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1. Introduction

Hypercontractive estimates for diffusion semigroups first appeared in the
work of Nelson [7] in connection with certain problems in constructive quan-
tum field theory. Perhaps the most important tool used to obtain this type
of estimate is the logarithmic Sobolev inequality, introduced by Gross in [4].
Such inequalities can be viewed as limiting cases of Sobolev inequalities, and
that is the approach we take in this work.

Denote by P” n-dimensional real projective space, which we will view as
the n-sphere S” with antipodal points identified. We take d¢ to be normalized
Lebesgue measure on either P” or §”. Functions on P” will then be naturally
identified with even functions on S§”. For such a function f we will write

1/p

1/ em = (SP” |f|pd§‘)l/p= (S,S‘n If[”df) =|flp(sny-

Using an appropriate logarithmic Sobolev inequality, Mueller and Weiss-
ler [6] obtained the following hypercontractive estimate for the heat semi-
groupon S™: forl=sp=sg<ecand t=(1/2")In[(g—1)/(p—1)],

(1.1) "emfﬂlﬂ(s") <|flrsm-

Subsequently, Bakry and Emery [1] gave an alternative proof in terms of
second-order estimates for the semigroup generator and Beckner [2] proved
the stronger result that the Poisson semigroup is hypercontractive.

From the previous discussion, we see that the estimate (1.1) will also hold
for functions on P”. A natural question to ask is whether or not any im-
provement on this estimate is possible for P". The purpose of this note is to
prove the following theorem which gives such an improvement on P2

MAIN THEOREM (THEOREM 3.1). Let feLP(P?). Thenforl<p<g<w
and t=tIn[(g-1)/(p-D],

HemfﬂLq([ﬂ) = ”f”Lp(Pz) :
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We will show in Section 3 that this result is equivalent to a logarithmic Sobo-
lev inequality which will be derived in Section 2. The proof of the logarith-
mic inequality will depend on a sharp isoperimetric inequality for P2. While
the isoperimetric inequality seems to have been recognized before (see, e.g.,
[9]), a proof does not seem to be readily accessible in the literature, and we
have included one in Section 2.

I would like to acknowledge the advice and encouragement given by
William Beckner during the course of this work. His friendship and help
have been invaluable.

2. The Logarithmic Sobolev Inequality

The logarithmic Sobolev inequality corresponding to the hypercontractive
estimate for the heat semigroup on S”, given by Mueller and Weissler in [6], is

1
@) [ PmisIde =1 Bl sy = — | IvPas.

If we let f=37-0Y; denote the expansion of f in spherical harmonics on
S™ and use the fact that for Y, a spherical harmonic of degree k, —AY; =
k(n+k—1)Y,, then we can rewrite (2.1) as

2 k(n+k-—1)
@2) | /Pl flds =17 asn ol Sl 2en s T ="

k=1 n

Ssnlyklzdf-

In [2], Beckner derived the following inequality, which is stronger than
(2.2):

@3 | |/Pnlside=]/Fsnn} f[|Lz(Sn)sk§1k§Sn 1Y, |2 dt.

Inequality (2.3) corresponds to the following hypercontractive estimate for
the Poisson semigroup:

p—1
r|=< \} a—1 12r flrasmy =1 1o smy-

In this section, we will show that the following logarithmic Sobolev in-
equality holds on P2.

THEOREM 2.1. For fe LP(P?),
1
[ o2l lde =1 oy Il N2y < 7 | 197 Pt

In Section 3, we will show that Theorem 2.1 is equivalent to the hypercon-
tractive estimate for the heat semigroup on P? which was stated in the intro-
duction. Theorem 2.1 will be obtained as a limiting case of the Sobolev in-
equality for P? given by Theorem 2.2.
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THEOREM 2.2. For p=2,
2 p—2 2 | 2
I Bowry= £5= | IV/PRde+{ 171 dr.

In [3], Beckner obtained the following Sobolev inequality for functions on
S":

-2
2.4 1 Bosm= = IvrRas +{ 1712 as,

where pe[2,2n/(n—2)] if n=3 and p=2 if n=1,2. To prove Theorem
2.2, we will use inequality (2.4) and the following sharp isoperimetric in-
equality for P2, which we state in terms of symmetric sets on S2.

THEOREM 2.3. Let AC S? be any set which is antipodally symmetric. Then
V2-0(0A4*) < 0(3A).

Here, A* denotes a spherical cap on S? with m(A*) = m(A) and ¢ denotes
1-dimensional Hausdorff measure.

In order to prove Theorem 2.3, we will need the following lemmas.

LEMMA 2.4. Suppose that A, B are spherical caps on S" and that m(A) =
2m(B). Then
20(dB)=2""¢(3A).

Here, o denotes (n—1)-dimensional Hausdorff measure. This is the best
possible inequality.

LEMMA 2.5. If ACS?is an open, connected, antipodally symmetric set
such that (A)°# @, then no point of (A)° lies in the same component of (A)¢
as its antipode.

To obtain Theorem 2.3 from the lemmas, first note that for any A C S2,
04 = 9(A°). Since m(A) >m(A) implies 6(3A4) = and d(Int(A)) C 3(A4),
we may as well assume that m(A4) = m(A) and that Int(4) = Int(4) = 4. Now
by Lemma 2.5 either A or A°, say A4, naturally decomposes into two disjoint
equimeasurable pieces 4, and A_ with A, =—A_. Furthermore, ¢(dA4) =
0(0A )+ 0(3A_). The classical isoperimetric inequality for spherical geom-
etry gives ¢(dA,) =0d(dA% ). By Lemma 2.4,

20(3A4%) =V20(0A*).
Hence,

0(0A) =0(0A,)+0(dA_) = 20(dA% ) = V20(3dA*).
This is Theorem 2.3. i
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Proof of Lemma 2.4. Denote { € S" by ¢ =({’sin6, cos), where {’e S*~!
and 0 is the polar angle, 0<f<w. Let A={{e€S8"|0 <6y} and B={{eS"|
6 < 6,} be two spherical caps on S” with m(A4)=2m(B). Then

g(dB) _ (sinf;)""!
o(A)  (sinfy)"—1"

60 . n—1 01 R n—1
So (sin@) d6=250 (sin)"~'df# and

To prove the lemma it suffices to show that

2(sin ;)" "= 2" (sin )",
or equivalently,
2(sin ;)" = (sin6y)".
Now,

0 0
(sinfy)" —2(sin6,)" = n{soo(sin 6)"!cosfdo—2 Sol(sin 8)"1cos@ d()}
9 0
= ”{S %(sin )" cos Bd()-—s '(sin0)" ! cos Bd()}
9, 0

9 0
<ncosb,; {Lo(sin 6)" 1 d()-—Sol(sin 6)" ! dO} =0.
1

Hence 2(sin §,)" = (sin §y)" as desired. That this estimate is the best possible
is easily seen by taking limits as m(A4) — 0. _1

Proof of Lemma 2.5. Take A C S? to be an open, antipodally symmetric,
connected set such that A % S2. If x € A° then by making a rotation we may
assume that x is the north pole (0, 0,1). We must also have that the south
pole (0,0, —1) € A°. We will show that (0, 0, 1) is not in the same component
of A as (0,0, —1).

We use stereographic projection P: S - R? given by

X Y
Pon=(i70 13

to recast the problem. Note that P(0, 0, 1) = (0, 0) and that P maps (0, 0, —1)
to infinity. Since some neighborhood of the north pole (0, 0, 1) on S?is con-
tained in A€, some neighborhood of the origin (0, 0) in R? will be contained
in P(A). In fact, we must have that, for some ¢ >0, P(A) is a connected
open set contained in the annulus {p € R?|e < |p|<1/€}. Moreover, A anti-
podally symmetric implies that if p € P(4), then —p/|p|*> € P(A). Because
P(A) is connected, there must be a point pye P(A4) with | py|=1=|—py| and
—po € P(A). Without loss of generality, po=(—1,0) and —py=(1, 0). Since
P(A) is connected there is a path 3:[0,1] —» P(A) with 8(0)=(—1,0) and
B(1)=(,0). Let B(¢)=(r(t),0(t)) be the representation of the path 8 in
polar coordinates. Since P(4) C{peR?|e<|p|<1/e}, r(t)>e forte[0,1]
and 0:[0,1] = R is well defined on {0,1]. We may take 8(0) == and as-
sume that 6 is continuous. Since 8(1) = (1,0), we must have that 6(1) =
7+ (k+1)27 for some k € Z. Because A is symmetric on S?, the path f:
(0,11 — R? given by
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will be well defined with §(¢) e P(A4), t €[0, 1]. Note that 8(0) = (1, 0) and
B(1)=(-1,0).
We now define a path «:[0,1)=S!— P(A4) by:
_ [ B 0<t=<1,
)= {5(21‘—1) l<r<l.
Then « is a closed path with winding number about the origin (2k+1), and
so separates the origin from any point exterior to the annulus {p € R?|e <

|p|<1/e}.
In particular, this implies that the set A C S? separates the north pole
(0,0,1) from the south pole (0,0, —1), and Lemma 2.5 follows. ]

To obtain Theorem 2.2, we will use Theorem 2.3 and a variation of an argu-
ment of Pdlya and Szego [11] used to obtain estimates for capacity.

Proof of Theorem 2.2. Suppose that f=0 is an even smooth function on
S?and that m{¢ e 82| Vf(¢) =0} =0. Let f* be the symmetric decreasing re-
arrangement of f. Then

m{¢ e S?| f($) >N =mfie S| f*($) >\

Differentiating in A\, we obtain

1 1 1
— do= EL SRS S
S{f:)\] |Vf| d S[f*:)\} 'Vf*l do lvf*(o)\)l 0({f )\])a

where 0, =max{f| f*(8) = \}. Using Jensen’s inequality, we find

5zf=M|Vf|2d0/|Vfl><5{f=x1|Vf|d0/|Vf|)2=( olf=\ )2

fir=x1do/|Vf| fir=n1do/|Vf| fir=ndo/|Vf|
Combining this with the previous result yields
o S g ST
by VP 571 = o | O M)

The isoperimetric inequality Theorem 2.3 implies that
A
o ( {f* }) = V3
o({f*=

since {f=A}20{f >N}, {f*=\} =6{f*>)\}, and {f > A} is an open, anti-
podally symmetric set with m{f > X} =m{f*>\]}.
We now have

do

2 do *|2
ng:x]l v/ ]Vfl— S[f‘ Ml v/l [V’

which we can write as
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—d —-d
-4 vil2de=2( — *2d¢ ).
d\ S(f>)\]| 7l §>2< d\ Slf*>>~llvf | d§>

Integrating from g =min{f({)| ¢ €S2} to b =max{f({)| ¢ €S?} in \, we have

| olwids=2| v,
Combining this with inequality (2.4) yields Theorem 2.2. _

We note that the only dependence on dimension in any of the preceding ar-
guments occurs in Lemma 2.5. For n >3, Lemma 2.5 does not hold. In fact,
S3 can be written as the union of two tori which are antipodally symmetric
and share a common boundary.

We are now in a position to derive the logarithmic Sobolev inequality of
Theorem 2.1. We first rewrite the Sobolev inequality for P2 given in Theo-
rem 2.2 as

1S Brery =1 B, _ 1
LP(P?) LXP?) T Lzlvf|2di’~

p—2
Taking a limit as p | 2 yields
d 2 1 2
@2.5) a5 W el pmn = g [ oW/ P ds.

Since

N (R

2
=exp[; ln[spn exp(pIn|f]) d?]},

we can use logarithmic differentiation to see that (2.5) is equivalent to

1
@s) | Pl de =1 Bay Il e < 7 § 197 ds.

This is precisely the inequality of Theorem 2.1, as desired. O

3. The Hypercontractive Estimate

The logarithmic Sobolev inequality (Theorem 2.1) is equivalent to the fol-
lowing hypercontractive estimate for the heat semigroup on P2,

THEOREM 3.1. Let feL?(P?), p=1. Then for ¢=glIn[(g—1)/(p—1)],
we have
"emf"Lq(Pz) =|flr@?)-

The relationship between these two types of estimates was first recognized
by Gross [4]. As indicated in the first two sections, this has previously been
used to obtain hypercontractive estimates for other semigroups. The proof
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of the equivalence of the two types of estimates for the heat semigroup on
P2 is essentially the same as that given by Mueller and Weissler [6] for the
heat semigroup on S”, and the interested reader is directed there for details.

4. Additional Remarks

A. The question of sharpness for the hypercontractive estimate given by
Theorem 3.1 remains open, though the author believes that it is the best pos-
sible. The following discussion provides some evidence for this point of
view. There is also the question of analogous results for dimensions other
than 2.

The natural generalization of the isoperimetric inequality (Theorem 2.3)
for P” would yield the following Sobolev inequality for P”:
@D 1 Bran= 222 1wrac| 17 de

P®"= 0270 Jpn pr ’

where pe[2,2n/(n—2)]if n=3 and p =2if n=1, 2. From this, the method
used to prove Theorem 3.1 could easily be applied to obtain the following
hypercontractive estimate for the heat semigroup on P": for 1< p<g <o
and ¢ = [n-20*D/" " n[(g-1)/(p-1)],

(4.2) “emf"Lq(P”) = “f"LP(S") .

For n=1, this estimate can be realized directly by a change of variables in
the logarithmic inequality (2.1). Note that the obvious diffeomorphism from
S! to P! does not preserve the Laplace operator. For n= 3, however, ad-
ditional information is needed: consideration of fractional integration on
P” indicates that (4.1) is not sharp for higher dimensions [10]. In fact, the
method used by Beckner [2] to obtain inequality (2.3) can be applied to show
that

p—2 p
4.3) I/ lreny= = o LH]Vf|2d§‘+SPn| FRds,

where n=3 and 2 < p<2n/(n—2). For p close to 2, this is stronger than
(4.1). (Note that if we take n=1 or 2 in (4.3), the resulting inequality is
weaker than (4.1) for all p > 2.) Since these results are inherited from the
sphere S”, one expects that additional improvement is possible.

However, using the procedure described in Sections 2 and 3, (4.3) does
yield the following hypercontractive estimate for the heat semigroup on P™:
forlsp<g<owandt=[2(n+2)]"'In[(g—1)/(p—-1)],

4.4) le* S | Laery <11 ooy
We note that, for n =2, this agrees with Theorem 3.1.

B. Another interesting limiting case of Sobolev inequalities on the sphere
is the sharp form of the Moser-Trudinger inequality due to Onofri [8]:
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1
@4.5) Sszefd§5exp{5S2|f|2d§‘+ZSSZIVdeg'}.

Using the technique of the proof of Theorem 2.2, we can immediately ob-
tain the following version of inequality (4.5) for P?: :

1
(4.6) sz e/di < exp{sp2 If1Pds+3 Lz |Vf|2d§'}.

Inequality (4.6) first appeared in [9], where it is shown to be sharp.
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