Distance-Decreasing Functions on the
Hyperbolic Plane

H. S. BEAR

This paper is a study of functions that map the whole hyperbolic plane into
itself, and decrease all distances. The important special case consists of the
analytic maps of the unit disc into itself.

There is of course a large literature concerning analytic maps of the disc
into itself. The kind of result we are interested in started with the work of
Julia [9], with subsequent work by Wolff [14] and Carathéodory [6] among
others. For an expository article on such maps see Burckel [4].

Consider the following theorem of Wollff.

THEOREM A. If fis an analytic map of D ={z:|z| <1} into D, then either
[ is conjugate to a rotation, or there is some point Be D= {z:|z| <1} such
that the iterates of f converge to 3 uniformly on compact subsets of D.

Theorem A and many related results do not depend essentially on the analy-
ticity of f, but only on the fact that f decreases hyperbolic distances in D.
Starting with this observation, Beardon [3] recently generalized Theorem A
to distance-decreasing functions on Hadamard manifolds; that is, distance-
decreasing functions f on (M, d) where (M, d) is a connected, simply con-
nected, complete Riemannian manifold of dimension at least 2 with non-
positive curvature. Goebel and Reich [10] have also treated similar questions
in the infinite-dimensional setting.

Our purpose here is to give further properties of distance-decreasing maps
of the disc (or hyperbolic plane) into itself. These results will of course apply
to all analytic self maps of the disc, and in particular we provide some more
details for the result of Theorem A. We take as our axiomatic approach to
hyperbolic geometry the metric approach of Birkhoff [4] or Maclane [11].
The basic idea is that each line comes equipped with a linear coordinate sys-
tem, and there is similarly given a cosmic protractor for measuring angles.
The text of Moise [12] gives an excellent comparison of this metric approach
with Hilbert’s synthetic axioms.

1. The Hyperbolic Plane

Let D be the open unit disc {z:|z|<1}, which we identify with the hyper-
bolic plane. The points of the unit circle I' = {z: |z| = 1} are not points of the
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hyperbolic plane, but play the role of infinities for the plane which are analo-

gous to +oo on the real line. The hyperbolic lines are arcs of circles orthogo-

nal to I'. We denote by («, ) the hyperbolic line (A-line) from ceI'to BeT.
The Poisson kernel with pole at o € I" will be denoted P,(z); thus

ey P(2)=r—"743

The hyperbolic distance in D is given by

1+06(z,w)
2 d(z,w)=log —————,
) (z, w) =log 1—o(z. W)
where

|z—wl
3 o(z,w)= —.
3) @)=
Equivalently,
4) d(z, w) =2tanh~18(z, w).
The hyperbolic distance is also given by

. ¢ 2|dg]

5 d(z, w) =min
) (z,w) =mi Ll—mz

where the minimum is over all rectifiable curves y from z to w. The + that
minimizes (5) is the #-segment from z to w. It is shown in [2] that distance
is also given by

P,(z)

6) d(z,w)=max log ————.
( aecl’ Poz(w)
The « that maximizes (6) will be the end of the A-line («, 8) through z and w
such that z is closer to o than w is. For all z € (e, 8), P,(z) Pg(z) = const. [2],
so d(z,w) is also given by [log Pg(z)/Pg(w)|.

We assume henceforth that f: D — D is a distance-decreasing function;
that is,

(M d(f(z), f(w))=d(z,w)

for all z, w, and we assume further that f has no fixed points. If strict in-
equality holds in (7) we will say that f is strictly distance-decreasing. If f is
an analytic function on D to D then f is distance-decreasing, so all these
results apply in particular to such functions.

Define, for 0<r <o,

®) R(ry=max{d(0, f(z)): d(0,2) = r}.

Thus R(r) is the radius of the smallest disc at 0 which contains the image of
the r-disc. If R(r) =<r for some r, then f would be a continuous map of
some closed disc into itself and so would have a fixed point, contrary to our
assumption. Therefore, for all r,
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©) o= 5y,
r
Since f is distance-decreasing,
(10) R(r)y=d(0, f(0))+r,
and
(11) R(r+8)=<R(r)+é.

From (9) and (10) we have

_R(n)
- r

(12) or —1 as r—oo.

The function p, is of course continuous for r >0, and we show next that
p, is strictly decreasing. Let A > 0; then
R(r+A4A) R(r)

r+A r

Prea—0Pr=
_ r(R(r+A)—R(r))—R(r)A
- r(r+A4)

rA—R(r)A
< -
r(r+A4)

(13)

<0.

Thus p, is a strictly decreasing continuous function that decreases to 1 as
r— oo,

LEMMA 1. For each r>0 there is a unique w, € D such that
(14) d,w,)<r and f(w,)=p,W,.

The mapping r — w, is continuous for 0 <r <o, |w,| is strictly increasing,
and |w,| > 1asr— oo,

Proof. Let g,(z)=(r/R(r)) f(z), so g, is a continuous map of the closed hy-
perbolic r-disc {z: d(0, z) <r} onto itself. By the Brouwer fixed point theo-
rem, g, has a fixed point, so there is at least one w, satisfying (14). Suppose
there are two points z; and z, that satisfy (14) for some r: f(z;) = p,z; and
f(z,) = p,25. Since the mapping z — £z strictly decreases distances if 0<
t <1, we have

(15) d(z1,22) = d(plf(zl), pif(zz)) <d(f(z), f(z2)-

This contradicts our assumption that f is distance-decreasing, so for each r
the w, satisfying (14) is unique.

To show that w, is a continuous function of r, assume to the contrary that
r,—r and |w, —w,|= ¢ for all n. We may assume by taking a subsequence
that w, —z#w,. Then
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(16) f(wr,,) =P Wr, 2> Pr2= f(z).

Since f(z) =p,z and |z|<r, z=w, and w, is continuous.

If |w,| is not strictly increasing, then there are r, s with 0<s<r, p;> p,,
and |w,|=|w,|. It is obvious from hyperbolic trigonometry that d(¢z, t'w) <
d(z,w)if 0<f<1and 0<t’'<1. Hence

(17) d(f (W), f(Ws)) = d (o, Wy, psWs) > d(Wy, Ws),
which is a contradiction. If |[w,|4 1 as r - oo, then there would be an accu-
mulation point in D, and hence a fixed point. O]

We will now specialize Beardon’s generalization of Theorem A to the plane
case. There is a unique point at oo for the hyperbolic plane (i.e., a unique
point 8 eI') such that f sends each z € D toward this 8. We will call 8 the
attractive point for f. To clarify the sense in which f maps each z toward S,
recall ([2], cf. (6) above) that the function log P;(z) puts a coordinate system
on each A-line (e, 8) to 8. That is, if z;, 2, € (a, 8) then

(18) d(zy,2;) =|log Ps(z,) —log Ps(zy)|.

All the points z with Pz(z) > N have coordinates greater than log N no mat-
ter what line («, 8) they lie on. Hence the condition Pg(z) — o is a way of
saying that z approaches § uniformly on all A-lines to 8. We will make the
following definition for this kind of hyperbolic limit at infinity, or boundary
approach in D.

DEFINITION. For {z,}CD and S eI, we say z,, — 3 hyperbolically if and
only if Pg(z,) — co.

Notice that hyperbolic convergence as just defined is convergence in a bona
fide first countable Hausdorff topology on D*=DUT'. A base for the open
sets consists of the open sets of D and all sets of the form {8} U{z: Pg(z) > nj
for el and n=1,2,3,.... This topology on D* relativizes to the usual
hyperbolic or Euclidean topology on D. We will write

(19) hlim f(z) =7

z—f
for this hyperbolic limit; (19) means that Pz(z) — o implies P, (f(z)) — co.
For we D,

(20) hlim f(z)=w
z—f
means that Pg(z) — o implies d(f(z), w) — 0.

In the right half-plane model of the hyperbolic plane, the Poisson ker-
nels are the functions P,(x+iy) =x/[x*+(y—a)?], —o<a <o, and the
function P, (x+iy)=x. The horocycle P,(z) =n is the circle of radius 1/a
tangent to the imaginary axis at ai. For 8=o0, hlim,_z f(z) =w means
f(z) > w as Rez— .
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The hyperbolic approach to a boundary point 8 € I, or point at infinity, is
genuinely intermediate between angular approach and topological approach
in the Buclidean metric of D. There are sequences {z,,} which approach 8eT°
tangentially but not hyperbolically. For example, let z, — 8 along a fixed
horocycle Pg(z) = k. There are also sequences that approach 3eI' hyper-
bolically, but not in an angle. For example, let =1 and let z,, be the paint
where the line through 1 with slope —n intersects the horocycle P;(z) =n.
This sequence approaches 1 both tangentially and hyperbolically.

With the above preliminaries, we now state the following.

THEOREM 1 (Beardon). There is a unique attractive point 8 € I" such that
Ps(f(z)) = Ps(z) for all z, and consequently
21) hlim f(z)=28.

z—-f

If f is strictly distance-decreasing, then Pg(f(z)) > Ps(z) for all z.
Proof. See Ahlfors [1, p. 7]; Beardon [3, p. 146].

COROLLARY 1. If fis a distance-decreasing map of D into D and f is h-
bounded, then f has a fixed point. In particular, an h-bounded entire func-
tion on the hyperbolic plane has a fixed point.

COROLLARY 2 (Liouville’s theorem). A bounded entire function on the
complex plane is constant.

Proof. Assume that f is entire and | f(z)| <M. Then f has a fixed point in
the closed M-disc. Change coordinates so that f(0) =0 and assume without
loss that | f(z)| <1 for all z. For all large n, let g,(z) = f(nz) for |z| <1. Then
g(0)=0, and for all z and all n > |z|, d(f(z),0)=d(g,(z/n),0) <d(z/n,0).
Hence f(z)=0. O

To obtain a second corollary to Theorem 1 we recall the following theorem
of Collingwood and Lohwater [8, Thm. 2-22] (see also Rudin [13]). If v is
any arc in D which is tangent to I" at 1, then there is a ge H*® such that g
does not approach a limit along v or any of its rotations. We will call such
a g with |g|. <1 a Collingwood-Lohwater function for +.

COROLLARY 3. If v is a curve in D that approaches 1 tangentially and
hyperbolically, and if g is a Collingwood-Lohwater function for v, then g
has a fixed point.

Proof. If y(t), 0=<t <1, is the curve, then the assumption is that y(¢) not
only approaches I' tangentially, but also hyperbolically; that is, P;(y(¢)) —»
as t — 1. If g does not have a fixed point, then g(z) approaches some BeTI
hyperbolically. Rotate v so that vy approaches 8, and hence Pg(y(t)) —» o as
t — 1. Then g(y(¢t)) —» 8 as t — 1, contrary to our assumption. It follows that
g has a fixed point. 1
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THEOREM 2. If B is the attractive point for f, then Py(f(z))/Ps(z) de-
creases as z moves toward (3 along any h-line («, 8). Hence Pg(f(z))/Ps(z) -
luyg=1as z—- B along (o, B).

Proof. Let z;,zo be any two points on («, 8), with z, closer to 8 so that
Pﬁ(Zo) >P,3(Zl). Then

log Pg(zg) _
———P,e(ZO =d(29,21)
(22) =d(f(z), f(z1))
- log Ps(/(20))
 P(f(zm))
Hence
23 Pozo) _ Ps/(z0)  Palf(z0)) _ Pa(/(z1))
Pg(z) — Pa(f(z1)’ Pg(zo) ~—  Pglzy)
If f is strictly distance-decreasing, then strict inequality holds in (23). Since
Py(f(2))/Ps(z) =1 for all z, the limit /,5 on («, B) satisfies /5= 1. O

Now we return to the curve w=w,, 0 <r <o, of points characterized by
JSw,)=p,w,, d(0, w,) <r. We have seen that w, approaches the unique fixed
point 3 as r — co. We now show, taking 8 =1 for convenience, that the curve
w,, 0 <r< oo, lies inside the polar curve

1—sin|6|

(24) r=
cos

which goes through (0, 0) tangent to the y-axis and through (1, 0) at angles
+7/4 to the x-axis.

THEOREM 3. If B=1 then the curve w,, 0<r <o, lies inside the curve
(24), and hence approaches 3 within the right angle at 3 which is split by the
radius to (3.

Progf. Assume that 8 =1. Notice that no w, can lie on the y-axis or to the
left of the y-axis. For such points, p,w, = f(w,) lies outside the horocycle at
1 through w,. Let w be any of the w,, and to be specific assume that w lies in
the first quadrant. Let C be the circle centered at 0 through w, and let H be
the horocycle at 1 which is perpendicular to C. H cuts C into two arcs, with
the smaller arc near 1. If w, lies on the larger arc, then the point o, w, will lie
outside the horocycle through w,. Hence w, must lie on the smaller arcs of
the circles at 0 which are cut off by the orthogonal horocycles. If C intersect
H at points re®, re=", then an elementary calculation gives (24). The curve
(24) is vertical at (0, 0) and has slopes +1 at (1, 0). ]

The same methods as those used above yield the following extension of
Julia’s theorem [7, p. 27].
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THEOREM 4. Let f be a distance-decreasing function on D to D with
or without fixed points. If there is a sequence {z,} such that z,,—> a €T,
f(z,) = yeT, and liminf(1—|f(z,)))/(1—|z,]) =c < oo, then ¢>0 and
hlimz—»a f(z) =Y.

Proof. Assume (z,} is as above. For any distance-decreasing function, we
have (7, p. 25]

1-|/G)| _ 1=|/(0)]
1-|z| — 1+[A0)°

Hence ¢ = (1—|£(0)])/(1+] f(0)]) > 0.
For any real sequence {s,} and any k with 0 <k < oo,

(25)

1-s, 1—
(26) ——"__k ifandonlyif — % k.
l_lznl l_lznl

Hence, if the limits (26) hold,

lim sup 1—s; =lim sup 1—s; 1—|,|"
(27) n— 00 1"'|f(zn)'2 n— o 1—'zn|2 l—lf(zn)lz
_k
o
Now recall that
|z —2,] : A e 1 R
28 —— <5, ifandonlyif .
U T I T2z~ =Tz, P

Pick a sequence {s,} so that the right side above equals k for all n. If P, (z)>
k, then the right inequality of (28) holds for all large n, and consequently
the left inequality holds for all large #, and even so with f(z,) and f(z) in
place of z, and z because f is distance-decreasing. Taking the limit in the
right inequality of (28) with f(z) and f(z,) in place of z and z,, gives, using
(27), P,(f(z)) = k/c. Thus P,(z) = k implies P, (f(z)) = k/c. Hence

(29) hlim f(z) =1,
A
and furthermore
P
Py(2) c
for all z. The same argument used in the proof of Theorem 1 shows that
strict inequality holds in (30) if f is strictly decreasing. 1

THEOREM 5. Let f be a distance-decreasing function on D to D with or
without fixed points. If there is one sequence {z,,} which approaches o within
an angle such that

@31) Pz o,

P,(z,)
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then hlim, _, , f(z)=+. That is, condition (31) for one angular approach
sequence insures that the limit is uniform along all h-lines to «.

Proof. By Theorem 4 it suffices to show that liminf(1—|f(z,)])/(1—|z,|) <
oo, We take a =1 and assume that z,, — 1 within an angle whose sides make
an angle 6, with the real axis. Let z, lie on the horocycle P;(z) =k, >1and
let 6, be the angle between the real axis and the line from 1 to z,, so 8, <#6,.
Let x,, 0<x, <1, be the point on the horocycle P;(z) = k, which is closest
to 0. Then (1+x,)/(1—x,)=k,. By the triangle inequality in the triangle
0, x,, z, we have
X, +(1—x,)sin 6, =|z,]

(32) I—IZ,,IZ(I—X,,)(I—S?H@")

= (1—x,)(1—sinfy).

By hypothesis, P, (f(z,)) = cP(z,) = ck,, so f(z,) lies inside the horocycle
P.(z) =ck,. If y, is the modulus of the closest point of this horocycle to 0,
then

1 1
+ =ck,,=c( +Xx,)
l_yn l_xn

’

1=y, 114y,
1-x, cl+x,

33)

Since f(z,) lies inside the horocycle whose farthest point from v is y,,,

l—lf(zn)‘ =1 —Vns
and hence

1-1]/(z,)| - 1-y,
1-lz,] = (1—x,)(1—sinbp)

_1/1+y, 1
T c\1l+x,/1—sinf,’

Hence (1—|f(z,)|)/(1—|z,|) is bounded, and the result follows from The-
orem 4. L]

(34)
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