Holomorphic Extension of
Proper Meromorphic Mappings

STEPHEN A. CHIAPPARI

Introduction

Forstneri¢ [F1] has proved that every proper holomorphic mapping from a
ball in C"to a ball in CV (N = n=2) that is sufficiently smooth on the clos-
ure of the ball is in fact a rational mapping. He left open the possibility that
such a mapping could be indeterminate at a point of the boundary sphere.
Cima and Suffridge have shown recently that this does not occur, and hence
every such mapping extends to be holomorphic in a neighborhood of the
closed ball. They prove the following local result.

THEOREM [CS]. Suppose that B is the open unit ball in C" and that U is a
neighborhood of a point p € bB. Suppose that F: U— C" is a meromorphic
mapping whose restriction to B maps B holomorphically into the open unit
ball in CN (N =n), and that for each point e UNDB, |F(z)|—1asz—q
(z € B). Then F extends to a holomorphic mapping in some neighborhood
of p. As a consequence, F is rational.

In this note we prove the following more general result.

THEOREM 1. Suppose that M is a real analytic (nonsingular) real hyper-
surface in C", U is a neighborhood of a point pe M, and  is the portion
of U lying on one side of M. Suppose that F: U — C" is a meromorphic
mapping whose restriction to Q maps Q holomorphically into the open unit
ball in CN (N = n), and that for each point e UNM, |F(z)|—>1asz—q
(z € Q). Then F extends to a holomorphic mapping in some neighborhood

of p.

Note that we make no geometric assumptions about the hypersurface other
than its real analyticity. Here is the idea of the proof. Since the ring of germs
of holomorphic functions at a point pe C”is a unique factorization domain,
we may assume that F'is of the form f/g where no factor of g divides all the
components of f. Certainly F would extend holomorphically past M at p if
g(p) did not vanish. We prove that if g(p) =0, then some factor of g would
necessarily divide each component of f. First we prove that it is sufficient to
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pull back to an arbitrary parametrized holomorphic curve that lies in the
zero set of g sufficiently near 0. We then polarize the defining equation and
prove a lemma that relies on the fact that the defining function is real-valued.
It is natural to seek a larger class of hypersurfaces in the range C" for
which the conclusion of the theorem still holds. Our present argument, with
modifications given below, also enables us to prove the following result.

THEOREM 2. Suppose that M is a real analytic (nonsingular) real hyper-
surface in C", Uis a neighborhood of a point p e M, and Q is the portion of
U lying on one side of M. Suppose that F: U — CN (N = n) is a meromorphic
mapping whose restriction to Q maps Q holomorphically into the domain
E={we CN: 3|w;|*™i <1, where each my; is a positive integer}. If for each
point ge UNM, dist(F(z),bE)—0 as z—->q (z€), then F extends to a
holomorphic mapping in some neighborhood of p.

If we replace the ball by an arbitrary domain, however, we need not arrive
at the same conclusion. For example, suppose that © is the ball {(z, w) € C?:
|z|>+ |Iw|?< 1}, p=1(0,1), and m is a positive integer. Then the mapping
(z, w) = (z"/(1—w), w) sends Q properly to some domain in C? and has a
point of indeterminacy at p. We mention also that there are proper map-
pings from a ball to a ball that do not extend continuously to the boundary,
and that there are others that are continuous on the closed ball but are not
rational. The article [F2] surveys some of these and other recent develop-
ments in the study of proper holomorphic mappings.

This work is part of the author’s Ph.D. thesis [Ch], and he wishes to thank
his adviser John D’Angelo for introducing him to the subject and for many
helpful conversations.

Proofs of the Theorems

First we prove a simple result about real-valued functions of a single com-
plex variable.

LEMMA 1. Suppose that D is a disk centered at the origin in the complex
plane, r: D— R and ¢: D — C are smooth, r(0)=0, and k is a positive in-
teger. For te D put a(t,f)=r(t,f)o(t,[)/t koIf lim,_qa(¢, ) exists, then
this limit must be zero.

Proof. It suffices to show that the order of vanishing v of the product r¢
exceeds k. Since lim,_ga(¢,7) exists, v =k. So we assume that » =k and
derive a contradiction. Write r=r;+O(|¢}/*!) and o =g, _;+O(Jt|* /1,
where r; and ¢, _; are homogeneous polynomial functions of (¢, ) of (to-
tal) degree J and k —j, respectively, and write ¢ = |t|e‘9 for 0 € [0, 27]. Then
rj(e ,e Yy =lim,_ o(r(¢, t)/|t|J) is real for all 6, and so r; is real-valued.
Since rjp ~j is homogeneous in (¢,7) of degree k and hm,_,o(rjok J/t )
exists, there is a constant ¢ # 0 so that rj¢,_ ;= =ct*. Since r;j is a polynomial,
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there is then a constant ¢; # 0 such that r; = c,1’. But since rj is real-valued
and r(0) =0, we obtain a contradiction. O

The following lemma is also crucial to our argument.

LEMMA 2. Suppose that U is a neighborhood of the origin in C" and that
H:U—-C™and g: U— C are holomorphic with g(0)=0. Suppose further
that, for every parametrized holomorphic curve t — z(t) from the open unit
disk By in Cto {ze U: g(z2) =0} with 2(0) =0, if g(z(¢)) =0 then H(z(1)) =
0. Then there is a neighborhood U, of 0 contained in U such that H(z)=0
for all z e Uy such that g(z)=0.

Proof. After making a generic linear change of coordinates, we may apply
the Weierstraf3 preparation theorem (see [W], for example) to conclude that
sufficiently near 0, the zero set of g coincides with the zero set of a Weier-
straf} polynomial of the form

k
i+ 2 a2z
ji=1

where each g; is a holomorphic function of z’ that vanishes at 0. Let us de-
note by A this portion of the zero set of g. Now consider the intersection of
A with a complex 2-plane P containing the origin. For a generic choice of
2-plane P, ANP is a 1-dimensional curve. According to [Ca, Prop. 3.1],
we may assume that, for a generic set of such 2-planes P, the curve ANP
varies holomorphically with P. By that proposition, then, we obtain param-
etrized holomorphic curves zp: B;— ANP with zp(0)=0. By hypothesis,
H(zp(t)) =0 for all such curves. So H vanishes on AN P for a generic set
of 2-planes P containing the origin. Now to conclude that A vanishes on A,
it is sufficient to show that H vanishes on a dense open subset of A. So we
choose a smooth point go=zp,(fy) of A on ANP, for a generic P,. Since
P, is generic, we then obtain a dense open subset of A containing (¢, Py) by
letting ¢ vary near fy and P vary near P,. The lemma is proved. [

We now begin to prove Theorems 1 and 2. We take p =0. Since the ring of
germs of holomorphic functions at 0 € C" is a unique factorization domain
(see [W], for example), we may assume that F has the form f/g, where f:
U— CNand g: U— C are holomorphic and have no (nonunit) common fac-
tor near 0. We prove that this implies that g(0) must not equal zero, and
the conclusion of the theorem then follows. In fact, we prove the equivalent
statement that if g(0) vanishes then f and g have a common factor near 0.
So we suppose that g(0) =0, and we consider the following statement.

(1) For all z in some neighborhood of 0, f(z) =0 whenever g(z) =0.

If we knew that (1) were true, then fand g would have a common factor near
0. To see this we write the germs of g and of the components of f as prod-
ucts of irreducible germs. Since the ring of germs of holomorphic functions
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at 0 e C"is a unique factorization domain, this factorization is unique up to
associates and order of the factors. If 4 is an irreducible factor of g near 0,
then by (1) each component of f must have / as a factor, since 4 is irreduc-
ible. So it suffices to prove that (1) holds if g(0) =0.

First we choose coordinates and a local defining function r for @ in some
neighborhood V of 0 such that, for zeV, r is of the form

2 r(z,z)=2Re(z,)+a(z,Z) with a(0)=0 and da(0)=0,

where a: V — R is real-analytic.

From this point forward the proof of Theorem 2 requires a bit more tech-
nical argument than that of Theorem 1. In order to make clear the main
ideas, we first complete the proof of Theorem 1 and later make the appro-
priate changes necessary to establish Theorem 2.

We continue with the proof of Theorem 1. From the hypotheses (i) the
image of Q under f/g is bounded and (ii) | f(z)/g(z)|* = 1as z > M (z € Q),
we then conclude that

(3) |/(z)|*=]|g(z)|* for all z€V such that r(z,z)=0.

We polarize, or complexify, the statement (3) with respect to z,,; that is, we
allow z,, and 7, to be independent. Writing { for the former Z,, and putting
z2'=(21,.+-»2y-1), We have

@) SfR), [z, $»=g(z)egz, ) if r(z,(z §)) =0, sufficiently near 0.

Next we transform (4) into an identity in z by eliminating ¢. From the
form (2) of r we have

r(z, (E;: ?))—r(z,2)=§‘—22+a(z, (.z—,s f))_a(Z,Z)

sufficiently near 0. Since a(0) =0 and da(0) =0, there is a function b that is
analytic in (z,z’, {) near 0, vanishes at the origin, and satisfies the relation
a(z,(z, N —a(z,2)=(§ —Z,)b(z,7/, ). We then conclude that

r(z, (z, ) —rz,2) =(§ —Z,) (1+b(z,2’,{)) with b(0)=0.

Because (dr/a¢)(0) # 0, the equation r(z, (z7, {)) =0 near O defines ¢ as a
function of z and z” near 0, by the implicit function theorem. This function
(z2,27) — $(z,77) vanishes at 0, and so we get that sufficiently near 0, the
conditions

r(z,(@ ¢)=0 and —r(z,2)=({—Z)(1+b(2,7%, {(2,27)))

are equivalent. Writing ¢(z,z’) for —1/(1+b(z,7’, {(z,2’))), we then have
that sufficiently near O, the statements

r(z,(z,§)=0 and {=Z,+r(z,2)c(z,z’)

are equivalent. Upon conjugating the latter statement and substituting the
resulting expression for ¢ into (4), we obtain
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) (Sf(2), [z z2,+r(2,2)c(2,27))) =8(2)g(z', 2, +1(2,2)c(2,27))

for all z sufficiently near 0. We apply Taylor’s theorem to f and rearrange
the terms of (5) to get

6 IR+ f(z),r(z,2)e(z,2)) =g(2)g(z’, 2, +7(2,2)c(2,27))

for all z sufficiently near 0, where e is a mapping whose components are
bounded.

We wish to show that, sufficiently near 0, f vanishes on the zero set of g.
According to Lemma 2, it suffices to prove that f vanishes along every pa-
rametrized holomorphic curve that lies in the zero set of g sufficiently near
0. So suppose that f — z(¢) is a holomorphic mapping from the unit disk
in the complex plane to the zero set of g sufficiently near 0, with z(0) =0.
When we pull back via this mapping, the identity (6) in z becomes the fol-
lowing identity in ¢:

(7) LGN+ (=z(D), r(z(2), z(1))e(z(1), z(£))y =0

for all ¢ sufficiently near 0.
If f(z(¢)) were not identically zero near 0, then for some vy >0 we would
be able to write, for all ¢ such that |¢| <4,

') fz())=Lt*+0(**!) for some Le CN\{0}

and some positive integer k. Upon substituting this expression for f(z(¢))
into (7) and dividing by |¢|**, we would then get the identity

IL+O@) > +(L+O0(1), r(z(1),z(£))e(z(1), z(1)) /t*y =0, |t|<7.

Because | L+ O(t)ﬁends to a limit (namely, |L)?) as t — 0, the expression
(L+0(1),r(z(t), z(t))e(z(¢), z(¢))/t*y would necessarily tend to —|L|?as
t — 0. Since r is real-valued, we would have

lirr(lj{r(z(t),z(t))(L+O(t),e(z(t),z(t)))/t"] =—|L|%

{—

We could then conclude from Lemma 1 that —|L]*=0, and hence L would
equal zero.

Therefore it is not possible to fulfill the conditions in (8), and hence there
is a 6 > 0 such that f(z(¢)) vanishes identically for || <é. Thus f vanishes
along every parametrized holomorphic curve that lies in the zero set of g
sufficiently near 0. Lemma 2 then implies that sufficiently near 0, f vanishes
on the zero set of g. Hence statement (1) is true, and so Theorem 1 is proved.

]
Now we continue with the proof of Theorem 2. Recall that we may assume
that = f/g and that it remains to prove that if g(0) =0, then f must van-
ish along each parametrized holomorphic curve that lies in the zero set of
g sufficiently near 0. As above, we choose coordinates and a local defin-
ing function r for € in some neighborhood V of 0 such that for zeV, ris
of the form
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r(z,Zy=2Re(z,)+a(z,Z) with a(0)=0 and da(0)=0,

where a: V' — R is real-analytic.

After reordering the integers m; if necessary, we may assume that they
satisfy my<m, < --- < my. We first consider the case in which all these in-
equalities are strict. From the hypotheses (i) the image of © under f/g is
bounded and (ii) T|fi(z)/g(z)|*"i—1 as z > M (z €Q), we then conclude
that, for all z €V such that r(z,7) =0,

2 lg(z) |2(mN—m,-)|fi(z)I2m-= lg(Z)lsz-

In order to suppress terms irrelevant to the argument, we write this state-
ment in the form

9  |fw@)|*"N=g(z)®(z,Z) for all zeV such that r(z,Z) =0,

where @ is analytic in (z,Z) near 0. We polarize, or complexify, the state-
ment (9) with respect to z,; that is, we allow z, and Z, to be independent.
Writing ¢ for the former Z, and putting z’=(z;, ..., 2,-1), We have

10) (@)™ §) "N =g(2) (2, (Z}, §) if r(z, (2], §))=0,

sufficiently near 0.

Next we transform (10) into an identity in z by eliminating {. Just as in
the proof of Theorem 1, we know that there is a function ¢ that is analytic in
(z,z’) near 0 such that sufficiently near 0, the statements

r(z,(z,¢)=0 and {=7Z,+r(z,2)c(z,2')
are equivalent. Upon conjugating the latter statement and substituting the
resulting expression for ¢ into (10), we obtain
IN@)™N Nz 20+ (2, Z)e(2,27)) 7N
=8(2)P(z, (2", 2,+7(z,2)c(2,27)))

(11)

for all z sufficiently near 0. We apply Taylor’s theorem to fy and rearrange
the terms of (11) to get

| v (@) "N+ fiu (2)™Nr(z, Z)e(z, Z)
=2(2)®(z, (T, 2,+7(2,2)¢(2,27)))

for all z sufficiently near 0, where e is a bounded function.

We are now ready to show that fj, vanishes along each parametrized holo-
morphic curve that lies in the zero set of g sufficiently near 0. So suppose
that ¢ — z(¢) is a holomorphic mapping from the unit disk in the complex
plane to the zero set of g sufficiently near 0, with z(0) =0. When we pull
back via this mapping, the identity (12) in z becomes the following identity
in ¢:

(13) | v D) [N+ fiy (2(8))™Nr(z(8), 2(£))e(z(2), z(£)) =0

for all ¢ sufficiently near O.

(12)
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If fiy(z(t)) were not identically zero near 0, then for some y >0 we would
be able to write, for all ¢ such that |¢] <4,

(14) Sn@E)™=Lt*+O0(t**) for some Le C\{0}

and some positive integer k. Upon substituting this expression for fy (z(¢))"'~
into (13) and dividing by |¢|**, we would then have the identity

|L+O@)| 2+ (L+0))r(z(t), z(t)e(z(t), z(1))/tF =0, [t]<¥.

Because |L+O(¢)|? tends to a limit (namely, |L|?) as ¢ — 0, the expression
(L +O0()r(z(t), z(t))e(z(t), z(t))/t* would necessarily tend to —|L|? as
t - 0. We could then conclude from Lemma 1 that —|L|?>=0, and hence L
would equal zero.

Therefore it is not possible to fulfill the conditions in (14), and hence there
is a 6 > 0 such that fy(z(¢)) vanishes identically for |¢| < 6. Thus fy vanishes
along every parametrized holomorphic curve that lies in the zero set of g
sufficiently near 0. Lemma 2 then implies that sufficiently near 0, f vanishes
on the zero set of g. Thus fy and g have a common factor near 0, by the
reasoning preceding statement (1). Hence Fy = fy/g is holomorphic near the
origin, and the proof is finished if N=n=1. So we suppose that N> 1.

Now |Fn(z) "N+ 1<i<n-1|fi(z)/g(z)|*™ - 1 as 7 - M (z€Q), where
Fy is holomorphic near 0. From this statement and the hypothesis that the
image of © under f/g is bounded, we then conclude that for all z €V such
that r(z,z) =0,

N-1
|g(z)|2’”"’“IFN(Z)IZ"’N-{— 2 Ig(z)|2(mN_1—m,-)Ifj(z)lzm.: Ig(Z)|2mN“1.
i=1
In order to suppress terms irrelevant to the argument, we write this state-
ment in the form

| fvo1(2)|*"N-1=g(2)¥(z,Z) for all zeV such that r(z,7)=0,

where ¥ is analytic in (z, Z) near 0. Note that this statement has precisely the
form of statement (9), and so the argument given above proves in this case
that fy_, and g have a common factor near 0. Hence F_,= fy_/g is holo-
morphic near the origin. We continue in this way to prove that each com-
ponent of F is holomorphic near the origin.

In general the integers m; are not distinct. In this case we first consider the
set A={i:1=<i=<N and m; =my}, and we write f=(f", f4), where f; con-
sists of those components f; of f for which i € A and f’ consists of any other
components of f. Of course f’ may be void (for example, in Theorem 1, in
which each m; =1). The hypotheses of the theorem then ensure that if ¥ and
r are as above, then

15  |f1(z)|*"N=g(z)O(z,Z) for all zeV such that r(z,z)=0,

where O is analytic in (z, Z) near 0. Note the similarities between statement
(15) and statements (3) and (9). The arguments given previously thus apply
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to prove that f; vanishes along each parametrized holomorphic curve that
lies in the zero set of g sufficiently near 0, and hence that the mapping F, =
f4/g is holomorphic at the origin. What we have shown is that the restric-
tion of F to a certain subspace of C" is holomorphic at the origin. As above,
we write C" as an orthogonal direct sum of such subspaces, and we show
that the restriction of F' to each of the summands is holomorphic at the ori-
gin, and Theorem 2 is proved. J

Finally, we remark that Theorem 2 remains valid if the domain £ is replaced
by the domain E’ = {we CV: I |w;|*" +|Q(w)|*> < 1}, where Q: CN - CT
(N=n, T=1) is a polynomial mapping of degree d and m,, m,, ..., my are
positive integers such that m; <m,<-.- <my and d < my—1. See [Ch] for
further details.
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