Removable Sets for Harmonic Functions

DAVID C. ULLRICH

0. Introduction

Suppose that K is a compact subset of R? d=2. A theorem of Carleson
[Ca, Thm. VII.2] states that K is removable for harmonic functions satisfy-
ing a Lip,, condition, 0 <« <1, if and only if my_,,,(K)=0; here mg de-
notes B-dimensional Hausdorff measure.

Carleson’s result fails for o =1: While it is easy to see from Green’s theo-
rem that K is removable for Lip, harmonic functions if m;_;(K)=0, Uy
[Uy] has recently given an example of a compact subset of R? that is re-
movable for Lip; harmonic functions in spite of having positive (d—1)-
dimensional measure. (As noted in [Uy], for d = 2 this follows from the exis-
tence of a set of positive length that is removable for bounded holomorphic
functions. Such an example was given by Vitushkin [Vt] and simplified by
Garnett [Gt]; the example in [Uy] is a generalization to R? of the example
in [Gt].)

We shall show that K is removable for harmonic functions in the Zygmund
class if and only if m,_;(K)=0. (Definitions and a more precise statement
follow.) The argument below may also be used to give a proof of Carleson’s
theorem for 0 < o < 1 which is perhaps somewhat simpler than the argument
in [Ca].

Suppose € is an open subset of R? and u: Q - R. We say that u is a Zyg-
mund function on Q (u € A;(Q)) if u is continuous on  and there exists ¢ < oo
such that

0) [u(x—y)—2u(x)+u(x+y)|<cly|

whenever x, x +y e .

Note that the hypothesis of continuity cannot be omitted here; (0) alone
does not imply that u is measurable, even for @ =R? [Kr]. However, it is
easy to see that ¥ must be continuous if it is upper semicontinuous and sat-
isfies (0), so that in particular a subharmonic function satisfying (0) is a Zyg-
mund function. (We should perhaps point out that the standard definition
of A, requires that # be (globally) bounded [Kr]; we shall find it more con-
venient to omit this condition.)
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THEOREM 1. Suppose K is a compact subset of R%, d =2.

(1) If m;_((K) =0, Qis an open set with KCQ, ue A(R), and u is har-
monic in Q\ K, then u is harmonic in Q.

(ii) If my_(K) >0 then there exists u € A{(R?) such that u is harmonic in
RI\K and lim, _, o u(x) =0, although u does not vanish identically
(so that u is not harmonic in R%).

The following apparently stronger result follows from Theorem 1.

THEOREM 2. Suppose Q is an open subset of R%, K is a compact subset
of Q, and my_((K)=0. If ue A{(Q\K) and u is harmonic in Q\K, then
there exists a harmonic function u; e A;(Q) with u, |Q\ K =Uu.

To show that Theorem 1 implies Theorem 2 is not quite as trivial as is the
analogous assertion for Lip,, because it is not obvious that ¥ € A; implies
any particular bound on the modulus of continuity of #. As we shall see in
Section 2, there is a standard estimate on the modulus of continuity which
follows from (boundedness and) membership in A, but it depends on con-
vexity of the domain, and Q\ X is certainly not convex (nor are we requiring
that Zygmund functions be bounded). However, we shall see in Section 2
that if m,_(K) =0 then Q\ X is close enough to convex to allow us to prove
Proposition 2, from which Theorem 2 follows immediately.

We wish to thank the referee for answering a question that arose in con-
nection with Proposition 1.

1. Proof of Theorem 1

The two cases d =2 and d = 3 are identical except for one detail which is
even more trivial for d =3 than for d =2; thus we will restrict attention to
the case d =2. We will let D(z, r) denote the open disc in the plane with cen-
ter z and radius r. The word “measure” will mean “Borel measure”.

LEMMA 1. Suppose p =0 is a measure in the plane such that p(D(z,r))<r
forall zeC, r>0. Then

Je

Jfor some absolute constant c.

2 2

log du(z)<c|h| (heC)

ZZ

Proof. Observe first that it is sufficient to consider the case 4 =1; a dilation
and rotation will then give the general case. Let x(z) = |log|1—z72||.
If |z| =1/2 then x(z) <c+2log(1/|z]). If we set

A,={z:270"D<|z| <277,
it follows that
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xdp=>Y, SA xdp<c+c ) n27"=c.
n=1v4n

n=1

S D(0,1/2)

The integral over D(+1,1/2) may be estimated in a similar manner, so that

b,y xdp=c.
Now set B, ={z:2"<|z|<2"*!}. If |z]| = 2 then x(z) =c|z|™? so that

S xdp=YY S xdp<c Y 272M"<c.
lz|=2 n=19YBy 1

n=

Thus {- xdp<c. O

The proof of part (ii) of Theorem 1 will begin with an application of Frost-
man’s lemma: If m,;(K) >0 then there exists a probability measure u sup-
ported on K such that u(D(z,r)) <cr for every ze C, r >0 [Ca, Thm. IL1].
The following proposition will be used in the proof of part (i) of the theo-
rem; the proof of the proposition proceeds by showing that if m(K)=0
then there exists a probability measure p supported on K such that
limsupr~w(D(z,r)) = forall zeK.
r—0Q

It is easy to construct an example showing that “lim sup” cannot be replaced
by “lim” here. In fact “lim inf” cannot be replaced by “lim” in the statement
of Proposition 1, although this is not quite so easy to see; a construction of
the required example was provided by the referee.

PROPOSITION 1. Suppose that K is a compact subset of the plane with
m(K)=0. There exists a function v, subharmonic in C and harmonic in
C\K, such that

27 .
) lim infr“l{v(z)—(ZW)_ISO v(z +re”)dt} =

r—0

for every z e K.

Proof. For n=1,2,... we may choose z/e K and r;/'>0 (1=<j=<N,) such
that K C Uz, D(z}, r') and

Nn
) Y r<d,
Jj=1

Let v=Y,-,v,, where
Nn

3) va(z)=2" 3 rf'log|z—z]|.
i=1

It is clear that v is subharmonic in C and harmonic in C\ K, because v is
simply the (logarithmic) potential of a finite measure supported on XK. (Note
that 377, 2" 3, rf' <o, by (2).)

Now fix z € K, and given n =1, 2, ... select a value of j such that |z —z}| <
rj'<47". Since each term in the definition of v is subharmonic it follows that
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ny—1 12" n it
(2rf") {v(z)—(Zvr) S v(z+2rje )dt}
0
27 ,
52”“1{10g|z—zf|—(27r)"1SO log|z+2rj”e"—-zj’|dt}

n—1 n -1 2m n —it n
=2 {log|z—zj |—(27) SO log|2r/+e " (z—z} )|dt}
=2""1{log|z —z}| ~log(2r/)} < —2"~'log(2). H

Proof of Theorem 1. We begin with part (ii): Suppose m,;(K) > 0. Choose
two disjoint compact sets K; and K, with K; C K and m(K;) >0 (j =1, 2).
As mentioned above, we may choose a probability measure p; supported
on K; such that pu;(D(z,r)) < cr for all ze C and r > 0. Define

;(z) = | 1og|z —w| dy; (w).

It follows that u; is subharmonic in C and harmonic in C\ X, and Lem-
ma 1 shows that u; satisfies inequality (0) above. Hence u; € A;(C). Further-
more, u;(z) =log|z|+0(1) as z - o, so that if we define u = u; —u, then
lim,_, ,u(z)=0. (Here the argument is slightly simpler for d =3; in that
case lim, _, , #;(x) =0.) Finally, the function « is certainly not identically
zero; for example, Au = p;— p, in the sense of distributions.

We turn now to part (i). Suppose K is compact, m;(K) =0, Q is an open
neighborhood of K, u e A(2), and u is harmonic in Q\ K. The fact that
u € A;(2) has the following consequence:

4)

27 .
M(Z)—(ZW)‘ISO u(z+reydt|<cr (ze9, 0<r<dist(z, 8Q)).

Indeed, a bit of rearrangement shows that

27 .
u(z)—(Zw)"’So u(z+re'')dt

27 . .
=(41r)_150 (2u(z) —u(z +re’)y—u(z—re')} dt,

so that (4) follows from (0).

Now choose a bounded open set Q; with ; CQ, K CQ,, and such that Q,
is regular for the Dirichlet problem. Given fe C(3%,), let P[ f] denote the
harmonic function in Q, that tends to f at the boundary of Q.

Define a function # in @, by #=u—P[u|s0,]; we need only show that
#=01in Q,. Let v be as in Proposition 1, and set # =v—P[v|aq,] in Q;. For
6 > 0 define uy =i + 60.

Note that

~ -1 2 _ it —1 27 it
#(z) — (27) jo d(z+re')dt = u(z) — (2) SO u(z+re'ydt
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for z e Q;and 0 <r <dist(z, 3Q;); similarly for # and v. Thus it follows from
(1) and (4) that

2 .
liminfr”liua(z) —S " us(z+re'') dt} = —00
r—0 0

for every z € K. In particular, if z € K then there exist arbitrarily small r >0
such that

2% .
5) us(z) s(h)“‘SO us(z+re')dt.

On the other hand, if z € Q;\ K then (5) holds for all sufficiently small r be-
cause u; is harmonic in a neighborhood of z.

This shows that u; is subharmonic, so that #; <0 in Q,, by the maximum
principle. Let é approach zero; it follows that # <0 on Q;\ K, because 7>
—oo there. But i is continuous, so that # < 0in all of Q,. The same argument
shows that —# < 0. 0

2. Proof of Theorem 2
Theorem 2 follows directly from Theorem 1 and the following proposition.

PROPOSITION 2. Suppose Q is an open subset of R% K is a compact sub-
set of @ with my_(K)=0, and ue Aj(Q\K). Then there exists a (unique)
ue AI(Q) with u IQ\K =U.

Note that Proposition 2 depends on the fact that m,;_;(K)=0: Two exam-
ples are given in [Kr] of bounded open sets O and functions v e L*NA;(O)
with v & Lip;/,(O). Suppose that we are given such an example, with |x|<1
(xeO). Define K ={xeR% |x| <2, x¢ O} and @ =R? and set u(x)=0
(|x]| >2) and u(x) =v(x) (x€O). Then ue A{(2\K) but LN AR% C
Lip, /Z(Rd ) (see (6) below), so that u cannot be extended to u; € A{(R?). Of
course, the K given here is quite large; one might ask precisely which sets X
are removable for A, in the sense of Proposition 2.

In order to prove Proposition 2 it is sufficient to show that # extends to a
function u; € C(2); the fact that u, satisfies (0) then follows by continuity.
Thus we need only show that « is uniformly continuous near K. For this
we will use the following standard estimate [Kr, Lemma 2.8}: Suppose that
ue L*NA(Q) and Q is convex. Then

©) JuCet+y)—u()| = c¥(y)) =C|y|(1+log<ﬁ))

whenever x,x+ye€Q and |y|<1.

The following lemma shows that if m,;_;(K) = 0 then Q\ K contains enough
straight lines to allow one to derive Proposition 2 from (6). Given x, y eR?,
let [x, y] CRY denote the closed line segment with endpoints x and y.
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LEMMA 2. Suppose Q is a bounded open subset of R? and K is a compact
subset of Q with m;_,;(K)=0. Let 6 =dist(X, 3Q).

(1) Ifx,y e Q\K with dist(x, K) <8/2 and |x —y| < /2, then there exists
z such that [x,z] CQ\K, [z,y]CQ\K, and

|x—z|+|z—y|=2|x—Y|.

(1) There exists a compact set E C Q\ K such that if x € Q and dist(x, K) <
6/2 then there exist y,z e E with x=(y+2z)/2.

Proof. Suppose x and y are as in (i). Let D denote the (d —1)-dimensional
“disc” with center (x+ y)/2 and radius |x — y|/2, lying in the hyperplane
passing through the point (x 4+ y)/2 and orthogonal to the line segment
[x,y]. The fact that m;_,(K) =0 shows that ([x,z]U[z,¥])NK is empty
for m,_,-almost all z € D. :

For (ii), let K; = {x € Q: dist(x, K) < 6/2}. For each x.€ K| there exists w(x)
such that |w(x)|<6/4 and x +w(x) ¢ K, again because m,_;(K)=0. Now
the fact that X is closed allows us to find r(x) > 0 such that

(B(x+w(x), r(x))UB(x—w(x),r(x)))CQ\K (zeky).

(Here B(p, r) is the open ball with center p and radius r.) The compactness
of K; shows that there exist finitely many x, ..., x5 € K; with

N

K, C _UIB(xJ-, r(x;)).
J:

Let

N
E= UI(B(xj +w(x;), r(x;)) UB(x; —w(x;), r(x;))). O
Jj= , .

Proof of Proposition 2. We may suppose that € is bounded. Let
6 =dist(K,dQ2) and Q;={xeQ\K:dist(x,K)<b/2};

as noted before, we are done if we can show that « is uniformly continuous
on ;. We shall show that (6) holds for x,x+ye @, |y|=<1. ‘

First, let £ be as in Lemma 2(ii). The fact that E is compact shows that u
is bounded on E (by definition, A;(2\K)C C(2\K)). Hence u is bounded
in 2, by (0). Now suppose x, y € Q; and |[x—y|=<1/2. Choose z as in Lem-
ma 2(i). We may apply (6) to obtain an upper bound for |u(x)—u(z)|+
|u(z) —u(y)|, showing that in fact |u(x)—u(y)|<cy(|x—y]), as required.

]
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