Landau and Schottky Theorems
for Holomorphic Curves

PETER HALL

The theorems of Landau and Schottky on holomorphic functions were gen-
eralized to holomorphic curves in the projective plane in a paper published
in 1926 by Bloch [1]. A gap in Bloch’s argument was filled by Cartan in his
thesis published in 1928 [4]. The aim of this paper is to prove Bloch’s ver-
sions of the Landau and Schottky theorems with explicit expressions for the
constants. It appears that this has never been done before. In contrast, very
precise expressions for the constants in the classical Landau and Schottky
theorems have been obtained by a succession of authors, of whom the most
recent is Hempel [9].

We shall write B(a, r) for the open ball of centre ¢ and radius r, and
B(a, r) for the closed ball of centre @ and radius r. The open annulus of cen-
tre a, inner radius r and outer radius R will be denoted by A(a, r, R).

The classical Schottky theorem concerns a holomorphic function f:
B(0,1) — C. Suppose that f omits the values 0 and 1 as well as the value .
Then, for any p satisfying 0 < p <1, there is an upper bound for | f(z)| when
z€ B(0, p), depending only on p and f(0). It follows easily that under the
same hypotheses there is an upper bound for |f’(0)| depending only on
f(0), and this is the content of Landau’s theorem.

To describe Bloch’s version of the Landau and Schottky theorems, it is
convenient to work in homogeneous coordinates on CP2. Adopting Bloch’s
notation, we let X, Y, Z, T be four holomorphic functions on B(0,1). We
write Xo= X (0), Y, =Y (0), Zy=Z(0), and T,= T(0). We shall usually sup-
press the notation for the point at which one of these functions is evaluated.
We assume that X, Y, Z, T have no zeros and satisfy the identity

X+Y+Z+T=0.

We may regard (X, Y, Z) as an expression in homogeneous coordinates (x°,
x!,x2) for a holomorphic curve c¢: B(0,1) - CP2. The curve ¢ omits four
lines in general position with the equations

x°=0, x'=0, x*=0, x%°+x'+x?2=0.

We seek bounds for the ratios of X, Y, Z, and 7, or the derivatives of these
ratios, in terms of X, Yy, Zy, and Tj. It is obvious that there are some cases
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in which no bounds can be expected. Suppose that X+ Y, = 0, so that
(X0, Yo, Zy) lies on the diagonal x°+x!=0 of the omitted quadrilateral.
Consider the curve

X=-Y=X,eY  Z=2Z,.

The value of X/Z can be made arbitrarily large on any disc B(0, p) by suit-
ably choosing the constant A. If (X, Yy, Z;) does not lie on a diagonal, it
will turn out that we can bound all the ratios. This aspect of Bloch’s results
does not correspond to anything in the classical theorems.

The method of this paper is to go through the steps in Bloch’s argument
and obtain an explicit expression for each of the constants. It is pertinent
to remark that most of the approaches to the classical Schottky and Landau
theorems present severe problems when one tries to generalize them to holo-
morphic curves. The most common approach is to use theiuniformization
by the modular function, and in the present state of knowledge we do not
have a corresponding tool available in higher dimensions. (Some remarks
on the state of knowledge about uniformization in higher dimensions are
given by Griffiths [7]; I am indebted to S.-T. Yau for this reference.) The
so-called elementary method using the Bloch constant [12, Kapitel 7] actu-
ally involves a kind of uniformization by iterated logarithms, and again this
would be hard to carry out in higher dimensions. Of the truly elementary
methods, one due to Nevanlinna [14] and developed by Valiron ([2, Ch. XII],
[18]) is very close in spirit to Bloch’s ideas. The work of Carlson and Griffiths
on equidimensional maps [3] has little relation to the present paper.

There has not been much further work on the topics of Bloch’s paper.
Cartan [4] proved a result corresponding to Montel’s theorem, an account
of which may be found in a book by Lang [13, Ch. VIII]. Cartan’s result is
applied in papers by Dufresnoy [5], Fujimoto [6], and Kiernan and Koba-
yashi [10], but these authors say nothing about the proof.

Having obtained an inequality with an explicit constant, one may study
its dependence on the data. As a function of the radius p, our Schottky theo-
rem gives a bound for the logarithm of the maximum modulus that behaves
like (1—p)~®*+9 where € is any positive number, as p tends to 1. This com-
pares with (1—p)~!in the classical theorem [9, Thm. 1]. The value 9 + ¢ could
be improved without a major change in the argument by using a more pre-
cise version of Lemma 8. Here and elsewhere the author has aimed at sim-
plicity rather than the sharpest possible results.

As for the dependence on the values at 0, unfortunately the bounds for all
the ratios tend to infinity as (X, Yy, Zo) tends towards the omitted lines.
This is a familiar difficulty with this type of estimate [2, p. 457]. The obser-
vation that it occurs in Bloch’s paper was made by Kiernan and Kobayashi
[10, p. 209].

As (Xy, Yy, Zo) approaches the diagonals, again the estimate tends to in-
finity. This may be viewed in terms of the intrinsic Kobayashi pseudometric
([101, [11], [13], [16]). Between points that lie on the diagonals, the Kobayashi
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pseudometric is zero, and it decays as the diagonals are approached. In The-
orem 3 we use our explicit constant to obtain a bound on the rate of decay
of Royden’s infinitesimal form of the Kobayashi pseudometric. We assume
that the diagonals are approached within a compact subset of the comple-
ment of the omitted lines, and prove that the rate of decay is polynomial,
of degree at most 180,000.

We follow Bloch in writing | f f> - -+ f,,| for the Wronskian determinant

fl .f2 fn

T Y Oy L L

-1 -1 -1
I L A

of n meromorphic functions fi,..., f,. The following identities involving
Wronskians will be central to the argument.

LEMMA 1 ([1, p. 324], {4, p. 451, [13, Ch. VIII, Lemma 4.2]). If f, g, hare
meromorphic functions of z, then

d.  g_|/e|
d
" jgh] __hl/gh

—Ilo = .
dz °\ 7R~ [h]|gh]

Proof. The first statement is obvious. The second may be verified directly;
alternatively, express the logarithmic derivative in terms of minors of |fgh|
and apply the algebraic identity known as Sylvester’s law of compound de-
terminants [19, article 32]. O

Following Lang [13, p. 251}, we call the right-hand member of (1) a two-ierm
derived fraction; we call the right-hand member of (2) a three-term derived
Jraction. This is a translation of Cartan’s terminology [4, p. 46]. For our
purposes, only the modulus of a derived fraction is of interest, and we shall
generally identify derived fractions that differ only in sign.

The estimates employed by Bloch are mainly those of Nevanlinna theory,
in versions adapted to a different problem. For a meromorphic function f
defined on B(0, 1) we introduce the proximity function

2w .
mr, )= | " 16g| fre™)| o,

defined for r in [0, 1). When f is holomorphic, the proximity function is an
increasing function equal to the Nevanlinna characteristic, which will not
appear explicitly in our arguments. We state an elementary lemma.

LEMMA 2 ([8, p. 51, [13, p. 168], [15, p. 14]). If f1,, .., f, are meromorphic
functions on B(0, 1), then
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’n(r9fl”'fn)sm(rsfl)+"'+’n(rafn)

and
m(r, fi+---+f) =m(r, f))+---+m(r, f,)+logn.

When f is holomorphic, we use M(r, f) to denote the maximum modulus
of fon B(0, r). The maximum modulus can be estimated by the proximity
function.

LEMMA 3 ([8, Thm. 1.6], [13, p. 170], [15, p. 24]). Let f be holomorphic
on B(0,1) and let 0<r<R<1. Then

R+r

log M(r, f) < (—)m(R,f).
R—r

In the role of the First Main Theorem we shall use the following consequence
of the Poisson-Jensen formula.

LEMMA 4 ([1, Lemme 4], [4, formula (5)]). Letf be meromorphic in B(0, 1)
andlet 0<sr<R<1. If f(x)#0, © for some x =re', then

ol 2B (= i)-log s

A
R+

where the first sum is taken over all zeros ay, of fin B(0, R) and the second
sum is taken over all poles b, of f in B(0, R).

—b,x
R( -b,)

2 —a)\x
R(x—ay)

In the role of the Second Main Theorem, we shall use the following version
of the lemma of the logarithmic derivative. The explicit constants in our ver-
sion may be obtained from Nevanlina’s original proof ([8, Lemma 2.3], [13,
Ch. VI, Lemma 3.2], [15, p. 61]).

LEMMA 5. Let fbe a holomorphic function on B(0, 1) with no zeros. Then
Jor 0=<r<R<1 we have

+210g ! +10gm(R f)

m(r, i}) <3 +I$g log ——— l

f(O)I

and

+410g

m(r, 1—)<5+21$g log ——— L — +213g m(R, f).

S If(O)l

An elementary calculation from Lemma 5 yields the followmg estimates for
homogenized Wronskians.

LEMMA 6. Let f, g, and h be holomorphic functions on B(0,1) with no
zeros. Then for 0<r <R <1 we have
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|/¢| 1 1 1
) < 2iberbemax( . gy )+ e
+216g max(m(R, f), m(R, g)),

|1fe] 1 1 1
m( I ><17+6loglogmax(|f(0)l, |g(0)|>+1210g—§j;

+6l$g max(m(R, f), m(R, g)),

where 1 denotes the constant function 1, and

| fgh |> ( 1 1 1 )
50 181 l , s
”’( Fgh )= °0 TS I0BI0BMAX| TGN TN Th(O)]

- +1810g max(m(R, f), m(R, g), m(R, h)).

1
361
+6ogR_

The next lemma is of a different character. It was stated by Bloch [1, Lemme
6] but first proved by Cartan ([4, p. 32], [13, Ch. VIII, Thm. 3.3}).

LEMMA 7. Let 0<r<R<1 and let ay, where \=1,..., A, be nhumbers in
B(0, R), not necessarily distinct. Let 0 <y <1. Then there exists a subset
I’ C B(0, r) which is a finite union of discs such that the sum of the radii is
less than v, and with the property that if x,ze€ B(0,r) and x ¢ T then

4R?
% loe S R=ry?

Rz—ﬁ)\z
R(z— 07\)

—6_7)\)(

— ¥
RGr—a)) log Eog

The final lemma is based on a version of Borel’s lemma on increasing func-
tions given by Cartan ([4, p. 15], [13, Ch. VIII, Lemma 1.5]).

LEMMA 8. Let m(r) be positive and increasing for 0<a<r<b=<1. Sup-
pose that, for some positive constants A, B, C, we have

3) m(r)sA+BlogR1_r+C1$gm(R)
whenever a <r <R < b andr lies in a subset . of [a, b) of measure k(b—a),
with 0 <k <1. Then

(4) m(a)smax(2B log 16C2,4(A+2C+C log B)).

_ 2
k(b—a)’

Proof. 1If
2

k(b—a)
then we have the first term in the right-hand member of (4). If

m(a)<2Blog

(%) m(a)>2Blog k—(gz_—a—)—
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then a standard argument ([8, Lemma 2.4], [13, Ch. VI, Lemma 3.7]) proves
that A

2B
(6) m(r+exp )

)sm(r)+28

for r in [a, b), except on a set of measure at most 2exp(2B/m(r)). Because
of (5), the set on which (3) holds must meet the set £ mentioned in the state-
ment of the lemma. For r in the intersection, we substitute

2B

R=
r+exp )

in (3) to obtain

1 + 2B
<A+—
m(ry<A+ 2m(r)+Clog m(r+exp m(r))

so that

+ 2B
m(ry<2A+2Clog m(r+exp m(r))

<2A+2C1og(m(r)+2B) by (6)
<2A4+4C+2C10g B+2C 10g m(r),
by Lemma 2. An elementary inequality gives
m(r) =max(16C2,4(A+2C+C 1og B)),
and since m is increasing the lemma follows. U]
THEOREM 1 (Bloch’s version of Schottky’s theorem [1, Thm. II]). Let X,

Y,Z, T be holomorphic functions without zeros on B(0,1) satisfying the
identity

0 X+Y+Z+T=0.

Let S={X,Y,Z, T} and write Uy=U(0) for Ue S.
I. Suppose that Xo+Yy#0, Xo+Zy#0,and Xy+Ty#0. Then, if U,Ve
Sand 0< p<1,

U 5127 8 1 \? 8
1 i (= _—
ogM(p, V)<max{ 77 (I——p) (8+10g 1_p> +3(1_p)6,
16/ 8 \* 1
8 bl
® 3 (1—p> (8+1°g1—p)
1 8 1
X{log—+{—}{12+6+4]log ) ,
€ 1—p 1—p

Uy

Vo

where

) 0 = max log
U,VeS

and
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1
), min log<1+— )}
UVes 2
UzV

II. Suppose that Xo+Yy=0, but Xo+Zy#0 and Xo+Ty#0. Then the
inequality (8) holds for the four ratios X/Y,Y/X, Z/T, and T/ Z, except ihat
Sour terms containing Xo+ Yy or To+ Zy must be removed from the last
minimum in the definition (10) of e. Similarly for Xo+Zo=00r Xy+Ty=0.

II1. Suppose that Xo+ Yo =Xo+ Zy=0, so that Xo+ Ty # 0. Then the
inequality (8) holds for either the four ratios X/Y,Y/X, Z/T,T/Z or the
Sourratios X/Z,Z/X,Y/T, T/Y, except that eight terms containing Xy+Y,
Xo+Zy, Yo+ Ty, or Zo+ T, must be removed from the last minimum in (10);
and similarly for Xo+Yy=Xo+Tog=00r Xo+Zy=Xo+7T,=0.

Uy
Vo

Uy+Vy
Vo

1
(10) € =min{ min log(l +—
U,VeS 3
U=V

Proof. Suppose first that X+ Y,#0, Xo+Zy#0, and Xy+ 7, #0. The ar-
gument will be divided into two cases, each of which will be divided into two
subcases.

The two-term derived fractions | XY|/XY and |YX|/YX differ only by a
sign, and we shall regard them as the same. With the four variables X, Y,Z, T
we can thus form six different two-term derived fractions, which may be re-
garded as corresponding to the vertices of the omitted quadrilateral.

Case 1. At least two of the two-term derived fractions are smaller in mod-
ulus than e at every point of B(0, p). There are two subcases to consider,
according to whether the corresponding vertices define a side or a diagonal.
Without loss of generality, the small derived fractions are either

| XY|/XY,|XZ|/XZ or |XY|/XY,|ZT|/ZT.
Case 1.1. On B(0, p) we have
| XY |XZ|
XY XZ

Note that the definition (10) of e implies that e¢ <2 and e* < 2. According
to Lemma 1, | XY|/XY is, up to a sign, the logarithmic derivative of either
Y/X or X/Y. By integrating along a radius we obtain

<e and !

Y_ ¥
X Xo’
where |{| <e. Consequently,
Y,
o 0
<2{—I,
=%l
and the corresponding inequalities hold for X/Y, Z/X, and X/Z. Then
Y Y X Y,
=== <eX| 2| <2| 22 Yo
Z| | x|z Z Zo

and likewise for Z/Y.
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We now wish to estimate X/7. We have

Y Y, Z Z

et Z0 = =0

¥ =€ X, and ¥ = Xo
where |{| <e and |n| <e. With these substitutions, the identity
(7) X+Y+Z+T=0

becomes

(—I—+( ef— 1)—+( " 1)——)X+T 0.
X, X,

The first term in the definition (10) of ¢ now ensures that

1|7 1|7,
fol|<e—1<=|2 d |en—1]<=|=2
lef—-1|<e 3|7, and |e |<3ZO,
so that
T 1 TO 1 TO 5 TO
X 3 Xo 3 XO 3 XO
and
1 T() 1 To 1 To
3 XO 3 XO 3 Xo!’
which yields
X X,
|‘f|<3 7
Then
T| 10 TO
l=|x (7= |7 7]< 7|
and likewise for 7/Z and Z/T.
Case 1.2. On B(0, p) we have
IXYI |ZT|
XY
As before, we have
—|<
%]

and the corresponding inequalities for X/Y, 7/Z, and Z/T.
We now estimate X/Z. We have

Y Y, T T
Il ot} d —=en0
x ¢x, M Zz77,
where |{| <e and |5|<e. The identity
@) X+Y+Z+T=0

now becomes
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Xo+Y, Y, Zo+T, T,
(——O—t—ﬁ+(ef—1)—2)x+( 0 °+(e’?-—1)-Z—°)z=o.

Xo Xo Zy 0
The second term in the definition (10) of ¢ ensures that
XO+YO+(e§—1) Y, S Xo+Yp| 1] Xo+Yo _1 Xo+Yy
0 X X, 27 Xy 2| X,
and that
Zo+ T, T Zy+T, Zo+T, Zo+ T,
0t %0 L er_q)20 || Lot ol 11 ZotTo| 3| 2ot 7o}
Zy Z Z, 2 Z 21 Z,
so that
X Zo+ T X X
2 3| %t 1o °__|=3|Z2).
Z Zy Xo+Y, Zy

The remaining seven ratios can be estimated in the same way.
Recalling the definition (9) of &, we have in Case 1 that

(11) 10gM(p, yl;) <o0+2

for all U, VeS.

Case 2. 1f Case 1 does not hold, then, with one possible exception, each of the
two-term derived fractions is at least equal to € in modulus at some point in
B(0, p). This allows us to estimate the inverse of a two-term derived fraction
using Lemma 4. Without loss of generality, we assume that the exceptional
two-term derived fraction is | ZT|/ZT. We now choose three of the variables.
To avoid using | ZT'|/ZT, we must choose either X, Y, Zor X, Y, T; we choose
X, Y, Z. With these variables, we may form three three-term derived frac-
tions, not distinguishing expressions that differ only in sign, namely,

X|xvz| Y|Yzx| Zz|zxy)|
| XY||XZ|" |YZ||YX|" |ZX||ZY|

We let

3+p I+p 1+3p
12 = = ’
(12) r y > r3 2

so that p <r3;<r,<r;<1.(Theradii ry, ry, r; will not play precisely the same
roles as R, R,, R; in Bloch’s paper.)

Case 2.1. Let
13) B=——.

Suppose that, on B(0, r,), each of the three-term derived fractions formed
with X, Y, Z is less than 1 in modulus, except possibly on a finite union of
discs such that the sum of the radii is less than 8. Then the set of points
where at least one of the three-term derived fractions formed with X, Y, Z is
greater than or equal to 1 is contained in a set £ which is a finite union of
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discs such that the sum of the radii is less than 383. The circles centred at 0
that meet E correspond to a set of radii in [0, 1) which is a finite union of in-
tervals of total length at most 63. The circles that meet £ thus form a union
of annuli, possibly with an innermost disc, and the circles that do not meet
E form a union of annuli, possibly with an innermost disc.

Let A(0,a,b), where 0 <a < b <r,, be an annulus that does not meet
E. Any two points x, y € A(0, a, b) are connected in 4(0, a, b) by a path of
length less than 7+ 1. We integrate along such a path to find that

| XY| ]X Y| |X Y|

63 | | XZ]| IXZ] |XZ]

using Lemma 1 and the inequality exp(w +1) < 63. It follows that one of the
inequalities

()< (y)|<63 (x)1{,

|XY| |XZ|
|X Z| IX Y|
holds for all points in A(0, @, b). We obtain similar statements from the de-

rived fractions Y|YZX|/|YZ||YX| and Z|ZXY|/|ZX||ZY|.
Consider the two “cyclic” sets of ratios

IXYI |XZ| |YZ| |XZ| IYZI [XYI
(4 {IXZI’lYZI’IXYI} nd {lXYI’IXZI’IYZf}

In one of these sets, at least two of the ratios are bounded above on A(0, a, b)
by 63. Without loss of generality, we may assume that the two ratios in ques-
tion are | XY|/|XZ|and | XZ|/|YZ]|.

We define
= m\r ——X> myr —-Y myr -——X)>
m(r)—maX( (9 Y ’ (92)’ (,Z

and proceed to estimate m(r). We have
Y |XY| XY | XZ|
Z  |xz| |XY| xz°

<63 and <63

and so, by Lemma 2,

m Y <63+mrXY +mrI—X—Z—|
Z ) ’|XY|  XZ )

When r; <r, we can apply Lemma 4 to obtain

m(r, I;)’f')s(lfp)logu(lf )m(rl—g—l)

Choose R to satisfy r < R and apply Lemma 5 to obtain
Y 8 1
_ — Vloe =
m(r, Z><63+(1——p) og ;
8 \? 1
+1+{——) Y(3+16gs+21log +10g m(R) ).
1—p R—r
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We obtain the same bound for m(r, X/Y).

’ Z ’ ) ’ Z ’

and so, after making some approximations, we have

8 \? 1 1
(15) m(r)<(—1—) <9+logz+36+510g R

— +3l$gm(R))

We have derived the inequality (15) under the assumption that a particu-
lar pair of ratios |XY|/|XZ| and |XZ|/|YZ| is bounded above by 63 on
A(0, a, b). On another annulus, it may be a different pair of ratios that is
bounded.

We now consider the set of numbers r in [r3, r,) such that the circle of
radius r and centre 0 does not meet E. This is a finite union of intervals, each
interval corresponding to an annulus that can play the role of A(0,a, b) in
the previous argument. On each of these annuli, some pair of ratios from
(14) is bounded above by 63. Since there are six possible pairs of ratios, at
least one pair is bounded above by 63 for 1/6 of the possible radii. The total
measure of radii intersecting F is at most 63, and so, by (12) and (13), we
have a pair of ratios bounded above by 63 on a set of measure

1 —
g(rz—h—ﬁﬁ): 14_8p

Without loss of generality, we may assume that we have the inequality
(15) on a set of measure (1—p)/48 in [r3, r,). We apply Lemma 8, and after
some approximation obtain the estimate

8 \* 8 \? 1 1
m(ry)<max( 144 —— ) ,4{ —— 33+log — +36+6log .
1—p l1—p € I—p

This is an estimate for the three quantities X/Y, Y/Z, X/Z. We use Lemma 4
to obtain estimates for Y/X,Z/Y, Z/X. The identity

T Y Z

=]

X X X

then yields an estimate for 7/X, and there are corresponding estimates for
T/Y and 7/Z. Lemma 4 again gives estimates for X/7,Y/T, and Z/T.
For any U, Ve S we have

U 8 \*
m(r3, 7) <max<289(1—_—p) +35,
8 \° 1 1
8 —— 34+log — +46+6log .
1—p € 1—p

Lemma 3 gives



218 PETER HALL

U 8\’ 8
logM(p V)<max<289(1_ ) +3(1_ >5
8 \} 1 1
8 —— (34+log—+46+610g )
1—p € 1—p

Case 2.2. If Case 2.1 does not hold, then at least one of the three-term de-
rived fractions formed with X, Y, Z has the property that the set of points in
B(0, r,) at which it is greater than or equal to 1 is not contained in any union
of discs such that the sum of the radii is less than 8. Without loss of gener-
ality, we may take X|XYZ|/|XY||XZ| to be the derived fraction with this

property.
_ X Y VA
m(r) —max(m(r, 7), m(r, 7)’ m(r, —7:>>

We define
and proceed to estimate m(r). From

(16)

@) X+Y+Z+T=0
we have
|TYZ|=—|XYZ|,
and hence
an X |TYZ| |XY||XZ| XY XZ

T~ TYZ X|xyz| |xY| |XZ|
The main problem in estimating this expression is to replace | XY||XZ|/

X|XYZ| by its inverse using Lemma 4, because it is necessary to account for
the zeros. We proceed as follows.

Every zero of | XY||XZ|/X|XYZ] is a zero of (| XY|/XY)-(|XZ|/XZ)
with at least the same multiplicity. Because we are in Case 2, there is some
y € B(0, p) such that

|XY|( )>
€.
xy
By Lemma 4 we obtain for ri<r<l,
r’—ay 1 1/ 8 | XY |
log| ———|<log — et
Poe| iy | = e+ 5 (75 (v )

(18)
-(55)( em)
8 XY )’
where a, runs over the zeros of | XY |/XY. Similarly, there is some z € B(0, p)
for which
tog L (1 (22
e 3\1-p © XZ

3 i m(r XZ>
(55 ) ez )

where a, runs over the zeros of | XZ|/XZ.

> log =4z
(19) v rizma)




Landau and Schottky Theorems for Holomorphic Curves 219

Neither y nor z need be a point at which
X|XYZ]|

| | XY||XZ|

This is where we apply Lemma 7, which (roughly speaking) allows us to

move the point at which an estimate of the form (18) or (19) is made. We
take vy = (/2 and obtain, instead of (18) and (19),

I‘ —-a)\x
lo
E T —an r(x a>\)

2
20) s(-—§—) <7+log ! )
1—p 1—p
1 1/ 8 |XY]| 1—p XY
X(“’g ¢ +?(T—“E>””(” XY )‘3(T>’"( 1XY|))’

and the corresponding modification of (19), both of which hold for x outside
a certain subset E of B(0, r,) which is a finite union of discs such that the sum
of the radii is less than 8. By assumption, there is some point x € B(0,r,)—E
such that

>1.

X|xYZ|
| XY || XZ|

We take this value of x in Lemma 4 and use (20) and the corresponding ex-
pression for | XZ|/XZ to obtain the estimate

m(r I—{Y—”)—(Q)s(iycﬂog : )
© X|XYZ]| 1—p 1—p
X (2 log —1— + 1<L> (m(r, |X—Y|>+m(r, XZ| >>
3\1-p XY XZ
-3(1 ) o)+ )
8 " | XY " | XZ|
+(725) e e )
1—p | XY||XZ|
X|XYZ| |XYZ| XY XZ

XY|[xZ] ~ xYz |xY| [XZ|’

and so, by Lemma 2,

22) m{r X|XvZ| =m|r [ XYZ] +m(r XY +m{r Xz
’ | XY||XZ|) * XYZ XY "\ XZ| )

From (17) we have

n X)<m ATyzpy O IXYIXZ)N 0 XY N XZ )
7 )"\ TYZ T X|XYZ| XY 1xz|)

We combine this with (21) and (22) to obtain

(x)|=1

@21)

We have
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m\r { =m\{r TYZ] + 8 2m r | XYZ]
T )"\’ TYZ 1-p © XYZ
8 \° 1 1 1/ 8
—— ) (7+log —— })(2log = + = ——
+<1—p> ( +0g1—p)< 0g6+3<1—p>
| XY | XZ|
X{m{r, +m|r, — .
XY XZ

The corresponding estimates for Y/7T and Z/T are obtained in the same
way. Now

XY Z

TTT/|

XY

TT

and so on, so that Lemmas 5 and 6 give

8 \’ 1
m(r)<2<—~) (7+log )
1—p 1—p

1 1 8 1
X{log —+—{ —— )| 7+26+4log +213gm(R)
e 3\1-p R—r

whenever ry <r <R < 1. We apply Lemma 8 to obtain

2 8 2
m(r;) <max ——Sﬁ L 8 +log L ,
9 \1-p 1—p

8 \’ 1 1 1 8
_- log — + —( =
(23) 8(1_p) (8+log 1_p)<og e+3<1_p>
x<36+26+1010g : ))}
1—p

To estimate 7/X, T/Y, T/Z we use Lemma 4, which gives 6 plus the previous
estimate (23). The other six ratios may now be estimated by Lemma 2.

This estimates m(r, U/V') for any ratio U/V with U, Ve S, and we now
apply Lemma 3 to estimate log M(p, U/V'). We obtain

U 5127 8 \° 1 \* 1/ 8
log M| p, — = (— 1 —(——s,
og (p, V)<max{ > (I—p) (8+ og l—p) +3(l—p>
16/ 8 \* 1
24 —(— |
@9 7 (1=5) (3+10e ;)

1 1
x( log — + —8~ 12+6+4log .
€ 1—p 1—p

This expression is larger in almost every way than the bounds (11) and (16)
obtained in the other cases. The only exception is that the multiple of é in
the first term of the maximum of (24) is smaller than the multiple of 6 in the
first term of the maximum of (16). Therefore we have the expression (8) of
the theorem.

| XY|=T? , |xyz|=T13
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It remains to discuss what happens when X+ Y, = 0. Suppose first that
Xo+Yy=0, Xo+Zy#0, and Xy+Ty#0. Under this assumption, four of
the terms in the last minimum in the definition (10) of e are zero, and they
must be omitted from the definition of ¢ in order to make ¢ a positive quan-
tity. The only part of the argument that this affects is Case 1.2. If the two-
term derived fractions that are bounded by e happen to be | XY|/XY arnd
|ZT|/ZT, then, after obtaining bounds for X/Y, Y/X, Z/T, and T/Z, we
cannot proceed to bound the other eight ratios.

Now suppose that Xy+ Yy = Xy+Zy=0. Then Xy+ 7, #0, since X, Y,
Z,, T, are nonzero numbers. We must now omit eight terms from the defini-
tion (10) of ¢, with a corresponding effect on the argument in Case 1.2. 0

THEOREM 2 (Bloch’s version of Landau’s theorem [1, Thm. III]). Assume
the hypotheses of Theorem 1, and adopt the same notation.

I. Suppose that Xo+Yy#0, Xo+Zy#0,and Xo+Ty#O0. Then, if U, Ve S,

U ’
(7) (0) <max(exp(1.7 x 10" +256),

(25)
e 189000 ey (1.7 X 107+ 1.5 X 10° % §)).

II. If Xo+Y5=0, Xo+Zy#0, and Xy+Ty#0, then the inequality (25)
holds for the ratios X/Y, Y/X, Z/T, and T/Z.

II. If Xo+Yo=Xo+2Zy=0 and Xy+T,#0, then either the inequality
(25) holds for X/Y,Y/X, Z/T, T/Z or the inequality (25) holds for X/Z,
Z/X,Y/T, T/Y.

Proof ([12, p. 103], [17, p. 354]). Estimate A(0.001, U/V') by inequality (3)
of Theorem 1 and apply Cauchy’s integral formula for the derivative. [

We now define Royden’s infinitesimal form of the Kobayashi pseudometric
([11, formula (2.16)], [13, p. 88], [16, p. 127]). Let M be a complex manifold,
let p € M be a point, and let v € T, M be a tangent vector. We define Fy,(v) 10
be the infimum of 1/R over all holomorphic maps ¢: B(0, 1) - M such that
¢(0)=p and ¢’(0) = Rv. The function F), is a kind of infinitesimal metric
called the Royden function of M, it is known to be upper semicontinuous.

THEOREM 3. Let Q be the union of four lines in general position in CP?
and let A be the union of the diagonals of Q. Let M = CP?—Q and let K be
a compact subset of M. Let c:[0,1])— K be a curve such that c(0) € A and
c((0, 1]) is disjoint from A. Let v be a unit vector field along c, measuring
lengths in some Riemannian metric on CP2. Then, for 0<t =<1,

Fpr(v(2)) > Ar'%%0s),

where A is a constant depending only on K and r(t) is the Riemannian dis-
tance from c(t) to A.
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Proof. Starting from Theorem 2, we wish to prove that e decays at the same

rate as the Riemannian distance from A. In the notation of Theorem 2, if

(X, Yo, Zo) are the coordinates of a point of K then, when (X, Yy, Z,) is

close enough to A, the smallest term in the minimum (10) defining € is of
U+ 7V

the form
Vo )

for some U, Ve S. This expression is approximately 1|(Uy+Vy)/V,|, which
is a bounded multiple of the Riemannian distance from (X, Y, Z,) to the
closest of the lines in A. L]

1
l 1+ —
0g(+2

Added in proof: These problems are treated by a different method in M. J.
Cowen, The method of negative curvature: the Kobayashi metric on P, mi-
nus 4 lines, Trans. Amer. Math. Soc. 319 (1990), 729-745.
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