The Null Blow-Up of a
Surface in Minkowski 3-Space and
Intersection in the Spacelike Grassman

MAREK KOSSOWSKI

Introduction

A smoothly immersed compact orientable surface Q in 3-dimensional Min-
kowski space can be decomposed into a disjoint union D+*UD®UD ™, where
the induced metric is positive definite on D*, degenerate on D° and in-
definite on D~. Along DY, the line orthogonal to Q is also tangent to Q. Im-
posing natural transversality conditions on this configuration stratifies the
surface so SP Cc D°C Q, where the set SP of stall points is contained in the
set D of stall curves that is embedded in Q. The stratification is defined as the
loci, where the orthogonal line bundle is tangent to the next lower stratum.
In [K2] we constructed a Gauss map for Q into the 2-sphere, g: Q — S2, with
degree i%x( Q). Here we construct a Gauss map for D° into the compacti-
fied spacelike Grassman, cg: D% — S!x S'. In this context points of SP corre-
spond to intersection points of cg with the diagonal in S! x S'. In this paper
we establish a formula relating: the degree of g, x(D ™), and the interesection
number of cg with the diagonal (Theorem 4). As a consequence we have two
integral inequalities that can be used to characterize simple configurations
(Theorem 6). We then construct the null blow-up NB of Q. This is a com-
pact folded double cover of D~UD?, p:NB - D~UD?9 with an oriented
line field L whose zero points are exactly SP € D°. This null blow-up is com-
pletely determined by the first fundamental form on Q, and can be thought
of as a completion space for null geodesics in Q (i.e., a blow-up space for
the singularities in the null geodesic ODE). We then show that the sum of
the indices at these zero points is the intersection number of cg with the diag-
onal in S!x S!(Corollary 8). Since this line field p-projects to null subspaces
in D™, this corollary links purely extrinsic properties (a Gauss map for D?)
with purely intrinsic properties (the global dynamics of null pre-geodesics in
D~ U DY%). Furthermore, since these zero points can be viewed as a degener-
ate type of “conjugate point”, we have a new link between conjugacy in the
null geodesic ODE and global properties of the underlying manifold.

Received March 5, 1990. Final revision received October 28, 1990.
Research partially supported by NSF grant DMS 88-03585.
Michigan Math. J. 38 (1991).

401



402 MAREK KOSSOWSKI

We will begin by reviewing the relevant transversality conditions on the
immersions. Sections 2 and 3 contain discussions of D° and the associated
(S!x S!)-valued Gauss map. In Section 4 we prove the degree formula. Sec-
tion 5 contains several applications and examples; in particular, the null
blow-up construction will be found in Section 5(D). In Section 5(E) we dis-
cuss the manner in which the shape of the surface controls the existence of
simply connected L-invariant sets and Rheeb components on the null blow-
up. In Section 5(F), we use these observations to find global restrictions on
the stratifications SP ¢ D° C Q, which can be realized in Minkowski space.

The author would like to thank J. Beem, R. Bryant, P. Eberlein, P. Ehr-
lich, G. Emch, R. B. Gardner, R. Howard, and T. K. Milnor for inspiration.

1. Preliminaries

Throughout this paper M3 will denote Minkowski space, the real 3-dimen-
sional vector space equipped with bilinear form {, ) of type (2, 1) (i.e., the
normal form has two plus-signs and one minus-sign). We will assume that
M3 is oriented and time oriented, that is, a 3-volume form d¥ and future di-
rection, FUT, have been chosen. The light cone {veM?3|{v, v) =0} will be
denoted by LC. We will use various orthogonal splittings of Minkowski space
M3 =E?+E", with associated projections

g E2+E">E? and f#:E*4+E -E".

Throughout this paper a compact hypersurface in M will be a smooth im-
mersion of a connected compact orientable 2-manifold, j: Q - M?.

Over such a hypersurface we have ORTH(Q) — Q, the orthogonal (line)
bundle, with fiber over x € Q, ORTH, ={v e Tj,yM?|vLT,Q}. A compact
hypersurface Q in M3 decomposes into three disjoint nonempty subsets Q =
DYUDUD~ on which the induced metric is (respectively) of type (2, 0),
(1,0), and (1,1). Now at a point x € D°, where the induced metric degener-
ates, there is a 1-dimensional radical subspace RAD, C 7, Q, which is orthog-
onal to all of T, Q. Hence 7, QN ORTH, =RAD,, and we see that ORTH(Q)
and TM?/TQ differ.

Now, by adapting Lemma 1 of [K2], we have that ORTH(Q) is trivial
and that a choice of orientation on Q determines a connected component
of ORTH(Q) — {zero section}. Thus, given j: Q—M? and x e Q, we have
a well-defined direction in 7j,M?> which, upon translation to the origin,
may be viewed as a point of S2. This defines g: Q — S?, the Gauss map of
j: O —M?3. By adapting Proposition 3 of [K2], we now have that the degree
of g: Q- S?is given by +1x(Q), where x(Q) denotes the Euler characteris-
tic of Q. Throughout this paper we will choose the orientations of ORTH(Q)
and S? so that the sign above is negative. Our first goal is to express this de-
gree in terms of a Gauss map defined on D? (Theorem 4). This requires sev-
eral regularity assumptions on the immersion, which we will now describe.

First we require that the map j*(, y: Q - o?> T*Q be transverse to the dis-
criminant stratification in the symmetric 2-tensor bundle over Q. This implies
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that DY is a finite union of compact 1-dimensional submanifolds that form
the boundary of the open submanifolds D* and D~ in Q. We orient D°
as the boundary of D*. A consequence of this condition is that every com-
ponent of D° bounds both D* and D~; that is, the bilinear type of the in-
duced metric must change when crossing D%. Now if # is a nonzero section
of ORTH(Q) representing the orientation of Q, we can further decompose
DT into disjoint open submanifolds D* =D} UDJ, where

xeDf if (n(x),FUTY)<0 and xeDj if {(n(x), FUT)>0.

The boundaries of Df and D then decompose as D°=D2UD3.

Next we define the stall points SP C D to be the subset where RAD and
TD® agree. Thus the metric induced on D? vanishes at SP and is positive
definite on D°—SP. Such an induced metric on D°cannot change type trans-
versely on DY in the sense defined above. Thus we are compelled to impose
secondary transversality conditions.

Notice that the second fundamental form of j: Q —»M?> must be viewed
as a tensor II: 7O X TQ X ORTH(Q) — R with 1I(X, Y, n) ={Vy Y, n), since
there is no way to globally normalize the section n. In fact, over D9 this ten-
sor is intrinsic, that is, determined by I =j*{, ). We will assume that, for all
x €SP c D° C Q, the bilinear form II,.(—, —, n) is nondegenerate. Now RAD
is a line field along D? that is tangent to D° at x e SP. We will assume that
the order of contact is 1 (see [GG, Def. 2.3, p. 146]). This latter assumption
implies that the stall points are isolated. Both of these conditions are intrin-
sic, but they will also control extrinsic properties of D° as a curve in M>.
This is the content of Lemma 3 in Section 4. In the next two sections we col-
lect the relevant extrinsic properties of D°.

In order to make these definitions more concrete, we present a local model
illustrating both the transversality conditions introduced above and the sense
in which they are intrinsic. Since I =j*(, ) has rank 1 at x e DY, there exist
local coordinates on Q such that I is represented by E(x, y) dx?+ G(x, y) dy*>
with £(0,0)=0 and G(0,0) 0. Thus D is locally represented by {(x,)|
E(x,y)=0} and RAD is locally represented by the line field spanned by adx.
In these coordinates the tensor II is represented by

Eydx*+2E,dxdy—G,dy)®dx over {(x,y)|E(x,y)=0}.

Notice that we have written II in terms of I. The reader may check that this
expression agrees with the usual second fundamental form over D% An ex-
planation can be found in [K1].

At a stall point dx must be tangent to D° so E,(0,0)=0 and we may
write E = (y —x2e(x))E with E(0, 0) # 0. This latter condition on E is equiv-
alent to the first transversality assumption. Now dx is a vector field defined
on a neighborhood of (0, 0) that spans RAD over D? and Det I = EG van-
ishes on D° Hence R(DetI) = (—2xe—x2e’)E + (y —x2%e)E,. This function
has a first-order zero if and only if e(0) 0. This is equivalent to the last
transversality condition and implies that the induced metric on D? is locally
represented by x22(x) dx? with 2(0) = 0. Hence the stall points are isolated.
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2. Spacelike Loops

A spacelike loop in M? is a smooth immersion c¢: S! - M? such that the in-
duced metric is positive definite. It follows that the normal bundle (S!)*is a
trivial rank-2 bundle with fibres carrying a type-(1, 1) metric. To describe the
two S'-valued Gauss maps of such a curve, we choose an orthogonal split-
ting of Minkowski space, M> =E2+E ™, and we consider the two unique sec-
tions of (S!)* that satisfy the following:

(@ (Ui Uly=0fori=F,P;
(b) t.(U(x)) is of unit length for all x e S! for i = F, P;
(©) (UL FUT)<0; and

(d) adv(—,UF,UF)y=adl.

Here dl is an orientation 1-form on S!, and equivalence is in the sense of
orientations. The subscript s refers to the choice of splitting. Translating
these sections to the origin in M3 yields two maps, U’: S! - S}, i = F, P, where

(E2) SE=LCN{t~1(1)} and SH=LCN{t71(-1)}.

Notice that each S}, i =F, P, in (E2) may be viewed as a splitting depen-
dent model for the space of null lines in M>. Thus we obtain two well-defined
Gauss maps into S} and we say that the U/ represent the Gauss maps of g;:
St — 8} relative to a splitting of M3. We will write F-deg and P-deg to de-
note the degree of gr and gp, respectively.

Both of the S} carry preferred orientations defined by positive rotation
about FUT. Each splitting M®> =E?+E~ induces positively oriented length
1-forms d/! on the S} whose total lengths are 27. We define the split curva-
tures of a spacelike curve by (U )*dl§=k} dl, i =F, P, where d! is the in-
duced length 1-form on the curve. The sign of these split curvatures depends
on a choice of orientation for the curve.

However, if we set TILT; = (1/N2)US, UFPy: S' > R with 0 < TILT, <1,
then

(ED

_ KTk
~ TILT,
defines the quadratic curvature of the spacelike curve. The function k: S' - R

is independent of the choice of splitting and of the orientation on the curve
(see [K4]).

k

PROPOSITION 1. Letc: S' —»M?3 be asmoothly immersed, spacelike curve;
then F-deg = P-deg. Furthermore, given n € Z, there exists an imbedded
spacelike curve with F-deg = n = P-deg.

Proof. For the first part see Theorem 1 of [K3]. To construct such a curve,
choose an immersed curve in E2C M? with E%-Gauss map of degree n and
transverse self-intersection points. Now eliminate the self-intersection points
in the curve by deforming the curve into M3. We are finished. ]
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Notice that a null line in LC determines a unique point in each S}. Thus
St and S} can be identified in an orientation-preserving manner, and the
g': S15 S} define the completed S' x S*-valued Gauss map, cg: S' - S'x 5!,
of a spacelike curve. Since the diagonal A in S!x S! can be identified with
the set of null lines in LC, we can think of this S!x S! as a compactification
of the Grassman of spacelike lines in M>. Now, by Proposition 1, the com-
pleted Gauss image of a spacelike curve is an (n, n)-curve in S x S! that does
not intersect the diagonal.

3. Spacelike Loops with Stall Points

A smooth immersed loop, c¢: S! - M3, whose induced metric is positive or
zero is called spacelike with stall points. Here we will assume that the stall
points, where the induced metric is zero, are isolated. The orthogonal 2-
plane is still well defined at every point of the curve. Here we will assume
that for any splitting there are two pairs of smooth sections of (S')* that
satisfy (a), (b), and (c) of (E1). There need not exist sections that satisfy (a)
through (d) of (E1). If we write (Uf, UF) to denote one pair satisfying (a),
(b), and (c) of (E1), then the other pair is given by (—U?*, —UF). This defines
a (S'x S!)-valued Gauss map whose image intersects the diagonal exactly at
stall points. Here we will assume that the intersection of this Gauss image and
the diagonal is transverse in S!x S! and that both of the associated Gauss
maps g;: S! — S} are immersive at stall points. These maps are represented
by the chosen Usi and their degrees are again denoted by F-deg and P-deg.
Although the functions k! and k& become unbounded at stall points, the 1-
forms k!dl = (U/)*dl! are smooth on the entire loop. Notice that we may
define d/ on all of ¢(S') with the following convention: If di?= t%a(t)*dt?
and a(0) > 0 at a stall point, then d/ = |¢|a(t) dt. Thus, if k! di = b’(t)dt then
we may define |k!|dl = |b'(t)/ta(t)|dl = |b'(¢)|dt. Implicit in this convention
is the assumption that d/, when paired with a positively oriented vector tan-
gent to ¢(S'), is nonnegative. As a contrast to Proposition 1 we have the
following.

PROPOSITION 2. Given nonnegative integers n and m, there is an imbed-
ded spacelike curve with stall points c: S' > M? such that cg: S' - S'x 8! is
transverse to the diagonal and (F-deg, P-deg) = +(n+m,n—m)eZXZ.

Proof. Consider the arc in M?CM? given by c(¢) = (¢, 0, arctan(?)). Then
the induced metric is positive except at f =0. With respect to the implicit
splitting, the sections of (S!)* defined in (E1) are given by

Ul= 1+, 1+ 521 +¢»)7,1) for i=F,P.

They are both immersive at f =0. Because of the opposite signs in these
sections, the S!x S! Gauss map is transverse to the diagonal. Now we can
smoothly glue together several such arcs in an M? hyperplane of M3 to get
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a curve that has its S'x.S! Gauss map positively intersecting the diagonal
m times. Let c¢: S!—M? be a spacelike loop whose completed Gauss map is
a type-+(n, n) curve, as described in Proposition 1, which contains a linear
segment lying in an M2 C M?3. Next, in this M? take € to be the connected
sum of ¢ and the m-stall point arc in M? described above. Then the resulting
curve is of type +(n+m,n—m) in S'x S!. We are finished. EI

If c: S > M3 is an oriented spacelike loop with stall points satisfying the con-
ditions of Proposition 2, we then define the intersection number of the curve,
N*(A, cg), to be the intersection number of the diagonal A with cg(S!) in
S!x Sl This intersection number can be expressed as the difference of the
degrees of the g;: S' > S}, i=F, P.

4. A Degree Formula

Now we are given a compact oriented surface j: O —M? satisfying each of
the transversality conditions in Section 1, and a section » of the orthogonal
bundle determined by the orientation. We also have the decomposition D* =
DFUDg, with 3D =D%=D2UDS and SP c D°. Each component of D} is
oriented as the boundary of D;" for i = F, P. For each splitting M =E?+E ",
we now have unique sections of (D°)* defined as follows:

if S'c D% and S'NSP =g, then use sections (UF, UF)
satisfying (E1)(a)-(d);

if S'c D2 and S'NSP @, then use sections (U, UF)
satisfying (E1)(a)—~(c) with U* a nonzero multiple of n|S";

if S'c DY and S'NSP # @, then use sections (UF, UF)
satisfying (E1)(a)-(c) with U” a nonzero multiple of n|S".

(E3)

We will write g/: D — S} for i, j = F, P to denote the Gauss maps defined
by these sections. The degree of g/ is denoted i-deg; where i, j =F, P. We
will write cg;: D? — S'x S! to denote the completed Gauss map defined by
these sections. In defining the associated intersection number, N*(A, cg;),
we will impose the orientation convention; the target S'x S!is oriented by
difndIF for cgr and by diPAdIF for cgp.

LEMMA 3. Ifj: Q—M?3is stratified by SP C D® C Q and satisfies the con-
ditions of Section 1, then:

(a) For all components S'C D°, the set SPNS! is empty or contains an
even number of points.

(b) The hypersurface’s second fundamental form is indefinite at every
stall point.

(c) At any stall point, both S'-valued Gauss maps are immersive and cg;:
D% S'x S is transverse to the diagonal.

(d) If a component S'C D® has SPNS'=0, then there exists an x € S'
with k(x)=0. If a component S' C D® has SPNS' #@, then on some
deleted neighborhood of x € SP in D° we have k <0.
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Proof. Choose linear coordinates on M3 so that ¢, ) is represented by dx*+
2 dydz and j: Q - M?is represented by the graph, z = f(x, y), with df = 0at
(0, 0). Then the induced metric is locally represented by I =dx2+2f, dxdy+
2f,dy?, and RAD at (0,0) is represented by dy. Since f = ax¥/2 + Bxy +
(v»?*/2)MOD M3 (i.e., modulo third-order terms), we have that

Detl =2f,— f2=2(Bx+vy)— (ax+By)*MOD M>.

Thus D° corresponds to {DetI =0} and RAD is tangent to D° at (0, 0) if
and only if ¥ =0. Since II at (0, 0) is represented by a multiple of

(fex AX2+2f,, dxdy + f,, dy*) ®dy,

we have that II is nondegenerate at the stall point (0, 0) if and only if 3 #0.
Next, with an isometry of M? fixing the null plane (3y)* at (0, 0, 0), we may
assume « =0. Now there exists a vector field R defined on a neighborhood
of (0, 0) which spans RAD over D’ and R =(8y)dx—3dy MOD M2 1t fol-
lows that R(DetI)=48%y MOD M?2. This implies the order of contact be-
tween D® and RAD is 1 if and only if 0.

The image of j: D°C Q — M? near the stall point can be parameterized by
c(t) = (Br¥/2,t,3%3/2) MOD M*. Then the two local sections of the orthog-
onal 2-plane can be written as

(E4) (Bt(1£2),1,z(£)) MOD M2,

We now prove part (a). Let ¢: S » M? be a component of D°. The section
n|S! does not vanish. Choose a splitting M?> =E?+E~ and consider g2
along the immersed curve, mgoc: S' - E2. By the computations above, wgn
is tangent to mgoc(S!) exactly at stall points, and must point to opposite
sides of the tangent line to wgec(S!); that is,

t2
wEoc(t)E<—B—2——,t)MODM4 and 7g.-n=p(Bt(1+2),1)MOD M?,

0 # e R. Thus the existence of a nonzero section of (D°)*implies that there
is an even number of stall points on each component of D°.

The proofs of (b) and (c) are immediate consequences of the computation
above. For the second part of (d) we note that, by comparing the signs in
(E4), the two g;: S' - S} cannot both preserve or both reverse orientation
near ¢ = 0. This implies that £ and k" have opposite signs near ¢ = 0. Hence
k <0 for ¢ sufficiently near zero. For the first part of (d) we note that, since
there are no stall points, we have 0 = k¥ —kZPdl by Proposition 1. Hence
there exists £ € S! with kf(¢) =k[(¢) for each splitting, and k(z)=0. This
completes the proof. ]

Notice that if j: Q - M? satisfies the first transversality condition of Sec-
tion 1 then the degrees i-deg;, j =F, P, are well defined. Should cg;: D'
S!x S! fail to globally immerse, then by Lemma 3(c) the secondary trans-
versality conditions imply that the intersection numbers N¥(A, cg;) are well
defined. The following is the central result of this paper. Recall that Q is
oriented and we have chosen n, the section of ORTH(Q), so that the degree

of g: Q- S%is —1x(Q).
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THEOREM 4. If j: Q —M? is an immersed oriented compact hypersurface
satisfying the conditions of Section 1, then, for i=F, P,

1x(Q)=x(Di")+ink(A, cgi)
= —degree(g).

Proof. We view the S} for i = F, P as subsets of the target sphere of g:
Q— S, so that g 7(S}) = D?. The first transversality condition on j: Q - M®
implies that a point in {S!—g(SP)} CS2 is a regular value for g: Q - S?if
and only if it is a regular value for g/: D — /. It follows that the degree of
g: O — S?is the negative of the degree of g/: D0 — S}, where i = F or P. Now
choose a splitting M®> = E2+ E~, and consider wg:n, a vector field along
7 (D?) in E2. Notice that it is tangent to the immersed curve 7g(D?) exactly
at SPNDY. By (c) and (d) of Lemma 3, 7g+n must point to opposite sides of
the tangent to wg(DP) in E? when a stall point is transversed; see Figure 1.

O A

4e

Q@Q Qe

.::":} C’; “:J

Sk S}*

(c)

&

Figure 1

We need only show that the degree of (wgn)(|mg-n|) ™' =7A:D? - S'CE?
is x(D?)+in*(A, cg;) for i=F or P. We will prove the i = F case below.
The i = P case follows by reflecting the immersion through a splitting M> =
E2+E™, so that F and P are interchanged.

Consider the degree of the outward unit normal to the curve wg(D2). We
view this normal as a map D — S! C E? via translation to the origin in E2.
We claim this degree is exactly x(Df). To see this, choose a C ®-vector field X
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on Dj having nondegenerate, isolated zero points and pointing outward at
the boundary. Let By, ..., B, be small disks containing the zero points that
project diffeomorphically to E? via 7. Now

(g X)(|mg- X|)"'=X: Dp—BU---UB, - §'

is defined by a projection to E? followed by a translation to the origin. If
df denotes a fundamental class on S, then by Stokes’s theorem the degree
of the outward normal is

7] — % —_ +
(E5) SDgX do=3 SaBjX do = x(D}t),

since the middle term is the sum of the indices at the rest points.
Returning to the degree of 7i: D2 — S' C E?, consider a component of D
that contains stall points; then 7g.n along 7g(D2) is homotopic in E2 to one
of the configurations in Figure 1. In these figures, one of the arrows corre-
sponds to wg+n and the other corresponds to the projection of the negative
of the companion section defined by (E3). Notice that we may assume that,
at the SP, ng«n alternatively agrees or disagrees with the positive direction
on D{. Otherwise, nonalternating pairs could be cancelled with a homotopy.
Now each stall point corresponds to an intersection point cgr(D2)NA in
S'x S In (a) and (c) of Figure 1 each intersection is oriented positively,
whereas in (b) and (d) each intersection is oriented negatively. Clearly, in(a)
and (c) of Figure 1 the degree of 7 is the degree of the outward normal plus
one-half the number of stall points, while in (b) and (d) the degree of # is
the degree of the outward normal minus one-half the number of stall points.
In other words, the degree of 7 is x(Df) + %ﬂ#(A, cgr), and we are finished.

O
COROLLARY 5. If j: Q —»M3 satisfies the conditions of Section 1, then
(a) 2x(D;") = F-deg;+ P-deg; for i=F,P,
and

(b) 2x(D7)=N*A, cgr) +N¥(A, cgp)
= (F-degp) — (P-degp) + (P-degp) — (F-degp).

Proof. For part (a) with i =F, we need only note that the degree of » re-
stricted to D2 is F-degr. Now, by Theorem 4,

F-degr=—1x(Q)=x(Df)+1in*(A, cgp).

Since $N*(A, cgr) = H(F-degr— P-degy), we have part (a). For part (b) we
need only recall that

x(Q)=x(Df)+x(D§)+x(D7),
completing the proof. O
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5. Examples and Applications

(A) RAD is Transverse to D°. If j: Q — M3 contains no stall points, then
all of the components of D~ are annuli by Proposition 5 of [K2]. Any genus
surface admits such an embedding. For example, the boundary of a small
diameter E3-tube about a spacelike c: S! — M3 will have four spacelike loops
as DO. We also note that the notion of partial curvature of Section 4 in [K2]
is directly adaptable to this setting.

(B) Simplest Dt Configurations. Recall, by Lemma 2 of [K2], that any
Jj: O —M?3can be homotoped via a family of ambient diffeomorphisms (i.e.,
time dilation in a Morse splitting M> = E2+E ™) to an immersion that satis-
fies the transversality conditions of Section 1 and for which D7 is a disjoint
union of disks. Such disks can be further deformed into one of the following
local models. (See Figure 2.)

%
; ; T(D%) CE? @SPCTE(DO)CEz

Figure 2

(i) Consider the graphs of +z =x2+y? in coordinates where {, ) is rep-
resented by dx?+ dy?—dz?; then D? is an open disk which graphs over
{x?+y? < 1}. Since this is a surface of revolution, RAD is everywhere trans-
verse to D°. The Gauss maps of D? are represented by
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UF(#) = (cos(#),sin(¢),1)=n and UL(#) = (cos(2), sin(z), —1).

Hence both k! are positive and the Gauss maps g;: S! — S} have degree 1.

(ii) Consider the graph of z =xy in the above coordinates; then D* graphs
over {x24+y%<1}, SP={(+1,0,0)U(0, +1, 0)}, and D?is parameterized by
c: 81> M3, c(¢) = (cos(¢), sin(¢), cos(¢) sin(¢)), with

UF(£) = (sin(£)(sin(¢) — 3 cos?(¢)), cos(¢)(cos>(¢) — 3 sin%(¢)), 1) = n,
and
U{(¢) = (sin(?), cos(?), 1).

One computes that £F > 0and k<0 on S, and that F-deg =1and P-deg=
—3. Hence +N¥#(A, cg) =4 and +2x(D*) = F-deg + P-deg = 2. See Figure?2.

(C) Two Integral Inequalities. Because the degree terms in Corollary 5
can be expressed as integration of split curvature, we have the following
inequalities.

THEOREM 6. If j: Q- M? satisfies the conditions of Section 1, then the
following hold for all splittings M3 =E2+E":

@) 47r]x(D,-+)|:<_Soplkflﬂk;nldl for i=F,P.

Equality for some splitting implies that k =0 on Df; hence SPND? =0. If
equality holds for both i =F, P, then D~ is a union of annuli.

(b) 20|N*(A, cgp)| < §D0|kf —kP|dl  and
F

20|N*(A, cgp)| < SDolkf—ksF \dl.
P

Equality for some splitting and fixed i =F, P imply that each component
of D? either contains a pair of stall points, or is a spacelike loop lying in a
spacelike hyperplane E2 C M2,

REMARK. Examples of the type discussed in (A) and (B) illustrate equality
in parts (a) and (b) above.

Proof of Theorem 6. For part (a) we use Corollary 5 to write, for i =F, P,

47 |x(Di")| < lSDO kE+kldl

SSDplkflﬂkfldl.

Equality for a splitting implies that £f and k£ have the same sign on D}.
Hence k =0 on D?, and by (d) of Lemma 3 this implies SPND? = g. If
SPN(D2UDJ) =0 then RAD is transverse to 7D° and hence D~ is a union
of annuli.

For part (b) we use the same observations to write, for i =F,

2w |N*(A, cgp)| <

F P
Sﬂm—&w

F P
sngucs —kP|al.
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Equality for some splitting implies that on each component of DJ either
kF = kP with kF # kF, or kF=k?F. In the first case we must have degy > degp.
Thus by Proposition 1 this component contains stall points. In the second
case we recall from (E1) that k!dl = (U))*dli; hence the maps UF, —UP:
S!S} differ by a fixed rotation of the target. This implies that TILT; is con-
stant on the component. Hence this component lies in a fiber of t: M> > E~
by Lemma 2 of [K3]. This completes the proof. O

(D) The Null Blow-Up. Given an immersed j: Q —M?* that satisfies the
transversality conditions of Section 1, we will construct a canonical smooth
compact 2-dimensional manifold NB and a smooth folded double cover p:
NB —» D~UD?O. The subset NB —p~}(D®) submersively double-covers D™,
and p has standard fold singularities along p~!(D°). On NB we will find a
canonical smooth orientable line field that p-projects onto null vectors and
has isolated zeros at exactly p~!(SP) C p~(D?). The behavior of the line
field near these zeros is determined by high-order information in the induced
metric I =j*(, ).

Let p: G(Q) — Q denote the Grassman bundle of oriented lines in the tan-
gent spaces to Q, and let (#) denote its tautological differential ideal. G(Q)
is a circle bundle. Now fix a Morse splitting M> =E2+E~, and let 8¢ denote
the unit length future-pointing parallel vector field tangent to the fibers of
7g: M3? > E2. Next, artificially impose an E3 structure on M?> by changing
the sign of the bilinear form {, ) in the 9 summand. We denote this bilinear
form by E(, ). Now E((, ) orthogonally projects d¢ into the tangent spaces
of Q to get a vector field F UT that has zeros only on D™ and is tangent to
RAD on all of D°. At each pomt x € D™ we can choose two un1que null vec-
tors lf, IP in T, Q so that (FUT), IF)x>O (FUTy, lP)x<O and (x ——IP) is
positively oriented relative to the orientation on 7, Q. We define L' C G(Q) to
be the subsets {span(/.) e G(Q)|x e D~} for i =F, P. These are disjoint em-
bedded submanifolds in p ~!(D ™), each of which submersively p-covers D~.

Now construct a smooth vector field (FUTQ)l tangent to Q that is space-
like and nonzero over DYUD?®. Let p: J(Q)— Q—{zeros of (FUTp)} de-
note the open dense subset of G(Q) consisting of lines transverse to the span
(FUTQ)l in 7Q. This J(Q) has two connected components, one of which
contains ©F U XP; this component is a line bundle. Now Q is compact. Hence
(FUTy)" has a flow y, that extends to a flow ¥, on G(Q). Let FUTS be the
vector field on G(Q) that generates this flow.

LEMMA 7. Let j: Q—M? satisfy the conditions of Section 1. Then the
closure of LF¥UX? in G(Q) is a smooth embedded manifold NB that is
homeomorphic to D°ULFUX?, where the two ' = D™ are identified along
their boundary D° (i.e., the “double” of D™). Furthermore, there exists a
smooth vector field L on NB with zeros exactly at SP C D° C NB such that,
Jor all x e NB, p.(L(x)) is a null vector.

Proof. At any point of D® we may choose local coordinates on UC Q so
that [ =j*(, ) is represented by E dx2+ G dy? with E(0, 0) =03 G(0, 0) and
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dE(0, 0) # 0. Then D° N U is represented by {E(x, y) =0} and RAD is
spanned by dx over {E = 0}. A neighborhood of RADy ¢, in G(Q)Np~!(V)
admits local coordinates (x, y, p). In these coordinates a point (x, y, p) cor-
responds to the subspace annihilated by (dy — pdx) in T, ,)U. Now the
null subspaces in G(Q) N p ~(U) must satisfy the relation 0 = E + Gp?. Thus
FUZPNp~I(U) is the set {(x,y, p)|0=E+Gp?, p#0}, and its closure in
G(Q)Np~!(U) is obtained by adjoining {(x, y, p)|p =0, E = 0}. These clos-
ure points can be identified with DN U when to each point (x, y) of D°NU
we assign the subspace RAD, ), which is represented by (x, y, 0).

To construct the vector field on NB we use a construction from contact
geometry. First note that NBNJ(Q) is exactly NBNG(Q). This is because
null directions in Q are transverse to (FUTy)* on all of D*U D Now FUT}
defines a vector field on J(Q). Hence there exists a unique representative
of (6) that satisfies 1 =6(FUT,) and the Lie derivative £ 0FuT4=0. (If in
local coordinates on Q the vector field FUTé is represented by dy, then 6 is
represented by dy — p dx.) Since NB is compact, orientable, and embedded
in J(Q), it is the regular value of some function /#: J(Q) - R. Now define a
vector field L on NB by

(E6) do(L,—)=FUT}(h)-6—dh, 6(L)=0.

The 1-form on the right-hand side of (E6) is zero when paired with FUT}.
Hence there exists a unique vector field tangent to NB that satisfies (E6). The
only points of NB where L can vanish are points where the subspace annihi-
lated by the tautological ideal (@) agrees with the tangent space to NB. This
cannot occur at points over D~ since the tangent space to NB is transverse
to the fibers of p. At a point of D®—SP we may choose coordinates (x, ¥, p)
on J(Q) so that NB is represented by xE +p2=0, £(0,0)0, and (8) is
represented by (dy — pdx). Clearly, the above subspaces to not agree. Ata
stall point, choose coordinates as at the end of Section 1 and observe that
the two subspaces agree. Finally, p,L is null by construction and we are
finished. ]

We now define the intrinsic index or I-index at an isolated stall point of
J: O —M?3 to be the index of the associated zero point in L on NB. As ex-
amples, consider the graph of f(x,y)=0xy+vy>/3 discussed in the proof
of Lemma 3. The induced metric is represented by

dx*42Bydxdy+(2Bx+2vy?)dy>

We may use dx for FUTQL. Then the associated surface in G(Q)Np~1(U) is
represented by ‘

(X, 7, p)| P> +2Byp +(2Bx+2vy?) =0}
and (0) by (dx—pdy). Near the stall point (0,0,0) we may parameterize
NB as x = (—1/28)(p2+2B8yp++vy?). In this case the line field +L is repre-
sented by the span of (—2p—28y)dy+ (p+2Bp+2vy)dp. The linear part

of the rest point has eigenvalues 1(1+(1+48%+28—4v)"?). Hence either
index +1 can be locally realized by a surface that satisfies the transversality
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conditions of Section 1. Since the I-index of a stall point is determined by the
induced metric, and since the intersection number in S!x S!is determined
by extrinsic properties of D° in M3, the following corollary links intrinsic
and extrinsic properties.

COROLLARY 8. Ifj: Q—M? satisfies the conditions of Section 1, then
¥ I-Index = x(NB) =N*(A, cgr) + N (A, cgp).
SP

Proof. Since NB is the double of D~, we have
Y, I-index = x(NB) =2x(D ™),
and by Theorem 4 we are done. O

We note in passing that the components of D°in NB are independent in the
first homology group H;(NB, R). Thus, if 2 genus(NB) denotes the dimen-
sion of H(NB, R), we then have

2(#components of D) < 2(#components NB) + 2 genus(NB)

(E7)
< #SP +4(#components NB).

(E) Dynamical Properties of Null Geodesics. The null blow-up NB and
associated line field L can be viewed as a completion space for the null pre-
geodesics in Q. Near D these pre-geodesics are “F, P-reflected”. (The be-
havior of nonnull pre-geodesics is more subtle; see [K1].) The dynamics of
trajectories of L on NB can be quite complicated. For example, a 2-sphere
of SO(2, 0)-revolution will have no stall points and hence NB will be a union
of tori. The L-flows on these tori will be the familiar winding flow whose
“slope” is determined by the geometry of the sphere. With a small deforma-
tion in the D~ component, limit cycles can be introduced into the L-flow.
Next consider j: Q - M3, depicted in Figure 2. Here we have the minimum
number of stall points, hence |x(NB)| =#SP and every stall point must have
I-index equal to —1. In this case the unstable and stable manifolds of L do
not coincide and there will be more complicated recurrence in the dynamics
of the L-flow.

Next, we identify a simple link between the shape of j: O - M?3 and the
dynamics of the L-flow. First notice that the image of nep: NB — S2(# is an
orientation section of ORTH(Q)) retracts onto an S!C S2. This defines a
cohomology class [y] in H'(NB, Z). Upon restriction to D? C NB, this class
agrees with [k!dl1e HY(D?, Z) for i = F, P. Indeed, for any choice of split-
ting M3 = E2+E, there is a natural 1-form v, on NB that represents [y] and
agrees with k!dl on Df. Over D™, the section #n can be normalized to unit
length, say un. We have a well-defined third fundamental form on NB given
by III = (Vun, Vun). The condition that III(L, L) =0 on NB —D? does not
locally restrict the signature of I on D™, and implies that v,(L) % 0on NB =
D°. On D°the line field L is tangent to the p-fiber. Hence v, (L) = 0. Further-
more, if II is nonzero on TD° over D°—SP, then v,(L) =0 or v,(L) <0 on
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each L-orbit. This latter condition does not locally restrict the signature of I1
on TQ over D°—SP, and is entirely determined by I =j*(, ). On such a sur-
face, no L-invariant set in NB can both fail to contain a stall point and have
boundary oriented by L. Thus there can be no Rheeb components and no
simply connected invariant sets with nonempty boundary.

(F) Restrictions on Configurations SP C D°C Q cM3. Theorem 4 imposes
restrictions on the possible configurations of D® in Q. For example, if a
type-(n, m) loop, c: S! - M3, is both a component of D° for j: O —»M? and
bounds a disk that is a componnt of D, then Corollary 5 implies [n+m|=
2. If it bounds a disk that is a component of D~ then |n—m|=2. Similarly,
(E7) imposes restrictions; for example, there exists no compact j: O »M?>
with D? having five components, NB having one component, and SP =#.
Finally, [y]e€ H'(NB,Z) can also be used to impose restrictions. For ex-
ample, if D™ is a union of disks then [y]=0. But this implies that the degree
of g: Q- S?is zero; hence Q must be a torus.
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