao)/HP(A)IN[LYUAN/HUAD], 3f e LP(Ag)NLI(A)
representing the equivalence class of f and satisfying

"f"LP(AO) = CNf“LP(Ao)/HP(AO) and ”f"Lq(A,) = C"f"L"(A,)/H‘I(A,)-
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In the above statement we regard the spaces
LP(Ag)/HP(Ap) and LI(A;)/HI(A;)

as included via the Fourier transform f— (f(=1), f(=2), f(=3), ...) in the
space of all sequences in Ay+ A;. In this way, we may view these quotient
spaces as forming a compatible couple for interpolation. (For the subspaces
HP?(A,), HY(A,), there is no problem; we may clearly consider them as a
compatible couple in the obvious way.)

Proof. For brevity, we will write simply L?/H?(A,) instead of L?(A,)/
H?(A,), and we will also write L?, H?, ... instead of L?(Ag), H”(Ay),...;
no confusion should arise. The proof is routine. We only indicate the argu-
ment for (i) = (ii) = (iii), which is the one we use below.

Assume (i). Let f be as above such that J,(f, L°/H?(A,), LY/HY(A,)) < 1.
Then let g, € L?(A,) and g, € L9(A,) be such that

leplr <1, lgglee<t™,  f=g,+HP(Ay), [f=g,+HYA).
Therefore, g, — g, must be in H” + H? and

K (8p—8q> LP(Ag), LUA) < |gplrr+tlgglLa< 2.

By (i) we have K,(g,—g,, H?, H?) <2C’; hence there are h, € H?(A,) and
h, € HY(A,) such that g, — g, =h,—h, and |A ||Hp+t]|thHq<2C’ Now
1f we let f= &~ h,=g,—h,, then we ﬁnd that feLP(Ao)ﬂLq(Al), f=
f+HP(A,) in the space LP/HP(Ay), and f= f+ H9(A,) in the space
L9/HY9(A,); moreover,

J (S, LP, L7 = max(| f| .z, t| flra) s 1+2C".

By homogeneity, this completes the proof of (i)=(ii) with C<1+4+2C". To
check (li)=> (lll), Slmply write (ll) with ¢ = ("f"Lp/Hp(AO)) . ("f"LQ/HQ(Al))—l.D

REMARK. It is well known that the Hilbert transform is a bounded oper-
ator on all the (so-called mixed norm) spaces of the form L?(/?) for all 1<
D, q <. (Apparently this goes back to [BB]; we refer to [GR] for more in-
formation and references). Therefore, the orthogonal projection from L%(/?)
onto H?2(/?) is bounded simultaneously on all the spaces L?(19) for 1<
D, q <. It follows immediately that if 1< py, py, qo, g; < then there is a
constant C’ such that, for all fe HPo(/90)+ HP1([9) and for all £ >0,

K, (f, HPo(190), HP\(IT)) = C'K, (f, LPo(19°), LP1(19Y)).

PROPOSITION 2. There is a constant C such that, for all t >0 and all
fe H\(I))+ H'(1,), we have

K,(f, H'(h), H' (1)) = CK,(f, L'(})), L'(1,)).

For the proof of Proposition 2, we will use the following.
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SUBLEMMA.
H'(l4,3) CH' (1), H'(12))1/2, 0

and the inclusion is bounded with norm less than a constant K.

Proof. Take a function f=(f,) in the unit ball of H' (l4/3) and factor it as
f=(g,h,), with g =(g,) in the unit ball of H*(/,) and h=(4,) in the unit
ball of H?(l,). This is easy to do by factoring out the Blaschke product of
each component f, and raising the factor without zero to the appropriate
power. More precisely, write f,, = B, F,, where B, is a Blaschke product and
where F, does not have zeros in D; let F be an outer function such that
|F|=(Z|F,|*3)3* on the unit circle; then let

gn=By(F,/F)*PF'? and h,=(F,/F)/’F"2.

This factorisation has the properties claimed for g and A.
Recall the inclusion, which obviously follows from the above remark,

H2 (L) = (H?*(la/3), H*(I4)12 C (H?*(L3), H*(14))1/2, -
Then, by interpolation, since the operator of coordinatewise multiplication

by h=(h,) maps H>(l,;3) into H'(/;) and H?(l,) into H(/,), we obtain the
announced inclusion. ]

Proof of Proposition 2. Consider f=(f,) e H'(I;)+H(l,) such that
(1) Kt(f9 Ll(ll)s LI(IZ))<I

By classical factorisation theory, each f, can be factored as f,, = B, F,,, where
B, is a Blaschke product and where F, does not have zeros in D, so that the
analytic function (F,)” makes sense for any p > 0. (Alternatively, we could
use the inner-outer factorisation instead.) Let us simply denote by F!/2 the
sequence of analytic functions F/2 = (F}¥?2), .. Note that any assumption
of the form (1) depends only on the values of each |f,| on the boundary.
Now, on the boundary we have | f,|"/% =|F,|/, so that (1) obviously implies

(2) K 2(FY2, L2 (1), L2 (1,)) < 2'/2.
Therefore, by the previous Remark,
K, 2(F'2, H2(1,), H?(I;)) < 2'2C,

where C is a numerical (absolute) constant. Hence, there is a decomposition
F1/2 =got+8&; with

3) "gOHHZ(IZ) + tl/z Hgl "HZ([") < 21/20.

Let us now return to f=(f,) = (B,(go,+ &, )?). Let us 51mp1y denote by go g,
the sequence (go, &1, )15 Similarly, we denote by g2 and g the sequences of
squares. Observe that by (3) and by the Hdélder inequality, we have

lgo&il sy < 2C%71/2,
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which implies by the sublemma that
t7V2K (gog1, H'(h), H'(1)) <2C?Kt™'/2,
After simplification, we have
K,(go81, H'(I), H'(1;)) <2C*K.
On the other hand, by (3) we clearly have
K, (g5 +gt, H'\(I), H\(I)) =2C?+2C*=4C2,

Therefore, we conclude by the triangle inequality (and by the fact that
Blaschke products are of unit norm in H*) that

K,(f, H'(h), H\(1,)) < K, (g5 + gt, H'(h), H'\(1L) + K, (28081, H' (1), H'(1,))
<4C?+4C%K.
By homogeneity, this completes the proof. O

COROLLARY. There is a constant C such that, for all 1< p<2 and all
feL'/H'(1,), we have

“4) "f"Ll/Hl(zp) = C"f"i‘/yluz) ”f||iT/?,11(11),
where 1/p=0/2+(1-0)/1.

Proof. By Proposition 2 and Proposition 1, there is a constant C such that
every feL!/H(l;) admits a lifting fe L!(/;) such that we have simuita-
neously

ﬂflfL‘(zl) = C"f"Ll/Hl(ll) and "f"L‘uz) = C"f“L‘/H‘(iz)-

Then (4) is an immediate consequence of Holder’s inequality. ]
The preceding corollary immediately implies the following proposition.

PROPOSITION 3. There is a constant C such that, for all Banach spaces Y
and for all 2 < g < and all 2-summing operators u: A—Y, we have

(5) 7w (1) < Cmp(u)? |u)'~F,
where 1/qg=0/2+(1—0) /.

Proof. We first claim that, for any »>1 and for any x;, x5, ..., X, in A, we
have

;tlu(x,-)ns M9,

where A < Cn'/?’, Indeed, let us denote by \(g, n) the best constant in this
inequality. Assume, without loss of generality, that « is the adjoint of an
operator v: Y*— LI/H!, Let p = q’. By duality, we find

Mg, n) = sup{{ (D] Lyatm)s
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where the sup runs over all n-tuples (y;) in Y such that sup|y;| < 1. There-
fore, (4) immediately yields
Mg, n) < CA(2,n)° Moo, n)' =% < C(n" 2wy (u)® (n]u])'~°.
Hence
(6) Mg, n) < Cn'/@ my(u)? ful~°.
For simplicity, let B= Cmy(u)?|u|'~°. By (6) we have, for any x;, X5, ..., X,
in 4,
n
) nY B u(x)] = BI(Z] %19 -
1

Now let us rewrite (7) for a sequence composed of x,/(k;)? repeated k,
times, x, /(k,)/9 repeated k, times, etc. We obtain

(X )~V TR Tux)] = BI(Z] %D .-

Clearly, since the sequences of the form (( k;)~'k;) are obviously dense in
the set of all sequences (¢;) such that ¥ «; =1, we obtain

o) Julx)] = B[4 ]o.-

Taking the supremum over all such (¢;), we finally obtain the announced
result (5). O

We now recall a classical inequality due to Khintchine, concerning the Rade-
macher functions r, r,, ..., r,, ... defined on the Lebesgue interval. For every
q>2 there is a constant B, such that, for all finite sequences of scalars (o),
we have

1/q
(SlEairi'th> SBq(E|0fi|2)1/2-
The following is a known result of Maurey [M].

PROPOSITION 4. Let X be any Banach space. Let Y be a Banach space
of cotype 2, that is, such that there is a constant C, satisfying, for all n and
Jor all n-tuples y,, y5,..., ¥, in Y,

1/2
Sy = G IS rnkar)

Then, for every q> 2, every g-summing operator u: X — Y is actuaily 2-
summing, and moreover

7(u) < B, Cym(u).

Proof. Let xy, X3, ..., X, be a finite subset of X such that ¥|x*(x;)|2=<1 for
all x* in the unit ball of X*. Then, by the above Khintchine inequality, we
have for all x* in the unit ball of X* that
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1/q
(SIEr,—x*(x,-)]" dt) <B,.

Hence, by the definition of =, () (note that the integral below is actually an
average over 2" choices of signs),

1/q
(jllEr:u(x,-)ll"dt) <m,(u)B,.
Hence, by the definition of the cotype 2,
(Slu))? = C, By my(u).
By homogeneity, this proves Proposition 4. N

We can now complete the proof of Bourgain’s theorem.

Proof of Bourgain’s theorem. We use the same general line of attack as
Bourgain. This approach is based on an extrapolation trick that originates in
the work of Maurey [M], and has been used several times before Bourgain’s
work (especially by the author) to prove various extensions of Grothendieck’s
theorem. (The latter theorem corresponds to the case A=C, Y=/ in the
above statement; see [P1].) In this approach, the crucial point reduces to
showing (5). Indeed, assuming (5), it is easy to conclude: By Proposition 4
we have m,(#) < C, B, w,(u); hence, by (5) my (1) < CC, B, mp(u)? |u|'~?, and
hence if we assume a priori that w,(u) is finite then we obtain

(8) Ty (1) < (CCy B, ul,

which establishes the announced result in the case of a 2-summing operator.
Hence, in particular, (8) holds if « is of finite rank; since A has the metric
approximation property, we can easily conclude that (8) actually holds for
arbitrary operators. Finally, the last assertion follows from a well-known
factorisation property of 2-summing operators, due to Pietsch (cf., e.g.,
[P1, Chap. 1]). ]

REMARK 5. There is also a slightly different way to prove (8). One can use
a simple interpolation argument to prove that, for any »>1 and for any
X15 X5, -..» X, iIn A, we have

1D, vy = BIX Lot )5

where B is as above. We may then apply this, replacing x;, x,, ..., X,, by the
2"-tuple formed by the 2" choices of signs X r;(¢)x;. After normalisation by
a factor 2~"/4 we obtain

I ri (XDl wiaes vy S BIXTiXi | Lo, oty

But then, we observe that Khintchine’s inequality implies a fortiori the equiv-
alence of | X r; x|z, w(dry With [(X)] L q,)- This immediately leads to (8)
by the same argument as above.

oo(l2
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REMARK 6. Asis well known, it follows from Bourgain’s theorem as stated
above that L,/H"is a cotype-2 space. This can be derived as in [B1] from a
result of Wojtaszczyk which ensures that L, /H ' is isomorphic to L, /H(/,).
Alternatively, if one wishes to avoid the use of the latter result, one can ob-
serve that our proof of Bourgain’s theorem is valid with essentially the same
argument, using L,/H'(l,) instead of L,/H".

Actually, we can generalize Bourgain’s theorem as follows.

THEOREM 7. Let0<r<1.Thenanyoperatoru:cy— L,/H" is 2-summing.
Moreover, there is a constant C, such that every operator u:cy—L,/H" is
2-summing and satisfies n,(u) < C,|u|. Finally, L,/H" is of cotype 2.

Proof. We only sketch the argument. (It might very well be that this result
follows from the other proofs; however, it seems to have passed unnoticed
so far.) Consider an operator u: /% — L,/H". We will show that there is a
constant C, independent of n such that

O vm, VX1, %0, s X €l @), mmamy = Clull(x)linagy-

We argue similarly as above, but in a dual setting. Let r < p < o. We denote
by C,(u) the smallest constant C such that

VI, VX1, X2y eees X € I, ||(u(xi))||L,/H’(1g’) = C"(xi)ﬂi;"({gg)-

Obviously, we have C, (1) = |u|. Choose p so that r <1< p < 2. Let 8 be cho-
sen so that 1/p=(1—0)/r+6/2. A simple adaptation of Propositions 1 and
2 yields a simultaneous “good” lifting for the couple L,/H"(l.), L,/H"(},),
and the corresponding extension of (4). It follows that we have, for some
constant C’ (independent of m),

V@D L, ey = C'Cy(u)?|u|' =P m"/? sup| x; ;.
As a consequence, if B’=C’'C,(u)?|u|'~?, we have
(10) [Nz, ez = BNz, azy-

It is easy to check that, for some constant C” (independent of m or n),
we have

LD, amy < C"m P =2 ()i
so that (10) gives, after normalisation,
(11) | L, ey = B C | (X)) gz

where L;' denotes the L,-space relative to {1,2,..., m} equipped with the
uniform probability measure.

Let K=B'C”. We now take m=2¥, replace (x;) by the 2* “choices of
signs” x, = X% r;(¢)x;, and use the dualisation of Khintchine’s inequality in
L,, which states that the quotient of L, (p>1) by the orthogonal of the
Rademacher functions can be identified with /,. If we simply denote by Q(n)
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the quotient space of L,(/2) by the subspace of all functions “orthogonal”
to the Rademacher functions (i.e., that have a zero integral against any
Rademacher function), we can deduce from (11) that

(12) DNz, /a7ty = Kl (Xl gy

On the other hand, by a known reformulation of Grothendieck’s theorem
(see [P1, Cor. 6.7, p. 77]), we have

(13) [ oy = K W xdliz ity

where K’ is a numerical constant. Therefore, (12) implies C,(u) < KK’. Re-
calling the value of K and B’, we conclude that

Co (1) <K'C"C'Cy(u)’ |u]*~?,

so that we again conclude by “extrapolation” that C,(u) < K”|u| for some
constant KX” depending only on r. Combining (12) and (13) with this last esti-
mate, we obtain the announced result (9) with C, = KC’C”. Since there is ob-
viously a norm-1 inclusion of L,/H" (/) into I5°(L,/H"), we have m(u) <
C,(u) = C,|u|, and this completes the proof for X =/Z (with a constant C,
bounded independently of n). By density, this is enough to prove the case of
an operator defined on c,. Finally, the cotype-2 property can be proved as
indicated in Remark 6, by observing that the first part of Theorem 7 remains
valid with L. /H"(l,) (or equivalently /.(L,/H")) in the place of L,/H". We
then follow a standard argument: Given elements x;, x5,...,x,€L,/H",
we consider the operator u:[7 — L. (L,/H") defined by u(a,,a,,...,a,)=
Y a;r;x;, where ry, r,, ..., r, are the Rademacher functions as before. We have

(14) (SIaHY? = mw) = Clu|,
but it is well known that there is a constant B, depending only on r such that

lul=BX ri®)xil 1, ae; /07y

Therefore, (14) implies that L, /H" is a cotype-2 space. O

FINAL REMARKS. (1) As a corollary, one obtains that every rank-n oper-
ator on A extends to the whole of C(T) with norm at most C Log »n for some
constant C. This follows from Bourgain’s theorem and a previous result of
Mityagin and Pelczyniski (see [B1] for the deduction).

(2) The preceding argument shows that

(15) Hm(lp,co)=(Hm(11),H°°(Ioo))0,oo,

where 1/p=1—0 and 0 < § < 1. But this kind of result is not really new. It can
be derived from the remarks on interpolation spaces included in [B1] using
a rather simple factorisation argument, such as the one used for Theorem
2.7 in [HP]. More results along this line have been obtained by Xu [X]. In
[P2], we will give a more systematic treatment of results such as (15) in more
general cases for the real interpolation method with arbitrary parameters.
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(3) We should mention that while Kisliakov’s recent proof of Bourgain’s
theorem seems more complicated than the above, it also yields more infor-
mation on the so-called (p, g)-summing operators which does not follow
from our approach (cf. [K2; K3]). Moreover, although the above argument
applies also for an operator defined on H® and with values in a cotype-2
space Y with the bounded approximation property, it is a well-known draw-
back of the “extrapolation method” that it does not apply to the case of a
linear operator from H* into its dual, although that case was settled in [ B2].

[BL]

[BB]
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