Duality of Bloch Spaces and
Norm Convergence of Taylor Series

KEHE ZHU

1. Introduction

Let X be a Banach space of analytic functions on the open unit disk D in
the complex plane. We always assume that the polynomials are dense in X.
Given fin X, let

f@)=3 az*
k=0

be the Taylor expansion of f. For any integer n>1, let

fa@)=3 ayz*
k=0

be the nth Taylor polynomial of f. It is natural to ask the following ques-
tion: When does {f,} converge to f in the norm topology of X? We will
consider the question for the following spaces in this paper: H? spaces and
VMOA; weighted Bergman spaces; Besov spaces; and the little Bloch space.
We give the definitions of these spaces first.

For 1 < p < +o0, the Hardy space H” consists of analytic functions f on
the open unit disk D such that

sup 1 Szﬂlf(re"e)]pd6< +00.
0<r<i 2@ JO

It is well known that each function in H” has boundary values almost every-

where on the unit circle. We will not distinguish between functions in H?

and their boundary values. Note that the norm of a function in H?” is pre-

cisely the (normalized) Lebesgue L# norm of its boundary value function on

the circle. VMOA is the predual of H' under the complex integral pairing

1 27 -
Sfig)y=5- S £(6)2(8) db.
T J0

Again we will not distinguish between functions in VMOA (of the disk) and
their boundary values. A function on the unit circle is in VMOA if and only
if it is the Szego projection of a continuous function (see V1.5 of [3] or The-
orem 8.4.7 of [6]). For 1 = p< +o0 and o > —1, the weighted Bergman space
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Lé’(dAoQ is the subspace of L?(D,dA,) consisting of analytic functions,

where
dA,(z) = (a+1)(1—|z|*)*dA(z)

and dA(z) is the area measure on D normalized so that the area of D is equal
to 1. Lf(dA,) is a closed subspace of L#(D, dA,), and hence a Banach space
itself. It is easy to see that the polynomials are dense in each L?(dA,). We
will write LZ(D) for the unweighted Bergman spaces corresponding to o =0.
The Bloch space of D, denoted @, is the space of analytic functions f(z) on
D such that (1—|z|?*)f’(z) is bounded on D. ® is a Banach space with the
norm

I.£]=1/(0)|+sup{(1—|z|*)|f'(z)|: z€ D).

The little Bloch space of D, denoted ®, is the closure of the polynomials in
®. It is well known (see [2] for example) that an analytic function f(z) on D
isin B if and only if (1—|z|?)f’(z) belongs to Cy(D), the space of complex
continuous functions on the closed unit disk which vanish on the unit circle
dD. Finally, for 1 < p < +oo the analytic Besov space B, consists of analytic
functions f(z) on D such that (1—|z|*)2f"(z) is in L?(D, d\), where

dA(z)
(1—|z[?)?
is the (unique up to constant multiple) Mobius invariant measure on D. See
[1] or 5.3 of [6].

The problem of norm convergence of Taylor series for functions in the
HP spaces is classical: The Taylor series for each function in H” converges
in norm if and only if p > 1. The result is equivalent to the boundedness of
the Szego projection on L? of the circle when p > 1 and the unboundedness
of the Szegd projection on L! of the circle (see [3, pp. 108-109]). This re-
sult will easily imply that the Taylor series of every function in the weighted
Bergman space L2(dA,) converges in norm if p > 1. The corresponding re-
sult for analytic Besov spaces (when p > 1) follows similarly.

The (Hardy space) proof of the equivalence of the boundedness of the
Szeg0 projection on L” and the norm convergence of Taylor series does not
work in the Bergman space setting. This is mainly because a function on
the circle consists of just an analytic part and an anti-analytic part, while a
function on the disk is much more complicated. Although we know that the
Bergman projection is unbounded on L' of the disk (with the area measure),
this does not imply that Taylor series of functions in the Bergman space
L} (D) do not converge in norm. Furthermore, it is well known (see 4.2 of
[6]) that (unlike the Hardy space case) there are many bounded projections
from L'(D, dA) onto L. (D). Thus one wonders if the results in the Bergman
space setting are a little different.

We prove in Section 3 that there are functions in the (unweighted) Berg-
man space L. (D) whose Taylor series do not converge in norm. It follows
from a well-known duality between L} (D) and the little Bloch space that

dN\(z)=
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there are functions in the little Bloch space whose Taylor series do not con-
verge in norm. In Section 4 we prove a duality theorem between the Bloch
spaces and the weighted Bergman space L}(dA,). This will imply that there
exist functions in the weighted Bergman space L!(D, dA,) whose Taylor
series do not converge in norm. The classical result for H? spaces is included
in Section 2 (for completeness), along with some of its consequences.

2. Norm Convergence of Taylor Series
in Hardy Spaces

In this section we prove the classical result that norm convergence of Taylor
series in H” is equivalent to the boundedness of the Szeg6 projection. First
we prove a general result about norm convergence of Taylor series.

PROPOSITION 1. Suppose X is a Banach space of analytic functions in D
with the property that the polynomials are dense in X. Then | f,—f|-0
(n - +) foreach f € X if and only if there is a positive constant C > 0 such
that |S,| = C for all n=1, where S,, is the operator S,, f = f,, defined on X.

Proof. If the Taylor series of each function in X converges in norm then,
for each fe X, S,f— fin X as n— +co. By the uniform boundedness prin-
ciple, there exists a constant C > 0 such that |S,|<C for all n=1.

Conversely, if |S,| < C for some constant C>0 and all n=1, we show
that the Taylor series of each function in X converges in norm. Fix fe X
and e > 0; since the polynomials are dense in X, we can find a polynomial
p(z) such that | f— p| <e. It follows that

1Sy f=f|<|Snf—=Spp|+|S,p—p|+]|p—f]
<C|f-p|+|Sup—Pl+|p—f]
<(C+De+|S,p—p|.

Since S, p = p for n large and ¢ is arbitrary, we see that |S, f~f| >0 (n—
+00), completing the proof of the Proposition. L]

Recall that the Szegdé projection is the orthogonal projection P from
L*(dD, df) onto the Hardy space H2. If we think of H? as defined on the
open unit disk D, then P is an integral operator:

1 SZW S(0)do

Pf(Z)=27r 0 1—ze—i0’ €Db.

It is clear that the domain of P can be extended to be L'(dD, d). A classical
theorem of Riesz states that P maps L”(0D, df) boundedly onto H” if and
only if 1< p < +c0. Next we show that the problem of norm convergence
of Taylor series for functions in the Hardy spaces is equivalent to the Riesz
theorem. Recall that S, is the operator which maps an analytic function to
its nth Taylor polynomial.
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THEOREM 2. Let |S,|, be the norm of S,, on HP. Then {|S,|,} is a bound-
ed sequence if and only if the Szegd projection P is bounded on LP(3D, d6).

Proof. Since the trigonometric polynomials are dense in L¥”(aD, df) for
each p>=1, we have

|P|,=sup{|Pf|,:|f],=1, fis atrigonometric polynomial}.
Similarly, since the polynomials are dense in H” for each p =1, we have

1Salp =sup{| S, f1,:1/1,=1, f is a polynomial}.

Given a trigonometric polynomial

n -
g(t)= Y ae’™,

k=—-—n

it is easy to see that the function h(¢) =e™g(t) is analytic, |4],=]q|,, and
S, h(t)=e—"Pg(1).

It follows that |S, 4|, = |Pg|, for any trigonometric polynomial g of degree
n. Now if |S,| ,< C for some constant C>0and all n=1, then |Pg|,<Clq|,
for all trigonometric polynomials g and hence P is bounded on L”(3D, d@).
On the other hand, if P is bounded on L?(3D, df), then

ISuttlp=1Pllal,=1Pl2],.

When ¢ runs over all trigonometric polynomials, # runs over all (analytic)
polynomials; thus we see that |S,|,=<|P| for all n=1. This completes the
proof of Theorem 2. O

We derive some corollaries of the above result. First recall that the Riesz
theorem states that the Szegd projection is bounded on L”(aD, d#) if 1<
p <+ (see, e.g., [3, IIL1.3]). On the other hand, it is easy to see that the
Szegd projection is unbounded on L!(3D, db) (see, e.g., [4, p. 150]). Thus
we have the following corollary.

COROLLARY 3. The Taylor series of every function in H” converges in
norm if and only if 1< p<+oo.

Given 1 < p < +, Proposition 1 and Corollary 3 imply that there is a con-
stant C > 0 such that

27 . 27 .
SO | fae)|Pdt < cSO | f(e™)|Pdt
for all fe H” and n =1, where f, is the nth Taylor polynomial of f. It fol-

lows from the use of polar coordinates that for any function f in the weight-
ed Bergman space LY(dA,),
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A AT ZNE

a+1 (1 27 .
= Sor(l —1’2)"‘afrs0 | fu(re'™)|P dt

< M Xlr(l—rz)adrgzwlf(rei’)lpdt
™ 0 0

=C|f15,a

Thus {S,,] is a bounded sequence of operators on L7 (dA,) for 1< p < +oo.
By Proposition 1, we obtain the next corollary.

COROLLARY 4. If 1< p<+ooand a> —1, then the Taylor series of every
Sfunction in LY(dA,) converges in norm.

The question of norm convergence of functions in the Bergman space
L}(dA,) will be answered in Section 4 as a consequence of a duality theo-
rem between the Bloch spaces and L} (dA4,). We first apply this idea to settle
the question of norm convergence for functions in the space VMOA.. Recall
that the dual of VMOA is H! under the complex integral pairing

(f, 8= 51— Sz’rf(e"")g(e"f’) do.
™ JO

The rotation invariance of dD and d#§ easily implies that each operator S, is
self-adjoint under the above integral pairing. It follows that the norm of S,
as an operator on VMOA is equivalent to the norm of S, as an operator on
H'. By Proposition 1 and Corollary 3, {S,} is an unbounded sequence of
(bounded) operators on VMOA.. This proves the following corollary.

COROLLARY 5. There exist functions in VMOA whose Taylor series do
not converge in norm.

Using the argument in the proof of Corollary 4 and the fact that an analytic
function f on D is in the Besov space B, (for p >1) if and only if

dA(z)

—_— < ,
(1-|z]2)? e

[ a-lzpy1rep
we obtain another corollary.

COROLLARY 6. If 1< p<+oo, then the Taylor series of each function in
B, converges in norm.

We will deal with the Besov space B, in the next section after we study the
Bergman space L. (D). We conclude this section with the following classical
result. A proof can be found in [7, pp. 300-301].
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THEOREM 7. There are functions in the disk algebra A(D) whose Taylor
series do not converge in norm.

3. The Bergman Space L!(D)

We write LZ(D)=LF(dA,) for a«=0. Thus LZ(D) denotes the usual (un-
weighted) Bergman spaces. We proved in the previous section that if 1<
p < +oo then the Taylor series of any function in L?(D) converges in norm.
In this section we show that this fails in the case p=1.

LEMMA 8. For a>—1, t real, and z € D, define
ar df (1—|w|)*dA(w)
0 Il_zeiﬂll—i-t |1_2‘w|2+a+t

If t <0, then I1,(z) and J; ,(z) are bounded in zeD. If t >0, then

I(2)=| and Jo(2)=|_

[(2) ~ J;, o(z) ~ as |z|-1".

_1
(1-]z]?)
If t =0, then

Io(z)~Jo,a(z)]~log as |z|-1".

_1
1-|zf?
Proof. See 1.4.10 of [5]. U

THEOREM 9. There exist functions in LL(D) whose Taylor series do not
converge in norm.

Proof. By Proposition 1, it suffices to show that the operators S,, are not
uniformly bounded on L.(D), that is, there is no constant C >0 such that
|S,| =< C for all n=1. In what follows, all norms will be taken in L} (D).

Fix a € D and consider the function
1—|al?
fa(Z )= m

for ze D. By Lemma 8, there is a constant C > 0 such that | f,| < C for all
a € D. The Taylor expansion of f, is given by

fo@)=(1—]al?) § (k+1)(k+2)a*z*.
For any n=1, =0
Snta(2)
=(1-|a|2)k§0(k+1)(k+2)c‘z"z"

_n+2)(n+3)@)""  2n+3)@) " | 2(1-@z2)"")
1—-az (1—az)? (1—az)? ]

= 1-lap)|
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Next we estimate the L}-norm of each of the above three functions (in re-
verse order). First, by Lemma 8, there is a constant C,;> 0 such that

2(1—|a|?)|1—(az)"*?|
D |1—-az|3

A1=S dA(z) < C,

for all @ € D. Second, by elementary calculus, there is a constant C, > 0 such
that
2(n+3)(1—|wH)|w|" 2= C,

for all we D and all #>=1. It follows that, for each ¢ € D,

y _5 2(1—|al?)(n+3)|az|"*?
>~ Jp |1—az|?

2(n+3)(1—|az|?*)|az|"*?

dA(z)

=(1—|al? dA
(1-ld] )SD |1—-az|?(1—|az|?) @
dA(z)
12
=C(1—|d] )SD |1—az|?(1—|az|?)
=C2.
Finally, for each ¢ e D,
, z n+ldA(z)
A3=(n+2)(n+3)(1—|a|2)|a|’“SDl ||1—c‘zz| .

We show that the above integral is unbounded as a function of » and a. This
will prove that {S,} is an unbounded sequence of (bounded) operators on
LL(D) and hence complete the proof of the theorem.

By polar coordinates,

S |z|"*1dA(z) 1 SII"HZ rgzw dt
D

1-az| ~ = Jo o [1—rlale|"

By Lemma 8, there is a constant ¢ > 0 such that

1 S?—vr dt cl

— _— > -
w Jo |1—r|ale’| Og1——r|af|

for all r€(0,1) and a e D. It follows that

r"+2log dr

n+1 A 1
S 2| dA(z) >CS
D 0 1—r|al

1—az|
for all a e D and hence

dr

1
A3zc(n+2)(n+3)(1—|¢fl|2)fa|"+150”leog l—llal

for all @ € D. Using integration by parts, we have
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+3)| r+?1o dr=1
(n+3) o gl—-rl | P | al ~la ISol —rla|
CIS
>1 - n+3
%8 T27a] ~ 1=]a] Jordr

1 |a|
1—|a| (n+4)(1—|a|)’

This implies that

A3zc(n+2)(1—|a|2)|“|n+l[1°g 1—1|a| - (n+4)|?1|——|a|)]

1 c(n+2)(1+|a]a|"+?
1—|a| n+4 '

=c(n+2)(1—|a]2)|a'|'“rl log

The second term above is bounded in @ and n, but the first term tends to

infinity if a=n/(n+1) and n — +c0. This finishes the proof of Theorem 9.
[

Recall that the Besov space B, consists of analytic functions f(z) on D such
that

[ lf"@lda@ < +e.
It is now clear that the following result is a direct consequence of Theorem 9.

COROLLARY 10. There are functions in B, whose Taylor series do not
converge in norm.

The Bloch space @& consists of analytic functions f(z) on D such that

I.£]=|£(0)|+sup{(1—]|z|*)| f'(z)|: z€ D} < +oo.

The closure in ® of the polynomials is called the little Bloch space and is de-
noted by ®,. It is well known (see [2] for example) that

®y=L.(D) and LLD)*=®

under the complex integral pairing

Ser=| f@)E@dAe).

The symmetry of D and the rotation invariance of dA clearly imply that each
operator S, is self-adjoint under the above pairing. It follows that the norm
of S, as an operator on B, is comparable to the norm of S, as an operator
on L.(D). By Proposition 1 and Theorem 9, we have the following corollary.

COROLLARY 11. There exist functions in the little Bloch space ®, whose
Taylor series do not converge in norm.



Duality of Bloch Spaces and Norm Convergence of Taylor Series 97

4. Duality of Bloch Spaces and Ll(dA,)

In order to study the norm convergence of Taylor series for functions in the
weighted Bergman spaces L!(dA,), we first establish a duality theorem be-
tween L!(dA,) and the Bloch spaces. It will be clear that the operators S,
are self-adjoint under this duality. Thus Corollary 11 together with Proposi-
tion 1 will show that the Taylor series of a function in the weighted Bergman
space L} (D) does not necessarily converge in norm.

For any o> —1, let P, denote the operator defined by

(1= |w]ef(w)dA(w) _ S S(w)dA,(w)

Paf(z)z(a+1)SD (I_zw)2+a - D (I—ZW)2+°‘ :

It is well known that P, is a projection onto analytic functions. For exam-
ple, if 8> a > —1 then P; is a bounded projection from LY(D,dA,) onto
L1(dA,), by an application of Lemma 8 and Fubini’s theorem. We also note
that P, is the orthogonal projection from L*(D, dA,) onto L2(dA,,). In par-
ticular, P, is self-adjoint under the integral pairing given by dA,,.

THEOREM 12. P, maps L*(D) boundedly onto & for any o> —1. More-
over, the norm on ® is equivalent to the quotient norm induced by the map-
ping P,: L*(D) > &.

Proof. If gisin L*(D) and f=P,g, that is,

(1=|w|*)*g(w) dA(w)

(1—zw)2+e for zeD,

J@=(@+n|

then differentiating under the integral sign gives

(1—|w[>)*wg(w) dA(w)
(1-—-ZW)3+°‘ )

S1@)=(a+ @+

By Lemma 8, there is a constant C > 0 (depending only on «) such that

(1=|wP)*dAW) _ Clgl
|1—zw|3+e T 1—|z/?

/@)= (@+D(@+D)lglo |

for all z in D. Thus f is in the Bloch space, and it is clear that the norm of f
is dominated by the norm of g.

On the other hand, if f is in the Bloch space then we wish to show that
there is a function g in L®(D) such that f= P, g. It is easy to see that P, of z*
is a constant multiple of z*. It follows that if f(z) is a polynomial then f is
the image of a bounded function under the mapping P,. It remains to show
that if f(z) is in @ and if f(0) = f’(0) = f"(0) =0, then there exists a func-
tion g in L*(D) such that f= P, g. This can be done constructively as fol-
lows. Since f is in & and f(0) = f’(0) = f"(0) =0, the function
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_(1-]z])f"(=2)
&)= — 1)z

is in L*(D). Let F= P, g, that is,
A—=|w]?)* (1=]w]’)f'(w)
w

p (I—zw)>+e aAw).

F(z)=S

Differentiating under the integral sign, we get
(1 _ I w |2 )a+l
A direct computation shows that F(0) =0; thus we have F(z) = f(z) for all
z € D. This proves te identity & = P, L*(D). The equivalence of the norm

on & and the quotient norm induced by P, follows from the open mapping
theorem. This can also be seen directly from the above proof. ]

F@=(+2| S'W)dAMW) =Py S12) =S ().

THEOREM 13. If o> —1, then P, maps Cy(D) onto ®B,.

Proof. 1t is easy to see that P, of (1—|z|?)z* is a constant multiple of z*;
hence every polynomial belongs to P, C,(D). This, along with the construction
in the second part of the proof of Theorem 12, shows that &,C P,Cqy(D).

On the other hand, if g is in Cy(D) and = P, g, then differentiating under
the integral sign gives

1— PAN!
f,(z):SD( |w|“)*e(w)

(1—zw)3+e

where ¢(z) = (a+1)(a+2)Zg(z) is still in Cy(D). Let

dA(w), zeD,

Z—WwW
I—2Zw

o (W)=

and make the change of variable w — ¢,(w) in the above integral. We then

obtain

(I=|w*)* 1—zw
[1—zw|* (1—Zw)

(1-lzP)r @ ={ eep.(m S dAW).

Since 1—|w|*><2|1—zw| and

‘g dA(w)
D [1-Zw|

converges uniformly in z, and since ge¢, (W) = ¢(zy) =0 for each we D as
z = zp€ 0D, dominated convergence gives

lim (1—|z|*)|f"(z)|=0.

[z]—>17

This completes the proof of Theorem 13. ]
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LEMMA 14. Let T, be the operator defined by
(1—|w]*)"
D (1—zw)3+«

T./(@)=(a+2)(1-|z[}) | SOy dAW).
Then T, is an embedding from & into L*(D). Moreover, T,, maps &, into
Co(D).

Proof. If fe®, then Theorem 12 implies that f =P, g for some g e L*(D).
It follows easily from Fubini’s theorem and the reproducing property of P,
that 7, f=T,P,g =T,g. Thus

(1=|w[*)®
D (1—zv‘v)3+°‘

By Lemma 8, there is a constant C > 0 such that |7, f|. < C|g|-. Since the
norm on & is equivalent to the quotient norm induced by P,: L*(D) — ®,
taking the infimum of the above inequality over g we see that 7, maps ®
boundedly into L*(D).

On the other hand, Fubini’s theorem and the reproducing property of
P, ,imply that P, T, f=P, f = f for any f € &. By using the quotient norm
on & induced by P,: L(D) —» & we see that the norm of f in ® is domi-
nated by |7, f |-

Since T,, maps each polynomial to the product of another polynomial and
1- |z|2), T, maps polynomials into Cy(D). Since 7, is bounded from & to
L>(D), Cy(D) is closed in L*(D), and & is the closure of the polynomials,
we see that 7, maps B, into Cy(D). [

T./@)=(a+2)(1-|z]) | g(w)dA(w) for zeD.

THEOREM 15. Under the integral pairing

(fr8)a= SDf(z)@ dA,(2)

we have the following dualities (with equivalent norms):

®Ry=L(dA,) and (LL(dA)))*=G®.
Proof. First assume that g is in @ and that fe L.(dA,) is a polynomial.
(Polynomials are dense in L.(dA,).) By Theorem 12, there exists a func-

tion ¢ in L*(D) such that g =P, ¢. Since P, is self-adjoint under the pair-
ing ¢-,+),, we have

Sr8a={ S Pp@)dA2)

| Pr@e@dan)

=| f@p@dA ).
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It follows that [{ f, £)«| <|¢]w] /|1, « for all polynomials fin L!(dA,). Thus
each function g in & induces a bounded linear functional on L}(dA4,).
Next assume that ¢ is a bounded linear functional on L.(dA,). Then, by
the Hahn-Banach extension theorem, £ extends to a bounded linear func-
tional on L'(D, dA,). Thus there exists a function ¢ in L*(D) such that

)= S2e@)dA.@)

for all f in L}(D). Since f=P, f and P, is self-adjoint under the integral
pairing associated with the measure dA,, we see that £(f) =</, P,¢), and
g=P,p is in B by Theorem 12.

Finally, assume that £ is a bounded linear functional on 3,. We prove that
there exists a function g in L1(dA,) such that £(f) = (f, g), for all poly-
nomials f in ®,. (Polynomials are dense in B,.) Let Y be the image of &,
under the mapping 7,,. By Lemma 14, Y is a closed subspace of Cy(D) and
£T7!is a bounded linear functional on Y. Applying the Hahn-Banach ex-
tension theorem and the Riesz representation theorem, we can find a finite
complex Borel measure p on D such that

17N = S2)dic)
for all feY. It follows that

()= Tuf@)dR)
(L= W[ S (w)

=(a+2)§D(1—|z|2)dﬁ(z)jD dA(w)

for all f in the little Bloch space ®,. Let

a+2 S (1—|w|?) du(w)
D

. zeD.
a+1 (I—zw)i+te > ©€

g(z)=

Fubini’s theorem then implies that £(f) = (/, g), for all polynomials f in
®,. It zemains to show that g isin L} (dA,). This can be checked easily using
Fubini’s theorem and Lemma 8:

(1—|w|®)d|p|(w)
Il_zw|3+a
(1—|z]*)*dA(z)
|1_Zw|3+a

| lg@ldAu@) = (@+2){ (1-|zP)*da@) |
D D D

- (a+2)SD(I—[w|2)d|,u|(w)SD

(1—|w[*)d|p|(w)

il =Clal.

sCS

This completes the proof of Theorem 15. Ll
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THEOREM 16. There exist functions in LY(dA,) whose Taylor series do
not converge in norm.

Proof. Since dA, is rotation invariant, each S, is self-adjoint under the
pairing

Sr8e={ f2)8@)dA().

By the duality ®%=L!(dA,), the norm of S, as an operator on ® is equva-
lent to the norm of S, as an operator on L}(dA,). The desired result now
follows from Proposition 1 and Corollary 11. ]
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