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1. Introduction

We begin by explaining the title of this paper. Consider the following ques-
tion: Let K be a distributional kernel on a compact CR manifold, for ex-
ample, a compact hypersurface in C”. We ask what kind of conditions on
K are sufficient to guarantee that K differs from the Szegd kernel only by a
smooth function? Our answer provides an approximation theorem for Szegd
kernels. This question of approximation arises naturally from the study of
the Szego kernel, since finding the Szegd kernel explicitly is almost impos-
sible for most CR manifolds. Before making a precise statement, we intro-
duce two applications of the main theorem which constitute motivations for
this work.

APPLICATION 1. The first application is to the question of a localization
of the Szego kernels. Let 2, and @, be two bounded pseudoconvex domains
in C" with smooth boundaries 5$;. Suppose that 2, CQ; and bQ,N bR, #= .
If S; is the Szegd kernel for Q; (j =1, 2), is S;— S, smooth in the interior of
b NbR,) X (b N DHQ,)? The answer is yes, under a certain type of condi-
tion (see Corollary 4.3 for a precise statement). An analogous question on
the Bergman kernels was resolved by Fefferman by an elegant trick [4].

APPLICATION 2. The second application is related to the study of the
Szego kernel for domains in C3. Let Q be a bounded pseudoconvex domain
with a smooth boundary. Suppose that a portion of Q is defined by the defin-
ing function

p(z) =p1(21, Z1) +D2(22,Z2) —Imz3,

where p; is a subharmonic but not harmonic polynomial. Let
Q;=0N{(0,23,z3)} and 2,=0N{(z,0,z3)}.

We want to exploit the relationship between the Szegd kernels for Q;, Q,,
and €. It turns out that the Szego kernel for Q differs by a smooth function
from a kind of convolution of the Szegd kernels for 2 and @2, (see Theo-
rem 5.1).
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It is apparent that both applications are very much related to an approxi-
mation of the Szegd kernels.

We now briefly state the basic hypothesis and main result of this work. Let
M be a compact CR manifold and let H,, denote the class of square integrable
CR functions. Throughout this paper we will assume that there exists an
open subset U of M such that, for any pair of functions {y,, ¥} in Cq(U)
with ¥, =1 in a neighborhood of the support of ¥, and for any s >0, there
exists a positive constant C, such that if # e dom(d,) and « L Hj, then

2.1 [¥1uls < Cs(|¥20puls +|pul).

Among well-known examples of such CR manifolds are compact pseudo-
convex CR manifolds of finite type on which g, has a closed range (see Re-
mark 2.2). Note that (2.1) is not a subelliptic estimate. We can even allow the
right-hand side of (2.1) to have |y, 8, u ], for some N instead of |y, 3, |-
It would be interesting to see what kinds of geometric conditions on the man-
ifolds will imply the estimate (2.1). If a 3-dimensional compact CR manifold
is Levi flat in an open subset U (locally it is C X R), then it is easy to see that
(2.1) does not hold in U. )

Suppose that M is a finite-dimensional compact CR manifold and that
(2.1) holds in an open subset U of M. The distributional kernels K in which
we are interested are of the following kind: K is in C®(UX U\A) where
A is the diagonal in U X U. We assume that the operator T defined by X is
bounded from L2(U) to L?>(U). The main theorem of this paper provides
conditions on such a distributional kernel K which imply that K differs from
the Szeg6 kernel by a smooth function.

THEOREM 4.2. Let M and U be as above and suppose that K is a distribu-
tional kernel which satisfies the above conditions. Let {{; }Jz-zl be real-valued
Junctions in Cy’(U) such that y,=1 in a neighborhood of the support of
V1. Suppose that K and the operator T defined by K satisfy

(1) 3,KeC*(UxU) where 3, acts on the first variable,

2) K(z,w)—K(w,z)e C*(UxU), and

(3) there exists a number k (either positive or negative) and a constant C
such that

[T =T) W2 N 2= C|3p(¥2. )]k
Jor any feH,.

Then K differs from the Szegé kernel for M by a smooth function in the in-
terior of the support of ;.

Roughly speaking, Theorem 4.2 says that the “almost conjugate symmetry”
property (2) and the “almost reproducing” property (3) almost determine the
Szeg6 kernel as the conjugate symmetry and the reproducing property com-
pletely determine the Szegd kernel.

This paper is organized as follows: We first formulate the basic hypothesis
of this paper (Section 2) and then prove that the Szegd kernel is smooth off
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the diagonal (Section 3). In Section 4, an approximation theorem for the
Szego kernel is proved, and as an easy consequence we show that Szego ker-
nel can be localized. Section 5 is devoted to Application 2.

One word about notation: constants denoted by C or C, may differ at each
occurrence, but the dependence does not change.

I would like to thank Professor Alexander Nagel for several helpful dis-
cussions and encouragement.

2. The Basic Hypothesis and Preliminaries

We first formulate the following definition for its repeated use throughout
the paper.

DEFINITION 2.1. Let M be any smooth manifold. For j=1,2,...,n let
{U;} be open sets in M and let {;] be real-valued functions in Cg’(M). We
call {(U;, ¥;)} nested in M if

(1) U,ccu,cc---CcCM,

(2) ¥j=1on U for j=1,2,...,n, and

(3) supp(¥;)CUj, for j=1,2,...,n—1.
{U;} is called nested in M if (1) holds and {y;} is called nested in M if ;=1
in a neighborhood of the support of ;.

Let M be a compact CR manifold. We denote by H,, the class of all func-

tions in L2(M) which are annihilated by the CR operator 3, (i.e., H, is the

space of the square integrable CR functions). We refer to [6] for the defini-

tion of d,. We also denote by | |; a Sobolev norm of orer s on M. Through-

out this paper P represents the Szegd projection and S the Szegd kernel
We now formulate the basic hypothesis of this paper.

BASIC HYPOTHESIS. Let M be a compact CR manifold. We assume that
there exists an open set U in M such that, for a pair {y;, ¥,} nested in U
and for any number s > 0, there exists a positive constant C; such that if # €
dom(d,) and u L H,, then

2.1 [¥1uls = C(1¥205u)s +]0,u]).

REMARK 2.2. If M is a compact pseudoconvex CR manifold of dimen-
sion 2n+ 1 on which 8, has a closed range, and if for any x € U there exists a
positive integer k such that 1e I}(x) (we refer to [10] for the definitions of
I}), then Theorem 2.6 of [8] on the subelliptic estimates for d, guarantees
the estimate (2.1). We should mention that the estimate (2.1) is not a subel-
liptic estimate; that is, the estimate does not require any gain of regularities.

LEMMA 2.3. Let M be as above. Suppose that the basic hypothesis holds
in an open subset U of M. If {{,, ¥} is nested in U, then for any s >0 there
exists a positive constant C such that

2.2) [¥1PSf s = Co(I¥1 S |s +¥295 S 15 +195S1)
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Sor any fe H,, where H; is a Sobolev space of order s on M and P is the
Szego projection for M.

Proof. Since (I —P)fL H,, this lemma follows immediately from (2.1). [
COROLLARY 2.4. P(C*(U)Ndom(3,)) C C*(U).

3. Smoothness of the Szegoé Kernel

Let M be a compact CR manifold and assume that the Basic Hypothesis
holds in an open subset U of M. The purpose of this section is to show that
the Szegd kernel for M is smooth in U X U\ A where A ={(z,z)|z € U}. The
same result when M is a 3-dimensional pseudoconvex compact CR mani-
fold of finite type has been proved in various papers (e.g., [3] and [11]). We
include a proof here for the sake of completeness.

THEOREM 3.1. Let M, U and A be as above. Let S be the Szegd kernel for
M. Then
SeC®(UxU\A).

Proof. Let {qﬁj}f-zl and {sz]f: | be two nested pairs in U such that

supp(¢2) Nsupp(¥,) =0.
Put T=My,(I—P)Msy,, where P is the Szegd projection for M and M|, is
the multiplication operator by y. Note that 7= —My, PMy, since

supp(¥;) Nsupp(¢,) =9.
Let fe H;. Since (I—P)(¢,f)L H,, it follows from (2.1) that for each s >0
there exists C; > 0 independent of f such that

17115 < Co(I¥205 (I = PY(&1.) s + [0, ( = P) (1.)])-

Since

Y20,(I = P)(1.f) =v,0,(¢1f) and supp(y¥,) Nsupp(¢;) =0,
¥,0,(I —P)(¢,f) =0 and hence

17115 = Cs| 9 (1)) = C| f |-

Therefore, T is bounded from H, to H; for any s > 0.

On the other hand, the adjoint operator 7* of T is My, (I —P)My, and
hence, in the same way as above, we can show that 7* is bounded from H,
to H; for any s > 0. By taking the adjoint of T* we can see that 7 is bounded
from H_; to H_, for any s > 0. It then follows from an interpolation that T'is
bounded from H; to H; for any s and k. So the kernel —y,(z)S(z, w)¢;(w)
of T belongs to C*(M x M). Since ¢, and ¢, are arbitrary functions in
C*(U) such that supp(¢;)Nsupp(¥,) =@, we can conclude that

SeC®(UxU\A),
and the proof is completed. O
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Theorem 3.1 and Lemma 2.3 lead us to the following corollary.

COROLLARY 3.2. Let Mand U be as above. If {y,, {,} is nested in U, then
SJor any s =0 and t there exists a positive constant C; , such that

|1 Pfls < Cs, |2 fls+1+ =)
for any fe H,.

In fact, better estimates can be found in [3] and [5]. But for our purpose,
Corollary 3.2 is enough.

4. Approximation of the Szego Kernel

In this section we will derive a theorem on an approximation of the Szeg6
kernels, and as a corollary we prove a theorem on a localization of Szego
kernels which was introduced at the beginning of Section 1.

LEMMA 4.1. Let M be a compact CR manifold and U be an open subset
of M. Suppose that the Basic Hypothesis holds in U. Let {{,, Y,} be a nested
pair in U. Then for any s > 0 there exists a positive constant C, such that

4.1) [¥1(T =Py fls =< Csl9p(¥2 )
for any feL?such that 8, f=0 in U.

Proof. Choose a function ¢ in Cg°(U) so that {{,, {, ¥»} is nested in U. Be-
cause (I —P)(y, f)LH,, it follows from (2.1) that

s =Py fls < Cs(|$0p (Y2 )]s +106 (L2 F)])

for some constant C; independent of f. Since ¥, =1 in a neighborhood of
the support of {, we have {d,(¥, f)=0if 9, f=0in U. Therefore,

[¥1( =P fls = Csl0p (Y2 )]-
This completes the proof. O

The following is the main theorem of this paper, and is a converse of Lem-
ma 4.1. It shows that if an almost self-adjoint integral operator (property (2))
enjoys the property (4.2) (we called it “almost reproducing property”), then
its distributional kernel differs from the Szegd kernel by a smooth function.

THEOREM 4.2. Let M and U be the same as above. Suppose {(U;, x//j)}}=1
is nested in U. Let K be a distributional kernel such that K€ C*(Ux U\A)
where A ={(z,2)|z € U}. Define an operator T by

T/@) =¥2(2) | K(z, w)¥s(w)f(w) do(w)

where do is the surface area on M. Assume that T and K satisfy the follow-
ing properties.
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(1) 3,Ke C=(U,xU,), where 3, act on the first variable.

2) K(z,w)—K(z,w)e C=(U,x U,).

(3) Let Ef(z) =y 1(I—T)f(z). There exist a number k and a positive con-
stant C such that

4.2) |Ef| = Cl3, (2.«
Jor any feH,.
Then K—Se Cm(le Ul)‘

REMARK 4.3. (i) Note that (4.2) is a much more relaxed condition than
4.1).

(ii) (4.2) implies that EPMy, = My, (I—T)PMy, is a smoothing operator.
More precisely, for any real number s there exists a constant C; > 0 such that

|EPMy, f]= C|fls.

To prove this we note that

(a) the kernel of 8, My, PMy, is (3,¥,)(2)S(z, w)¥ (W),

(b) ¥,=1in a neighborhood of the support of ¥, and

(©) supp(¥;) CU.
It then follows from Theorem 3.1 that the kernel of the operator 3, My, PMy,
is smooth, and hence

"EPM%f"S CHEI,M\!/ZPM];,If"kS Cs"f“s
for any number s. This is an essential observation for the proof of Theo-
rem 4.2.

Proof of Theorem 4.2. Consider the operator My TPMy,. If f, g € C*(M),
then by (2) and Remark 4.3(ii) we have

(4.3) (My,TPMy, f, g) = (My,PMy, f, 8)+(E,PMy, f, 8),

where _
|E\PMy, fl = C|dp My, PMy, i< Cs| fls

for any real number s.
On the other hand,

(M'/qT*PMl//]f’ g)= (f,M\hPTM%g)
(4-4) =(f,M¢1TM¢1g)+(f,E2TM¢1g)
=My, TMy, [, 8)+(E2TMy,)*f, 8),

where E,TMy, = —My, (I — PYTMy,. We claim that the operator E satisfies
the estimate |E,TMy, g|s < C;, | €|« for some constant C , for any s and k.
In fact, by (2.1), there is a constant C; such that

"EZ TM% g”S = Cs(||¢’2§bTM‘l/1g"s +"5bTM¢1g")!
and the kernel of the operator d,7My, is
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(4.5) (Bp¥2) (2)K (2, W)Y (W) +¥2(2)3p K (2, W) (W).

Since ¥, =1in a neighborhood of the support of y; and Ke C*(Ux U\A),
and since 9, K € C (U, x U,), the function given in (4.5) is a smooth func-

tion. Therefore,
|E;TMy, g|s < Cs rlglk

for any s and k. In particular, (E,7My,)* is a bounded operator from H; to
L? for any s. By equating (4.3) and (4.4), we see that

My (P—T)My =My (P—T*)My +My (T*—T)My,
=My (T*—T)YT —P)My,+(E,TMy)*—E PMy,.
Since the kernel of 7*—T is smooth by hypothesis (2), the operator
My (I—-P)(T*—T)My,

is bounded from H to Hy for any s and k, and hence My (T*—T) (I —P)My,
is bounded from H; to H, for any s and k. Therefore,

| My, (P—T)My, f|=(E2TMy,)* f|+|(E1PMy)) [

+"M¢1(T*_T) (I_P)M\blf"
< G| f1s-

So far, we have proved that the operator My, (P —T )My, is bounded from
H, to L? for any s. In the same way we can show that My (P—T*)My, is
bounded from Hj to L? for any s. It then follows from interpolations that
the operator My, (P—T)My, is bounded from H; to H; for any s and k. So,
we can conclude that the kernel y,(z)(S(z, w)—K(z, w))¥(w) of the opera-
tor My,(P—T)My, belongs to C*(M X M). Since ¥, =1 on U, the theorem
follows. U

COROLLARY 4.3. Let M, and M, be two compact CR manifolds such that
M NM,#80. Let U be an open subset of M;N\ M, and suppose that the Basic
Hypothesis holds in U. If S; is the Szegd kernel for M; for j=1,2, then

S;—S,e C(UxU).

Proof. By Lemma 4.1, both S, and S, satisfy the hypothesis of Theorem 4.3
for any pair [ybj}f:l nested in U. Hence the proof is completed. O

5. Szego Kernels on Certain Domains in C?

Let Q = {z € C*| p(z) < 0} be a bounded domain in C? with a smooth bound-
ary bf). Suppose also that 0 € b and that

G.) p(z) =p1(21, Z1) +P2(22, Z2) —Im 73

for z in some neighborhood O of 0 in C3, where the functions p; are sub-
harmonic but not harmonic polynomials. Let

Q,={(z},23) € C*| p(z;,0,23) <0} and Q,={(z;,2;) € C?|p(0, 25, 23) <0].
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The purpose of this section is to exploit relationships of the Szegé kernels
for Q, Q;, and Q,. It turns out that the Szego6 kernel for Q can be writtenas a
kind of convolution (it is a convolution with respect to the Re z; variable)
of the Szegd kernels for 2; because of the “product structure” of 52N O.

If the domain Q is globally defined by (5.1), then it has been shown [7] that

S(z,t;w,s)= §:e‘2”"AK,\p(z, w)d\,

where A =i(s—1)+(p1(z1) +P2(22) +p1(w)) +P2(w2)) and K, is the Berg-
man kernel on L2(C?) weighted by e 77, A simple observation shows that

K,(z,w)=Kp (21, w1)Kp,(22, W3)
and hence

(5.2) S(z,t;w,8)= rw S1(21, w1, 1)S2(22, 1y Wy, 8) dr.

Also, (5.2) implies that
(5.3) P=P,P,.

We would like to localize this formula.
Let U=0NbQ. Then, on U we can use (2, 2,, ) as our coordinate sys-
tem, and the tangential Cauchy-Riemann operator 3, is given by

2
A Sf= _EI(L—jf) dz;,
i=

where L; = sz+i(6szj)a, (j=1,2).

Here and throughout this section we use the following notations: S(P) is
the Szegé kernel(projection) for Q; S;(P;) is the Szegd kernel(projection)
for Q;; and U; = ONbY; (j =1, 2). For convenience, we use Z for (z;, 25, 7),
W for (w;, w,,s), and so forth.

Let U, be a relatively compact open subset of U and let ¢ and { be func-
tions in Cy°(U) such that {{, ¢} is nested and ¢ =1 on U,. Inspired by (5.2)
and (5.3), we will consider the following operator:

(5.4) T=¢P{P,¢.
If X is the kernel of 7, then X is formally given by

K(Z,W)=¢(Z)p(W)
5.5) )
XS_ (W1, 22,1)81(21, £ W1, 7)S2(22, 1y Wa, 8) dr.

We want to prove the following theorem.

THEOREM 5.1. Let Q be the domain as above. Let K be the kernel given
in (5.5) and let S be the Szegd kernel for Q. Then

K—-Se COO(U}X Ul)‘
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COROLLARY 5.2. Let T be the operator given in (5.4) and let P be the
Szego projection for Q. Then P—T is an infinitely smoothing operator.

We prove Theorem 5.1 in the following sequence of lemmas.

LEMMA 5.3. Let Q and U be as above. Then 0, has a closed range, and for
any Z e U there exists a positive integer k such that 1€ I}(Z) and hence the
Basic Hypothesis holds in U.

Proof. The first assertion is a special case of Theorem 4.12 of [9] (also see
[2]). For the second assertion it is enough (because of [10, Lemma 5.27]) to
note that [L;, L;}=4(Ap;), for j=1,2 and that [L;, L;1=0if i . O

LEMMA 5.4. Let Q and U be as above and let T and K be as defined in
(5.4) and (5.5). Then T and K satisfy the following:

(1) EbKE Cm(UIX Ul)’ and
() K(Z,W)-KW,Z)e C*(U; x U)).

Proof. (2) is trivial since Szegd kernels are conjugate symmetric. If we in-
voke Theorem 3.1, (1) follows from integrations by parts and the following
general lemma. ]

LEMMA 5.5. Let G={zeC"*!|r(z) <0} be a bounded pseudoconvex do-
main with a smooth boundary bG. Suppose that 0 € bG and that there exists
an open neighborhood U of 0 such that, for any p e UNbG, there exists an
integer k such that 1eIl(p). Suppose that UNbG can be represented by
Imz, ., =9¢(z4,23,...,2,) for a smooth function ¢. Let (z',t) =(2;,22, ...,
Zns Rez,.1) € C"XR be a coordinate system on UNbG. If S(z’,t;w’,s) is
the Szego kernel for G, then

0 d
578(2 tyw',s)= —-a—S(z t,w',s)
+smooth function in (UNbLG) X (UNDG).

Proof. We use the same idea as in the proof of Theorem 4.2. We first note
that on UNbBG, dpu=3%_;(L;u)dz; where L; =0z, +i(dz;6)0,. Therefore,
0,0, f =08,0,f=0in UﬂbG if feH,. Let {{,, 1[12] be a nested pairin UN bG.
Let us consider the operator 7= My, Pd, My,, where P is the Szeg6 projec-
tion for G. By Lemma 4.1,
(5.6) My, TPMy, =My, Pd, My, PMy,

=My, 0,My,PMy +E,,

where E| satisfies an estimate

E1f s < Cs|0p(8, 2 P SN < Cs 1| f &

for any s >0 and k (either positive or negative) and for some constants C,
and C; ; independent of f.
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On the other hand, by Lemma 4.1 again,

(My,TPMy,)* = My, PT*My, = My, PMy,3,PMy,
=My 38, PMy +E,,

where F, satisfies an estimate

|E2 S 1= Csl3p (23, P41 /NN = Cs 1] f k-
By equating (5.6) and (5.7), we have
(5.8) My o,My,PMy —My Po,My =E5—E,,

and E3—E, is bounded from H, to H, for any s and k. Therefore, the ker-
nel of the operator in (5.7) must be smooth. Note that

Y12, 1) 8, (Y22, 1)S, (W, )Y (W, 8) +¥1(2', 1) 9, S(2', £ W', s) (W', 5)
is the kernel. This completes the proof. O]

5.7

LEMMA 5.6. The operator T given in (5.4) has a kernel which is smoath
off the diagonal; that is, K given in (5.5) is smooth off the diagonal.

Proof. Let Z,=(z{,z3,t}) and Zy= (z1,7,2, t?) be two different points in
U,. We first assume that (z{, ') # (zf, £?). Let = be the projection from
C?xR — C!' xR defined by 7(z;,2,,!)=(z;, ). Choose functions %, ', 77,
and ¢ in Cy°(U)) so that {5, v, "} is nested and = (supp(n”)) N7 (supp(¥))=
#. We will prove that for any integer s there exists a constant C; such that

[nT¥Sf |s =< Gl 1.

Then the rest follows from the duality and interpolations as before. Since
10z, f1=10z, /| if f is compactly supported,

InZflE=C, zj |84,0P SPoUf o 22, ) dimz2).
22
And, since 3%, P, = P, 3%,

InT/E=<C X | 1P ePyus 22, 2 dm(za)
Jj=0"v%2

S .
=G 3 ([ WPsthPAsC 22 Ny dmie +1F),
j=0\’22
since {=1on U,. L
Note that 3;,=L,+i(8;,0,)(z2)9, and 8,L,=L,3,. Therefore, because
L,P,=0, we have

InTf1E =< E (52 [n'P1$6;0/ P2y f (22, )5 dm(zz)+||f|12)

for some smooth functlons ¢;. It then follows from Corollary 3.2 that
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s

> Lz”n”B,jstl/f(-,zz, Mi-jr1dm(z;)

j=0
+ _io | 1s0iPsusc 2, I, dm(zz)+||f|12)
Jj=0 %2

<G| fI?

since the kernel of 5"8/P,y is smooth.
If (z3,t!) # (22, t?), then we note that T* = ¢P, {qub and apply the same
argument to 7* This completes the proof. OJ

IlanI|§SCs<

In order to prove Theorem 5.1, it is now enough to show that the operator T
has an almost reproducing property.

LEMMA 5.7. Let T be the operator defined in (5.4). If Y is a smooth func-
tion supported in U,, then there exists a constant C such that

WU =T)f]=C|dy(¢.)]
Jorany fe H,,.

Proof. Note that
VU —P)f=y(I—-P)of+YP (I—P,)of.

Therefore, it follows from Lemma 4.1 that

WU P)fI<[YU~P)oSf1+|¥Pi s (- P2)oS]
< C(|Li(N)]|+]sUT~Py)of])
< C(IZi(eN|+[L2(eN)]).

The proof is completed. ]
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