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Introduction

In [1], Békollé found a necessary and sufficient condition for weight functions
such that the Bergman operator is bounded on the corresponding weighted
L7 spaces in the unit ball of C". In [6], Luecking characterized the dual of
weighted Bergman spaces with weights satisfying Békollé’s conditions. In
[5] Jevti¢ proved that there are bounded projections from general mixed
norm spaces onto the weighted mixed norm spaces of analytic functions
with the normal-function weights. Using these projections, he characterized
the dual of weighted mixed norm spaces of analytic functions with normal-
function weights.

In this paper, we show that the Bergman operator is bounded on weighted
L? spaces on the boundary of the unit ball of CV with normal-function
weights. Then we determine the weighted mixed norm spaces as the inter-
polation spaces between weighted L? spaces on the unit ball of CV and
the weighted L? spaces on the boundary of the unit ball C" with different
weights. These facts enable us to prove that the Bergman operator is bounded
on weighted mixed norm spaces with radial weights satisfying Békollé’s con-
ditions. The characterization of the dual of weighted mixed norm spaces
of analytic functions then follows from the boundedness of the Bergman
operator.

As applications, we extend Luecking’s result to the mixed norm spaces
with radial weights, and also show that Jevti¢’s results are corollaries of
our results.

In Section 1, we present the notations and statements of the main results.
The proofs of main results are given in Section 2 and Section 3. In the last
two sections, applications of the main results are given to extend Luecking’s
result and to obtain Jevtié’s results.

This work is part of the author’s Ph.D. dissertation under the guidance of
Professor William T. Sledd at Michigan State University.
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1. Notations and Results

Let U denote the unit ball in CY, N= 1. Denote by m Lebesgue measure on
CV=R*" normalized so that m(U)=1. For a=—1, let dm,=c,(1-|z|*)*dm
with ¢, chosen so that when « > —1, m_(U) =1. Denote by v, the surface
measure on the boundary S of U normalized so that vo(S) = 1. For z =
(21,225 ++-»2x) and w= (W, W,, ..., wy) in CN, let (z, wy =3 N, z;W; so that
1z|* =z, 2). |

We say that a positive function w satisfies Békollé’s B? condition (1< p <
oo) if

, p/p’
S wdmaG w“p/”)dma) < Cmb(K),
K K

where K =K(a)={zeU:|1—-(z,|a|/a)|<1—|a|} for ain U, p’=p/(p—1),
and C independent of K(a).
For a radial function w, the condition B can be written in the form

S: , w(r)y(1=r2)*r2N-1gy

1 i p/p’
X [S w(r)~®7(1 —rz)“er‘ldr] < Chlthr
I—h

forall0<h<1.
A positive continuous function ¢(r) on [0, 1) is normal if there exist a
and b, 0 <a < b, such that

(i) ﬂ; is nonincreasing with lim ¢(r)a =0, and
@ (1-r) r—1~ (1=7)
(ii) o(r) is nondecreasing with lim e(r) = o0,
(1-r)® ro1- (1=r)b

Let 5 =inf{b: b satisfies (ii) of (2)}.
The fungtions (¢, ¥} will be called a normal pair if ¢ is normal and there
exists A > b such that, for 0<r<1,

(3) (Y (r)=(1-r>™

If ¢ is normal, then there exists ¢ such that {¢, ¢} is a normal pair and ¢ is
normal (see [10]).

Let A be a nonnegative measurable function on U, and let B(r) and C(r)
be nonnegative radial measurable functions on [0, 1) such that the Lebesgue
measure of {re[0,1): C(r)=0} is zero. For measurable functions f on U
and ¢ eS8, let

||f,||ﬁ’1m=Ss[f(r§‘)|”A(r§‘)du0(§‘) for 0<r<land 1< p=<oo,

Since | f(r§)|PA(r¢) is a measurable function on U, | f.|4 , is a measurable
function on [0, 1). (See [7, p. 150].)
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Denote

1
LP%A,B)= [f: Souﬁ"fﬁ,pB(r)er_ldr <oo}, l<g<

and

LP*(A,C)={f: sup [fra,p C(r) <ool.
re[0,1)

Denote by H(U) the space of analytic functions on U, and let
HP9(A,B)=L"9A,BYNH(U) and H?”*=L"%(A,C)NH(U).
In the case that A is a radial function, B(r) = w(r)(1—r?)%, and C(r) =1,
we will write
LP9YAYPy(1—r?)®)=LP9A,B), LP®(A)=L""(A,C),
and
HPUAYPo(1—r2)*)= H” YA, B), HP*(A)=H""(A,C).

Let K, (z, w)=(1—(z,w))"V~1=%for « > —1and z, w in U. The Bergman
operator T, is defined by [8] as

N
Tt @=(" 5 ), Ktz fon dim,on),
Define
N+
17/(z) =< Na) SUIKO,(Z, w)|f(w)dm,(w).

Note that 7. is a linear operator.
In [1], Békollé proved the following theorem.

THEOREM (Békollé). T.* is bounded on LP'P(w(z), (1—r?)®) if and only
if w satisfies the condition BE.

The main results of this paper are contained the following two theorems.

THEOREM 1.1. Suppose p=g=<ooand 1< p<oo. Suppose that ¢ is a nor-
mal function and o — b > —1, where b is as defined after (2). If w is a radial
Sfunction and if ¢Pw satisfies the condition BE, that is,

1

[, wrerma—rierN-tar
(4) 1 , ) p/p’
X(Sl lw_(p/p)(r)cp_”(r)(l—rz)"‘rZN"dr) < Chletbp

Jorall 0<h<1, then

(i) T.* is bounded on L?9(p9%x(1—r?)*), and
(ii) T is bounded on LP"9 (¢ 9w ~W79D(1—r2)*).

THEOREM 1.2. Suppose p=q=o and 1<p<o. If {o,y} is a normal
pair with a+\N—b > —1, where b is as defined after (2) and \ is as in (3),
and if w(r) =0 satisfies
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S:_h w(r)e?(r)y(1—r®er2N-1gy

(5) | ’ ' ol
XG “’_(p/p’(f)so_p(r)(l—rz)“er“dr> < Chlet +Dp
1-h

Sfor all 0 < h <1, then the dual of HP4(¢9x(1—r?)*) can be identified with
HP (Y90~ 97D (1 —r2)y*) under the pairing

© Sy =| S@E@) dme ().
More precisely, if g belongs to H?>9 (7w ~479(1—r?)*), then the func-
tional on HP9(p%(1—r?)%) defined by
L,(f)=<{f, &
belongs to [Hp’q(cpqw(l —-rz)a)]* and "Lgl’ = C"gllHP'»Q'(l‘bCI'w*(Q'/Q)(l_rZ)OI).

Conversely, given a linear function L in [HP (9% (1—r2)*)]*, there is a
unique g in H”*9( 7w~ 97(1—r?)*) such that L, =L and

”gllﬂp"q'(;bq'w‘(q'/f”(l_rz)a) <C|L|.
Throughout this paper, C will be used to denote a positive constant, not

necessarily the same at each occurrence. The symbols ¢,y and a, b, \ will
always be as in (2) and (3).

2. Proof of Theorem 1.1

We will use Békollé’s theorem and an interpolation theorem, Theorem 2.5,
to prove Theorem 1.1. We first prove that the Bergman operator is bounded
on the weighted Hardy type spaces L”®(¢?f), 1 < p <oo.

THEOREM 2.1.  Let ¢ be a normal function and let b > 0 be as defined after
2). If o —b>—1, then T} is bounded on L* *(p?).

Proof. Let a>0 as in (2). Suppose ¢, £€S and that z = p{ and w = ré,
where 0<p<1land O0<r<1. Let k+/=N+«a—1, where k£ and / will be
determined later.

For 1< p<oo,

|| T2 @17 0" (o) dno()

p
st SU Il—(iffvw;flL+a+1 dma(w)] @?(p) dro($)
_ | f(W)|e(r) P
=SS U [1—= <z, wy|N*+e+ip(r) d””a(W)] ¢”(p) dvo(§)

IA

N

v TT—<z, wlF(r) dma(W)]
dm,(w) ]p/p’

o”(p)dvy($).

|
S | fW)|Pe(r)?
|

U [1=<z, w)|"Pp(r)
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The second factor of the integrand is

I S dm,(w) plp’
v |1—<z,w>l""so(r)]

e Co dvo(£) (1—r?)® IN—1 e
‘_ms 11—<z,w>|fp') o) ‘”] |

If Ip’— N >0, then (see [8, p. 17])

S dvo(£) —O( 1 )
s [1—=<z,w)|" — “\ (1=|rp)P"—N )"

1 (1—=r®H%dr plp’
! SCUO so(r)(l—rp)fp'-N] |

By the assumption a—b > —1, there is a b> 0 such that a—b > —1. We
can write

This implies

15C~Sp (1—r)*(1—r)*%dr Sl (l—r)b(l——r)"‘_bdr]p/p'

o o(r)(1—rp)P=N o o(r)(1—rp)P =N

(1—p)° Sp (1—-r)“""dr+ (1—p)? Sl (1—r)a—bdr]f’/p’

| e(p) Jo (1=rp)P=N " o(p) Jo (1—=rp)lP=N

The last inequality follows because (1—r)?/ ¢(r) is nondecreasing whereas

(1—r)?/o(r) is nonincreasing. A simple calculation shows that, if Ip’— N>
a—a+1, then (see [10, p. 291])

=C

r<c[4=0 1 trnraman, (1=0) (l_p)_;pfwm_bﬂ]"/"'
| o(p) ¢(p)

—(l_p)N+l+a-—lp':|p/p'
=C

¢(p)
Therefore

|| Tar @)ooy ()

_(l_p)N+l+a—1p'“P/P' |f(w)|p¢p(r) i
=¢ SO(P) g [SU |1_<Z, w>|kps0(,.) d’na(w)]‘pp(p) dV0(5 )
- C"(l__p)N+l+a—1p ap/p

i ¢(p) |

dvo(§) IS WIPeP(p)p?(r)
SU(S [1—<z, w)jﬂp> (1) dmq(w)
(1 )N+]+oz ip"p/p’ 1 lf(W)lp(,op(p)cpp(r)
- [ ¢(p) ] SU |1—pr|kp=N () dmq(w)
< [ (1=r)*e?(p)

(1 p)N+l+cx ip’ :lp/p

1
I 1rmon | Ny
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(1 _p)N+1+a—Ip' p/p'(l_p)N+1+a—kp
<CIf|ur=pr) } 0" (p)
= CHf”Lva(gaP)-

The third inequality holds if kp—N >0, and the fifth inequality holds if
kp—N>a—a+1. Therefore if we choose k£ and / so that

v(p) ¢(p)

kp—N>0, kp—N>a—a+1,
and
Ip’—N>0, Ip’—~N>a—a+1,

or, more simply, so that

l+i,>N+1,+a and k+£>N+1+a,
p p p

then |73 f] Lp.=,ry < C| f|LP-=(,P). Since k+1=N+1+a, we can choose / =
(N+1+4+a)/p’and k= (N+1+a)/p so that all requirements are satisfied.
For p=1and p =, the arguments are similar. O

REMARKS. 1. 7TF is not bounded on “unweighted Hardy type” spaces
L?*(1). In fact, f(x)=1 belongs to L (1) but T5(1) is not in L”>*(1).

2. The condition & —b > —1 may not be weakened. In fact, take o(r) =
(1—r) for some ¢ >0; then b =c. If a —c=—1, take f=(1—r)"¢; then [ is
in L?®(¢?) but T}(f) is undefined.

Next we give a real interpolation theorem for mixed-norm spaces. We will
follow the notation of [3].

DEFINITION 2.2. Let Xg, X, be two topological vector spaces. X, and X
are said to be compatible if there is a Hausdorff topological vector space U
such that X, and X, are subspaces of U.

Let X =(X,, X;) denote a compatible couple of two quasi-normed spaces
XO and Xl'

DEFINITION 2.3. Forain 3!_, X;, let
K(t,a)=K(t,a; Xy, X))
=inf{|ao|x,+t|ailx,: a=ao+a;, ap€ Xo, a; € X1},
||a||g,q’X=S:[t0K(t,a)]"%t— for 0<f<1and 0<q=<oo,
and let

1
(Ko, Xu 8= {a€ 3 Xt lalng0< 2]
I =

LEMMA 2.4. Let X =(Xy, X)) and Y= (Y, Y,). Suppose T is a linear map
Srom 3}_o X; into 3} _, Y; such that, for each a; e X,

|74y, = Kilai] x;.
Then T is a bounded map from (Xy, X1)g, 4, x into (Yo, Y1)g 4. v-
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For the proof, see [3].

Suppose that C is a nonnegative radial function on [0, 1) such that the
Lebesgue measure of the set {re[0, 1): C(r) =0} is zero. Suppose B is a ncn-
negative function on [0, 1) and that du=B(r)C(r) "r* ~!dr is a o-finite
measure on [0, 1), where 0 <y <oo. Fix 1 = p<oo. Let

m(p, f)=plre[0,1):|fi]a,,C(r)>p},

S*(t)=inf{p: m(p, [) <t},
and

\]fl;{(‘,:S:[t'/Tf*(t)]"% for 0<7=o0, 0<q=cw.

The vector-valued Lorentz space L(p, 7, g) is defined by

L(p,,q)=1S: ||f“7',q5°°}~

For the properties of m(p, f), f* and L(p, 7, q), see [4] and [3].

Assuming that L = (L?9(A, B), L”*(A, C)) is a compatible couple, with
a slight modification of its proof we can extend Theorem 5.2.1 of [3] to the
following vector-valued version.

THEOREM 2.5. Suppose fisin L?Y(A,B)+L"” (A, C), where 1 < p <o
and 0 <y <o, Then
(i) K(t, f;L77(A,B), L7 (A,C)) ~ (If)ylf*(s)l"’ds)l/"’, and
(i) fory<g=o, 1/7=(1-0)/v,
(L7Y(A,B),L”*(A,C))y,q,.=L(p, T, q).
The proof follows the argument in the proof of Theorem 5.2.1 in [3] with
| f(x)| replaced by [ £, 4,,C(r). We omit the details.

Let y=p, 0=1—p/q, and C(r)=1in (ii) of Theorem 2.5. We have the
following corollary.

COROLLARY 2.6. For g>p,
LP9(A, B) = (L"P(A, B), L” (A, D)1-p/q,q-
In particular,
LP (o %(1=r*)*) = (L7 (@Pw(1=r?)), L *(¢")1-p/q,q-

Proof. ltis easy to verify that L(p, q,q) = L?9(A, BCY~"). The conclusion
follows from this fact and (ii) of Theorem 2.5. O

In the proof of Theorem 1.1, we will use the following pairing between func-
tions in L”9(p%(1—r%)*) and functions in L”*9 (¢ 9w~ Y9791 —r?)*)y:

© Sy ={ S@E@ dm(z).

In [2, p. 304] Benedek and Panzone showed that the dual space of
L7909 (1 —r?)%) can be identified with L?*9(p9%(1 —r2)*) under the
pairing
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(&) =SU f(2)8(z)p%wdm,(z).
LEMMA 2.7. If 1=p<o and 1<q<oo, then under the pairing (7) the
dual of LP*9(p%(1—r?)%) can be identified with LP*9 (¢ 9w~ 979 (1 — r2)),

Proof. For each linear function L on L?%(p%(1 —r?)%) there is a unique 4
in L”*9 (0% (1—r?)%) such that, for each f in L? %% (1—r?)%),

LN =| SR r)a(r) dmyz)

and |L|=|A| 7" ¢ (9.0 -r2ye). (See [2].)
Let g = he9(r)w(r). Then a simple calculation shows that

|l rap=au—@rq - 2y0y = | B L2 (o1 — r2y)-
Therefore g belongs to L?9 (¢~ 9w ~97/9(1—r2)*) and

L) =| S8 dm ().

Conversely, for each g in L”*9(,~4',~@/a)(1 — 2y it follows from Hold-
er’s inequality that
|, f@0z@ dm.@)=Ly()

is a bounded linear functional on L? 9(p%(1—r?)%). L]

Now we turn to the proof of Theorem 1.1.
(i) From Corollary 2.6,
LY pw(1=r?)*) = (L7 P(ePo(1=r*)*), L (0" )1_p/q.q-

By Békollé’s theorem, condition (4) in the statement of Theorem 1.1 implies
that 7.* is bounded on L??(¢”w(1 —r?)®). It follows from Theorem 2.1 and
Corollary 2.6 that T.* is bounded on L?9(p9%(1—r?)%).

(ii) For fin L7 (¢ 90~ @/D(1—r2)*) and g in L9 (p9%0(1—r?)*),

|, e T @ dma (@)

<[ le@I|IT2r @] dmq(2)
U

=| Tle@Ils ol dmew)

= CI73 lg @)l Lr-aptoa -ty | f lLriap-a—@rog - 2y
=< ClglLraptua-r2y | flLraip-a,-@/ng - 2yey.
The last inequality holds because of part (i). Lemma 2.7 implies that 7.* is

in LP>9(p~ 90w~/ (1 - r?)®), since

| T3S Lp' 4 p=a'y—ta/r g 2yxy =SUD §U g(2)T} f(z)dm(z) |,
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where the sup is taken over all g in the unit ball of L?9(¢%w(1—r?)%) (see
[2, p. 303].) Hence 7;* is bounded on L”*9 (¢ 90 ~4/9(1—r?)%), O

It is easy to show that, if 1 < p<ocoand 1 =g <o, then

lim | f, = fur-ap900-r22) =0,

p—f
where f,(z) = f(pz) (see [9, Prop. 3.3]). It follows that H*(U) is dense in
HP (% (1—r?)%). Since T,, f = f for all £ in H® (see [7, p. 121]), we have
the following corollary of Theorem 1.1.

COROLLARY 2.8. Under the assumptions of Theorem 1.1, T, is a bounded
projection of L?9(p9%(1—r?)*) onto H”9(o%(1—r?)*) and a bounded
projection of LP*9 (o~ 9w ~970(1 — r2)*y onto HP 9 (o 9w~ 4791 — r2)®)
forp<g<oand 1< p<co,

REMARKS. 1. The example in Remark 2 after the proof of Theorem 2.1
shows that, in general (assuming that SO w(l1=r)*dr <), in order to make
T.* well defined in L?9(p%(1—r)®) we must have o —H > —1.

2. In order to make 7 a bounded operator, it is not necessary that » and
¢ satisfy the condition (4). For example, when N =1, fix g and p with g >p,
takec>0and o> —1sothat a —c¢> —1and a—c(g—p) < —1. If we let
e(r)=(1—r) and w(r) = (1—r)"%, then {{_, wp?(1 — r?)*dr = o, and
hence ¢”w does not satisfy the condition B?. Because L” (@90 (1—r?)%) =
LP9((1-r?)*), by choosing vy >0 very small and taking ¢(r) = (1—r)” and
a(r)=(1-r)"¢, itis easy to see that ¢”& satisfies the condition BZ. Theorem
1.1 then implies that 7;* is bounded on L”9($%(1—r?)®) = LP9((1—r?)).

3. Suppose T, is bounded on L?9(¢9%(1—r?)*). Following the method
Békollé used in [1, p. 311], if we put £(z) = 0~ “7D(r)e =9 (r)x k() (z), We can
show that ¢ % satisfies the condition BZ.

3. Proof of Theorem 1.2

Take &(r) = w(r)(1—r?)~*. Then
(/,—P ~—(P/p) — So—p —(p’/p)(l — 2)Mp’/p) ¢p —(p/p)
LPUplw(1=r*)*) = L7 Y(p%a(1—-r?)*),
and
LP ql(lpq'w_(ql/q)(l _,-2)a) — Lp”q’(go—q’cb_(q’/w(l __r2)a+>\)_
Thus, if w satisfies (5) then & satisfies (4). Theorem 1.1 1mplles that 7.7, , is a
bounded map on both
LP9p9&(1—r?)*™) and LP"9(p 960701 —r2)a+h),
Therefore, in order to prove Theorem 1.2, it suffices to prove that the dual
of L7 9% (1 —r?)*™*) can be identified with L?*7 (o 96~ @/9(1 —r2)2+})
under the pairing (6) for p <gq.
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Let g be in LP*9(¢ 9% ~97D(1 — r2)**M). 1t follows from Holder’s in-
equality that

S = C|flLr a0 -r2y+M |8l P a(p-a5—@/D = p2ya+)y.

Hence g defines a bounded linear functional L on H”9(%(1—r?)***), and
IL] =< ClglLra(,-aa—arag_ 2zyatry.

Conversely, let L be a bounded linear functional on H?*9(¢9&(1 —r2)*+).
Then L can be extended to be a linear functional on L” (9% (1—r2)**M).
By Lemma 2.7 there exists an /4 in L”*9 (¢ ™96 9791 — r?)®**) such that
L(f)=</f,hyand |L|~|h| ra(,~a5-@/ag_,2ya+)).

By setting g = T, ) h, from Theorem 1.1 we thereby have that g is in
HP" (o~ 954791 —r2)**+M), By the fact that 7., f = f for f in H*(U), Fu-
bini’s theorem implies that

LY=L 0 =T\, ) =L [, T\ (h)y =<1, &

for every fin H®(U). Since H* is dense in H” (¢ %(1—r?)®**), the con-
tinuity of L implies L(f) = ([, g) for all fin H?9(¢%(1—r2)***). We also
have

“g‘|Lp’.q’(¢—q’a,—(q’/q)(1_,2)a+>~) < C"h LP',Q'(¢-Gb—(Q7Q)(1_,.2)01+)\) < C"Lu.

Finally, suppose that g in L?*% (o9 ~@/D(1 — r2)2**) determines a zero
functional. Since K4+ (2, +) is in H*(U) for each fixed z in U, we have 0 =
(K,1(z,),8)=Czg(z), C>0. Hence g = 0. Therefore there is a one-to-one,
continuous, linear transformation from L?”*9 (o~ 9% ~9/D(1 - r2)2+*) onto
the dual space of L?9(p%&(1 —r2)*+>), m

4. Application of Theorem 1.1 .
In [5] Jevti¢ proved the following theorem.

THEOREM 4.1. For 1< p=<owand1=<q <o, the transformation P defined
by
PAw) = @)Ky 1z W) (1=~ dim(z)

Sfor win U, is bounded from L?9(r'=*Ny onto H? (%'~ 2N(1—=r)7Y).

We now show that if 1< p <o and 1<g <o, Theorem 4.1 is a special case
of Theorem 1.1.

Take w(r) =(1—r2)"2r'=2N, For each f in LP9r'=2N), let F(z) =
F)Y(r)(1—r?)/9=> Then F belongs to L” (% (1—r2)*~1) and

|Fl L aptoin —r2p=1y = fllLra1-2n).
Thus Pf(w)=T,_,F(w). Since
HP o' =2N(1=r?)~) = H” Yp(1-r})*7h,

Theorem 4.1 is equivalent to the statement: 7) _, is a bounded operator map-
ping L”9(p% (1 —r?)*~1y onto H” 9(p%w(1—r?)*".
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Since H*®(U) is dense in H”9(p% (1 —r?)*1), it suffices to prove the
boundedness of 7, _;. By Theorem 1.1, for g = p it suffices to verify (4). Since

(p—p’w—(p'/p) — ¢p'r(2N—l)(p’—l)(1 _r2)—>\’

we only need to verify that

1 1 , , pip’
) Sl—h (pp(r)(l —rz)—ldr(gl_h ¢(r)Pr(2N—l)p (l_rZ)—ldr> < Ch)\p.

Condition (8) will be verified by the following lemma.

LEMMA 4.2. For any normal pair {¢, ) and every nonnegative real num-
ber ¢,

: , p/p’
©) Sl_h‘op(’)(l‘”’_ld”(s t!/(r)”(l—-r)"‘dr> < ChO 0P

1
1-h
Jor all 0< h<1, as long as each integral exists.

Proof. Let 0<h< 1. Since ¢(r)/(1—r)?is nonincreasing, for ¢ >0 as in(2),

1 B 1 e?(r) _
p RS _Ni—1+ap
Sl_hw (r(d—r) drsCSl_h—————(l_r)ap(l r) dr
eP(1—h) (1 _
— CoP(1—h)h',

Similarly,
1 ) pIp’ )
(S lg[/p(l——r)’"ldr> = CyP(1—h)h\We,
1-h

Since ?(1—h)yP(1—h)=h*?, (9) follows. The proof of the lemma is com-
plete.

It is clear that (9) implies (8). For p <q, Theorem 4.1 follows from Lem-
ma 4.2 and Theorem 1.1. If g < p, then g’ > p’. Note that in (9), the posi-
tion of p, p’ and ¢, ¢ are symmetric; (ii) of Theorem 1.1 implies that 7y_; is
bounded on L”9(y ~90~9/4)(1 — r2)»~1). Recalling that o(r)y(r) = (1—r?)*
and w(r)=(1—r2)"2172N we have

lp—q’w—(q/q')(l e ‘pqw,.(ZN—l)(q/q’)H(l —r3 -1,
Therefore
LP.Q(¢—qw—(q/q’)(1 _rl))\—l) :LP,Q(wqwrQN—l)(Q/{l')H(1 —I‘Z))‘_l).
On the other hand, it is easy to show that, if 0 < p, g < o and w; ~ w, when
O0<ro<r<l, then H”9%w) ~ H?”9(w,). Since T _, f is analytic if f is in
L?9(p%(1—r?)*~1), we have
|1 fler a0 —r2p =1 = | Taoi Sl P dgpt0a - r 21,
< C| -1 [ 1P agpdor@N=-Dta/ar+1 _ 22-1,
< C| f) L7 a(pa,rCN=Da/a) 41 _ 22 =1y

= C|fLraaoa-r2p-1).
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Thus 7, _, is bounded on L?9(p%(1 —r?)*~!). Therefore Theorem 4.1 is
also true for g < p. O

5. Application of Theorem 1.2

In this section, we will give two applications of Theorem 1.2.
In [6] Luecking used Békollé’s theorem to identify the dual of weighted
Bergman spaces and proved the following theorem.

THEOREM 5.1. Suppose w(z) satisfies
: , p/p’
(10) SK w(z) dmn(z)(SK w~PP)(z) dmy(z)) < CmP(K)

for 1< p<oo, where w>—1, v>—1, and o =n/p+~/p’. Then the dual of
H?P(w(z), (1—r?)") can be identified with H”>9'(w(z)~ ", (1=r*)") un-
der the pairing (7).

In [5] Jevti¢ obtained the following result.

THEOREM 5.2. Let 1< p<owand | <q < . Then the dual space of
H? o1 =2N(1 — r2)~Yy can be identified with H”*9(y9r'~2N(1 - r%)™h
under the pairing

Sey=| f@E@)dmy

We first show that, for a radial function w, Theorem 1.2 gives a generaliza-
tion of Theorem 5.1 in mixed-norm space.

To see this, let ¢ = (1—r?)' and ¢ = (1 —r?)’, where i, j >0, and apply
Theorem 1.2 with « = —1 and i+ = \. Then (5) becomes

Sl w(r)(1=r2)P=1p2N=-14,

1—h
a1 1 ‘ o/’
X <S1 , W™ P (ry(1—r2)r=1p2N-1 dr) < Ch™.

It is easy to see that

HP9(p9%0(1—r?) )= H?Yw(1—r?)"71)
and
Hp’,Q'(‘bq’w—(q'/q)(l —r) h= H.D’sfl'(w—(ﬂf/q)(l _rZ)jq’—l)_

By Theorem 1.2, for g = p, if w satisfies the condition (11) then the dual space
of H”9(w(1—r?2)"7~1) can be identified with H?”*? (9791 —r2)/9~1) un-
der the pairing (6). Let i=(n+1)/q, j=(y+1)/q’, and t =4/q+~v/q". Then
n=iq—1,y=jg—1,and N\=i+j=t¢+1. Hence Theorem 1.2 gives the fol-
lowing theorem.

THEOREM 5.3. If l<p=q<o, >—1, y>—1, and t > —1 satisfy t=
n/q+v/q’, and if a radial function » satisfies



Bergman Projections and Duality in Weighted Mixed-Norm Spaces 83

Sl w(r)(]—,~2)(n+1)(p/q)—lr2N-1dr
—hn
- : p/p’
X(S w_(p'/”)(r)(l_r2)(7+l)(p70')—1r2N—1dr) < CHU+DP
1—h

for all 0 < h <1, then under the pairing

13) er=\ rzam,
the dual of H” % w(1—r2)") can be identified with H”>9 (w~9/9(1—r2)7).

Taking g = p in Theorem 5.3, we immediately get Theorem 5.1.

Next we show that Theorem 5.2 is a special case of Theorem 1.2 if 1 <
p<oand 1< g<co,

Indeed, it suffices to show that the dual of H?9(¢9(1—r?)~!) can be iden-
tified with H?>9'(7(1—r?)~!) under the pairing

S, &= gU S(z)8(z)dm, _,.

Taking w=1 and o« = —1in Theorem 1.2, (5) becomes

pip’
S:_h gap(r)(l——rz)_erN_ler:_h x/fp’(l—rz)*‘rZN—‘dr) < Ch™.
By Lemma 4.2 and the discussion after Lemma 4.2, every normal pair satis-
fies this inequality. Therefore, for g = p, Theorem 5.2 follows from Theo-
rem 1.2 immediately.

If g <p, then g’> p’. Using the duality argument, it can be shown that
the dual space of H? 9 (y7(1—r?®)7Y) is H? %91 —r*)~!). This implies
that H”9(¢9(1—r?)7") is a closed subspace of L”9(o9(1—r?)~"). Because
LP 991 —r?)7") is reflexive (see [4, p. 306)), it follows that the dual of
HP9e9(1—r?)Yis H? 7(y9(1—r?)""). We also get Theorem 5.2.
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