A Monotone Slit Mapping
with Large Logarithmic Derivative

TOM CARROLL

1. Introduction

We denote the unit disc in the complex plane, that is {z:|z| <1}, by A. The
class 8 is the class of all functions f(z) which are analytic and univalent in A
and for which f(0)=0 and f’(0)=1. If f(z) is in 8 we set
, arl rf/(reify |2
,2(,, L)=5 e | g,
f o | flre')
for each r with 0 <r <1. By a monotone slit mapping we mean a function
f(z) in 8§ whose image domain is the complement of a path I'(¢) on [0, o)
for which [T'(¢;)| <[T'(#,)] if ¢, <¢,. That is, I" meets each circle centred on

the origin at most once.
In this note we prove the following.

THEOREM 1. There is a monotone slit mapping §(z) for which

g’ 1 i
1.1 L{r,— — —_—
1.1) 2(r §>¢0<1_rloglog l—r)
asr—1.

A standard way to obtain information on logarithmic coefficients of a func-
tion f in 8 is to estimate I,(r, f'/f) (cf. [7]). The logarithmic coefficients
play an essential role, for example in the proof of the Bieberbach conjecture
by de Branges [5].

Our starting point is an estimate of Biernacki in [4] (see also [11, p. 151])
that if f is a function in 8 then, as r -1,

SN 1 1
Iz(l‘, 7>_0<1——r lOg 1—]‘).

It is surprising, but nevertheless true, that this elementary bound is best pos-
sible. Hayman produced in [11] an example of a function f(z) in 8 for which

! 1 1
12<r, !f—)¢0(1—r log 1-—r>'

Our construction borrows much from the methods he employed there.
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For the Koebe function, k(z) =z/(1—z)?, we find that

k’ 1
Llir,—)~+——
2(r k) 1—r

as r — 1. The function k(z) solves the most famous problems in the class S,
but the solutions to more general extremal problems are found in the broader
class of monotone slit mappings [6, Chap. 9].

Baernstein and Brown [3] introduced, for 0 <\ < /2, the class of mono-
tone slit mappings N(N). A function f(z) in 8 is said to be in the class NM(\)
if the image domain of f is the complement of a path I'(¢), parameterised

on [0, =), such that r

. I'(t)-I'(¢,) -

hIP—.Sz‘IIp arg T <X\
for every #; in [0, ). If fe M(N\) then f is a monotone slit mapping. The
classes M(N\) generalise the class of support points of 8§ which corresponds
to M (w/4). Extreme points of § are monotone slit mappings, but it is not
known whether or not they belong to 9U(\) for some A < /2. Baernstein
and Brown note that a special case of their results in [3] is the following.

THEOREM A. For each N\ with 0=<\<=/2, there is a constant C(\) de-
pending only on \ such that if f(z) is in N(\) then

! C(\
(s L)< S

forO<r<i1.

Theorem 1 shows that Theorem A fails in the limiting case A =w/2. The
existence of the mapping in Theorem 1 was suggested by Hayman (see the
remark in [7, p. 38]).

It is interesting to note that the condition

1.2) I,_(r, f7> = O(ﬁ‘;)

is a Tauberian condition. Haldsz shows in the proof of Theorem 4’ in [§]
that if f(z) =X a, 2" is univalent in the disc A, if (1.2) holds, and if the nec-
essary conditions that a, — 0 as # — o and that f has a radial limit at 1 ap-
ply, then ¥ a, converges. In a paper [10] published shortly afterwards, Hay-
man constructs in Theorem 7 a univalent function f(z) = a,,z" in A (which
therefore has radial limits a.e.) whose coefficients a, tend to 0 but for which
S a,e™? diverges for every 6. Thus, by Haldsz’ result, (1.2) does not hold for
this function. I am grateful to the referee for pointing out the relevance of
the articles [8] and [10].

I wish to thank Professor W. K. Hayman for suggesting this problem and
to thank him and Dr. P. J. Rippon for their valuable assistance in the prep-
aration of this paper. My thanks also go to Professor D. Drasin for care-
fully reading this manuscript and for his many helpful suggestions. I wish to
thank The Open University, England, for financial support.
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2. A Key Lemma

Theorem 1 is, as we shall see, a direct consequence of the lemma which is
to follow.

LEMMA 1. There is a univalent function G(z) in A such that
(A) G(z): A— IC, where
2.1 X=fw=u+iviimy(u)<v<Im~y(u)+2x}

and y(t) is some curve on R for which Re~(t) is strictly increasing;
and

(B) there are sequences ry and ri which tend to 1 withr, <rjand (1—ry)/
(1—r¢) bounded, such that

7 ?

Tk (27 g, 10312
2.2) A(rk,r,;)_—.S S 1G"(re™®)|2r d§ dr > Cloglog
Ty 0 k

where C is an absolute constant.

Note that A(ry, r;) is the Euclidean area of the image under G(z) of the
annulus {z:r, <|z|<rg}.

To see how Theorem 1 follows from Lemma | we first note that from (A)
it follows that exp(G(z)) maps A onto the complement of a path I'(¢) =
exp(y(?)), where |I'(#))| < |T'(#,)| if ¢, < £,. If we normalise exp(G(z)) so that
it lies in 8, then the normalised mapping F(z) lies in M (7 /2).

To check that this F(z) satisfies (1.1) we note that, since I,(r, G’) is an
increasing function of r,

(82— |
2\ ks =~ rl,(z_rlg

Tk
I(r, G')rdr
k

r

2
=—7——5 Ak, Tk)

F2_ 2
(2.3) ko Tk
> 2¢ loglo 1
r2—rz BT
Co
> loglo .
1—r; BB

The last inequality holds because (1—r;)/(1—r) is bounded. We now note
that

g’
4 B(ri 5 )~ b0 ).

We obtain (1.1) as a consequence of (2.3) and (2.4).

The proof of Lemma 1 is long and comes in two stages. First of all, an
intermediate mapping G(z) from the unit disc to a symmetric domain ©
is obtained which satisfies (2.2). The domain D is then changed to a do-
main JC so that (2.2) remains valid for G(z): A~ JC and so that, in addition,
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(A) holds. It is more convenient to first make the necessary estimates in the
symmetric domain D and then show that they remain valid in an admissible
domain JC which is similar to D.

3. Estimates of Hyperbolic Distance

Throughout this note, {a,};° is an unbounded, increasing sequence of points
on the positive axis.

DEFINITION 1. We define a domain D = D({a,}) by
D ={z:|Imz| <, unless Re z =a, for some n, in which case [Im z| < 7/2}.
We write 2d,=a, . ;—a,. Lastly, for each n we define

By ={z:a,<Rez<ay,, 7/2<Imz <)
and
B, ={z:a,<Rez<a, |, —7<Imz<—7/2}.

The domain D resembles Hayman’s domain in [11] except that, since a mono-
tone slit mapping is required here, we cannot have boxes but only channels.
(See Figure 1.)

Figure 1

In the next section, a specific choice of the widths d,, is made so that, for
this choice, the conformal mapping G(z) from the unit disc to D satisfies
(2.2). In this section we obtain the estimates of hyperbolic distance that are
needed to accomplish this.

We denote the hyperbolic or Poincaré distance between two points z; and
z, of a simply connected domain Q by d(z;, z,; Q) or by d(z;,z,) if this is
unambiguous. It is given by the formula
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14| f(z2)|
1—|f(z5)]

where f(z) is a conformal mapping, unique up to rotations, which maps
to the unit disc A and sends z; to 0. Hyperbolic distance is a conformally in-
variant metric on the simply connected domain 2. We shall also need a rela-
tionship between hyperbolic distance and the Green’s function. We denote
by g(z1,22; ) the value at z, of the Green’s function for @ with pole at z;.
Then, for z; and z, in the simply connected domain €2, we have

1
d(z1,22; ) = 510:‘:’,

1+exp(—g(z;,22; Q)
1—exp(—g(z1,22: Q)
This equality may be verified directly when Q is the unit disc A and follows

for general 2 by the conformal invariance of both the hyperbolic metric and
the Green’s function. A useful reference to these matters is [1].

1
(31) d(Z],Zz;Q)-:ElOg

3.1. DISTANCE ALONG THE REAL AXIS. We will need the following lem-
ma which is a special case of a result on Steiner symmetrisation [12, Chap.
5]. In this special case we give an elementary proof which we learned from
P. J. Rippon. A domain D is said to be convex with respect to the imaginary
axis if whenever x +iy; and x+iy, lie in D then so does the line segment
joining them.

LEMMA 2. Let D be a simply connected domain containing 0 which is
symmeltric about the real axis and convex with respect to the imaginary axis.
Denote by g(0,z; D) the Green’s function for D with pole at 0. Then for
each real xy in D,

g(0,x0; D) =max{g(0,xo+1iy; D): xo+iy e D).

Proof. Suppose that x, and x,+iy,, where y, is positive, are in D. We wish
to show that g(0, xq; D) = g(0, xo+iye; D). Write Q for that component of
DN{z:Imz>y,/2} containing xy+iy,. Define the function u(z+i7) on
Q by

u(t+it)=g0,t+i(yg—71); D)—g(0,t+ir; D).

Then u is well defined because of the assumptions on D and, moreover, is
superharmonic in  and nonnegative on the finite boundary of Q. Because
u(t+ir) »0as |t +ir|— oo if @ is unbounded, the maximum principle yields
that u(f+i7) is positive throughout ©. In particular, u(xy+iyy) >0 which
gives

8(0,x¢; D) = g(0,x¢+iyo; D).

The case of yy <0 follows since g(0,z; D)=g(0,Z; D) for z in D, and this
completes the proof of Lemma 2. O

We also need a theorem from [9] which we now state.
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Suppose that w, (n=0,1,2,...) is a sequence of complex numbers for
which |w,|=r, is strictly increasing and unbounded and for which
we=0, w=-1.

We write 6, for log(r,1/r,) if n=1, and write ¢, for min(§,, 62). Then The-
orem 1 of [9] runs as follows.

THEOREM B. If f({) is regular in A, if | f(0)|<1, and if f never assumes
the values v, then for r, <M(p, ) <r,,.1 we have

1+p
I-p

n
log M(p, f)<2log + 3 €+ 30.
1

Here M(p, f) =max{|f(pe’)|:0<0 <2x}.

LEMMA 3. Suppose that a and b are real with 0 <a <b. We let n and m be
the positive integers for which a,<a<a,,, and a,,<b=<a,,,,. Suppose,
in addition, that a,,,—a=<1. Then

b—a 1

m
(3.2) d(a,b;D)>——2———ZEe,—8,

where e; =min(4d;, 16d?) and D is the domain in Definition 1.

Proof. We first estimate d(0, x; D), where x is positive. Let #({) be the con-
formal mapping from A to D for which A#(0) =0 and A’(0) is positive. We
choose p, with 0 < p <1, so that #(p) =x. Suppose that { is in A and that
|$|=p. Then we have that Re #({) <x. For otherwise we would have, by
Lemma 2 and the fact that the Green’s function for D is strictly decreasing
on [0, o), that

g(0,h($); D)<g(0,Reh($); D)<g(0,x; D)

which contradicts the assumption that p and ¢ lie on a level line for the
Green’s function. If we now define

f(¢)= e2(h()—ay)
then
M(p, f)=e**~),

Thus, on setting r,, =exp(2(a,, —a;)) for n>1, we have that r,<M(p, f)=<
r,.pifand onlyif a, <x<a,,,.

Next we note that 4#({) certainly omits all points a,, +i(w/2 + kn) with n=
1,2,...and k in Z. Hence f({) omits w, (=0, 1, ...), where wy =0, w; = -1,
and w, = —e*@ =% for n > 1. Moreover, | f(0)|=e 2% =< 1since a; = 0. Thus
f($) satisfies the hypotheses of Theorem B.

Also, forn=1,

Wy41

= log =2(a,,1—a,)=4d,.

Wy
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Theorem B yields
I+p 2
2)(—2a'1<210g1 + Y e;+30,
—p 1
and so, if ¢; <1,
1 I+p x 12
. iD)=—log ——> — —— i— 8.
(3.3) d(0,x; D) 5 log 1=, > "7 21:e'

To obtain the more general (3.2) we need only note that
d(a,b;D)=d(0,b—a;D—a),

where D —a is the domain D translated by a to the left, and apply (3.3). U

The upper bound is easier.

LEMMA 4. If0<a<b, then

(3.4) d(a,b; D)< b;“.

Proof. Since D contains the strip S,

S={z:|Imz|<n/2},
it follows that
b—a
2
Here we have used the basic fact that if D, and D, are simply connected do-

mains for which D; C D,, and if z; and z, are in D,, then d(z,,2,;D,) <
d(z1,%2; D). This is easily proved using Schwarz’s lemma. ]

d(a,b;D)<d(a,b;S)=

3.2. DISTANCE IN A CHANNEL. The following lemma, which is Lemma 6
in [11], will be useful.

LEMMA A. Suppose that Dy is a simply connected domain containing the
rectangle
R0= {S: lRCS|<d, —TO—‘d<ImS<To+d},
where d and 1 are positive. Then
T ™

(35) d(—iTo, iTo;DO)SEETO_l—-Z_.

Suppose further that E is a subset of length | of the interval [—7,, 7] sSuch
that if 7 & E then both d+ir and —d+it are in the complement of Dy. If
|o1|<d and |o,| < d then

. . T [ T
(3.6) d(Gl—lTo, 0'2+170;D0)25‘7(70—5>—-—2—.

We write x, = (a,;+a,)/2. We then have the following lemma.
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LEMMA 5. Suppose that d, < w/4 and that s = x, +i(nw/2 + p), where
d,<p=w/2—d,. Then
T/ p 1 1
3.7 ;D)< —( — —log — ,
3.7 d(x,,s )<4(dn>+2 ogdn+K1
where K= }log 2n + /4 +log 7, and

(3.8) d(x,,s;D) = %(%)—3—}.

Furthermore, if x is the point on the real axis closest to s in the hyperbalic
metric on D, we have

1 1
(3.9 d(x,,s;D)—d(x,s;D) < > log 7 +K,,
n

where K, = 1log 2w+ w+log 7.
Proof. Lets;,s; bethepoints x,+i(x/2+d,) and x,,+i(w—d,)/2, respec-
tively. By the triangle inequality,
(3.10) d(x,,s;D)=<d(x,,s;;D)+d(s;,s;; D)+d(s;]},s;D).
Let B, be the disc |z —x,|< /2. Then
d(xy, s, 3 D)=d(x,,5,;B))

1 2 —d,
(3.11) = —2—log d
1

1 1
“log — + — .
<2 ogdn+zlog21r

Here we have again used the fact that hyperbolic distance is larger in a
smaller domain. Let B, be the disc |z—x,—i(x/2+d,/4)|<d,. Then

612 d(sy,s73D)=<d(sy;,s5;B)
' =log7.
Since D contains the rectangle
R={z:a,<Rez<a,,jand 7/2<Imz<7/2+p+d,},

it follows from Lemma A that
+ Dy T (L)
(3.13) d(s,,s; D)< 2 <dn)+ 1

The inequality (3.10) and the estimates (3.11), (3.12), and (3.13) together yield
(3.7) with the stated value of K. |

The vertical sides of R are both part of the boundary of D so that, in this
case, E is the empty set in Lemma A and (3.6) gives that

Fop e T(p\_37
(3.14) d(s,,+t,s,D)24(dn> 1

for —d,<t<d,.
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We now consider (3.9). Let +y, be the geodesic from s to that point x of
the real axis closest to s. Let O, be the point where +,, meets the line Imz =
w/2+d, on its way from s. Because v,, is a geodesic, d(x,s;D)=I(y,) >
d(s, Q,; D) where I(v,) is the hyperbolic length of «,,.

By (3.14),

Dy E(P\_3"
(3.15) d(Qn,s,D)zz—(E;> T

So we see by (3.7) and (3.15) that (3.9) holds.
Moreover, since d(x,, s; D) = I(v,), (3.8) follows from (3.15) and the
proof of Lemma § is complete. ]

4. The Symmetric Intermediate Domain

The next task is to make a specific choice of the numbers a,, in Definition 1,
or equivalently of the widths d,,, in order to construct the symmetric inter-
mediate domain.

We suppose that ¢; =0 and that 2d, = 1. For each k > 1, we define

1
4.1 2d, = —F——
when 2¥~1< n < 2* and, for k =1, we define
(4.2) 2=k +1.

This defines the intermediate domain D in accordance with Definition 1. (See
Figure 2.)

> > * 2
<4— Kk —-—ba D ak_; Bk 44— k+1 —
k-1 2kl
Figure 2

We need the following lemma [11, Lemma 4], which yields an estimate for
the error in the triangle inequality for hyperbolic distance in D.

LEMMA B. Suppose that D is a simply connected domain with a line of
symmetry L. Suppose that w, is a point of D not in L and that w, and w;
are points of D on L. We let 6 be the hyperbolic distance of w, from L with
respect to D and we put
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(04 =d(W1, Wz)—5
Then
d(wy, w3)=d(wy, wy)+d(w,, wi)—2a—log 2.

We now prove the following.

LEMMA 6. There are absolute constants C, and C, and a sequence of open
subsets {Q;}1° of D, together with an unbounded, increasing sequence {\;},
such that
(1) \—C,<d(0,2; D) <N+ C, whenever z is in Q if k is sufficiently
large; and
(ii) the Euclidean area of (Y exceeds C,log\y.

Proof. We shall show that there is a positive integer K such that for each
fixed, large k, it is possible to choose a point s, from each channel B, so that
the points s, in the range 2¥~!<n <2¥—K, all lie at the same hyperbolic
distance \; from the origin. If s, =x, +i(7/2 + p,,) then the p, are monoton-
ically decreasing for # in this range from about 7/2 to about 0. Then Q; con-
sists of small discs (centred on s,,) in the channels B,", and the estimate for
the area of 2, follows easily.

Let s be a point x,,+i(w/2+p) in the nth channel B,}, where d,<p<
7/2—d, and 2! < n < 2. By the triangle inequality,

d(0,5)=<d(0,x,)+d(x,,s)
=d(0,x,)+d(x,, xk_1)+d(xp,s)—d(x,, X2k_1)
=d(0,x3k_1)+d(x,,8)—d(x,, X3k_;).
Or,
4.3) d(0,s)—d(0,xk_1) =d(x,,5)—d(x,, X3k_1).
In the other direction, Lemma B gives that
d(0,s)=d(0,x,)+d(x,,s)—2a—log2,

where « is the difference between the hyperbolic distance from s to the point
x, and the minimum distance from s to the real axis. It follows from (3.9)
that ‘

Thus,
1
d0,s)=d(0,x,)+d(x,,s)—log 4 —2K,—log2

n

1
=d(o,ka_l)+d(xn,S)—-d(xmx2k_l)—log E_ _K3’
n

where K; =2K, +log2. Thus,

1
4.4) d(0,s)—d(0, x5k _y) Zd(xn,S)-—d(xn,xzk_l)—-log E— —K;.
h
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We define A\(p), ford, <p<n/2-d,, by
)\(p)=d(0,5)_d(O,X2k_1)=d(O,xn+i(7r/2+p))—d(0,ka_1).

If N(d,,) is negative and N\(w/2 —d,,) is positive then, by continuity, A(p,) =0
for some p, in (d,, 7/2—d,).
It follows from (4.3) that \(d,,) is negative if

(4°5) d(xn,S)—d(xn,X2k_l) <0
when s =x,+i(n/2+d,), and from (4.4) that A\(w/2—d,,) is positive if

1
(4.6) d(xn,s)—d(x,,,xzk_l)—loga——K3>0
n
when s =x,, +i(w —d,). The estimates (3.2) and (3.7) show that (4.5) holds if
2k -1

T/ p 1 1 {
—( = J+<log —+K (Xak—1—Xp)—4 2 di —8” <0,
[4 (dn) 2 © dy v - " n§+:l p=d,

that is, if
1 2k—1
4.7 —log —-———(xzk —X)+4 S d?+K,<0,
2 dn n+1
where K, =w/4+K,+8. Likewise, the estimates (3.4) and (3.8) show that
(4.6) holds if

T(L\_3" 1(x x,)—lo ! K >0
a\d,) 4 T T g T e T
that is, if
2
2/ 1\ 1 1
4.8 T (—)-= —x,)—log — —
“.9) + ()3 Garimm—log o~ >0,

where Ks=m+K;. We write n=2%—N, so that d,= N2 and obtain

from (4.1) that
18N 1 1 1
o — [—J— ——-—l JR—
XYoo= X0 =5 2 4(+\/N)

2k—1

4’y d?= g_

n+l

and
1
i’

Since $'(1/Vi) and 3 (1/i) are within additive constants of 2v~N and log N
respectively, (4.7) holds if

1 1 3 1

that is, if
VN = log N+K.

Similarly, (4.8) holds if
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x| VN2 log N+ K
2 2 —2 g T

that is, if

1
VN = T
Thus (4.7) and (4.8) both hold if N> K, where K, is a suitable absclute
constant.

Hence (4.5) and (4.6) hold if N> K,;, and so, for large fixed k, there are
points s, =X, +i(w/2+ p,) in each of the channels B;}, B, for n in the range
2k=1< n<2*¥—K, for which \(p,) =0. In other words, the points s, lie at
the same hyperbolic distance d(0, x,x_;) from the origin. We write N\, =
d(0,x5«_;). Then

lOgN+K8.

1
ANe < 'Eka—l

1 ﬁ Zg‘ 1

<1 ————+j+1)
2 j=1(n=1 2Vn

so that log \; < Ko log 2* for large k.

Around each point s, lies a disc of radius d,,/2 whose points have hyper-
bolic distance no more than %10g3 from s,. We define ©, to be the union
of these discs and C| to be %log 3. To compilete the proof of Lemma €, it
remains to show that the area of Q; exceeds C,log\ for a fixed constant
C,. We have

x 2 1-1 1
A fQ,=— —
rea ot = 64 ,?0 N
T T
> jog(2k1—1)— =
6 og( 1) 4 (1+log K,)
T k
> 78 log 2

for all sufficiently large k. Thus,
™
128K

for all sufficiently large k, and we take C, = 7/(128K,). This proves Lem-
ma 6. il

Area of ;>

log A\

5. Proof of Lemma 1

We are now in a position to produce a domain JC so that the normalised
mapping function G(z) from the unit disc A onto JC satisfies conditions (A)
and (B) of Lemma 1. At present we have a domain D, defined by (4.1), (4.2),
and Definition 1, for which it follows from Lemma 6 that the mapping func-
tion G(z): A — D satisfies (2.2). However, certainly G(z) does not satisfy
condition (A).
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The domain JC is obtained from D by replacing the inward-pointing slits
of D by rapid oscillations in such a way that 3C is of the form (2.1). These
modifications to the domain D are carried out making sure that the esti-
mates obtained in Lemma 6 continue to hold (cf. Lemma 7). To make this
precise we need some more notation.

For —co<a < and § positive, we let I, s=(a—05,a+45) and let ~, 5 be
the function on I, 5 whose graph is the polygonal path having successive
vertices

a—6,a—56/2+in/2, a+6/2—in/2, a+é.

Suppose that {«;};° and {B;};° are two sequences of positive integers for which
o; <oy and B; is “large” compared with «;. For n> 1, we let E,, be the set
of integers k with 2% -1<k<2%and welet E,={k: 1<k =<2%}.If keE,,
where n =1, we put

Iy=1, 26, and 7yr=1,, 2 6n.

We let
n 2%n
F,=U U L=U L.
i=1keE; k=1

We now define a sequence of domains {D,}; depending on the sequences
{a;} and {B;}. Firstly, we set Dy=D.

DEFINITION 2. For n=1 we define O,, to be the domain
D,={z:Rezel, k<2%, v, —in<Imz<+y,+iw or Rezg¢ F,, 7€ D]}.
(See Figure 3.)

w [T

Qn

v(o a
n) 2aﬂ+l

-iTt

o
D
%]
)
=]

Figure 3

Thus D, differs from D,,_; only in that the next set of slits, those correspond-
ing to a; with k € E,, have been changed to oscillations and these oscillations
are probably much faster than those gone before. We also note that the do-
main D, depends only on o and 8, k=1,2, ..., n.
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LEMMA 7. The numbers o; and 3; may be chosen so that the sequence of
domains {D,}q has the property that if 7 is in Q, for some k, then z is in
D, for each n and

(5.1 |d(0,2;D,)—d(0,2; Dpy1)| <27"
Jor each n=0.

We can now prove Lemma 1 assuming Lemma 7.

Proof of Lemma 1. The domains D, clearly converge to a simply connected
domain JC in the sense of kernel convergence, and JC is of the form (2.1) so
that Lemma 1(A) holds for the conformal mapping G(z): A — JC.

Now each of the sets Q lies in JC and for z in Q; we have, by Lemmas 6
and 7, that

> 1 > 1
Kk—Cl—E §;<d(0,Z;JC)<)\k+C1+E E{
1 1

Thus, for z in Q,
)\k_C3<d(0,Z; -}C) <)\k+C3,

and, as before, the area of Q; exceeds C,log \,.
We define ry; and ry, for k=1, by

1 1+r 1. 1+rf
~1 =M\—C; and =1 =\e+C.
2 81—y, T hs ANG S0 T =Mt s

Hence, (1—r;)/(1—rg) is bounded and

A(rg,ri) = Area of

= Cploglog

1—r;’

which is (2.2) and completes the proof of Lemma 1 and hence of our theo-
rem. Ol

It remains only to prove Lemma 7. In order to do so, we need one further
result.

LEMMA 8. Let R be the rectangle
Ro={s:—L<Res<L,|Ims|<~]}.

Suppose that u,(s) and u,(s) are two positive harmonic functions in R,
which are continuous on the boundary of R and which vanish on |Im s|= .
Suppose also that C is a constant for which

u;(0)

uy(0) .

Then, if —m <r<mwand L >2log(24/w), we have

U (lr)
uy(ir)

< C(1+16e~1/?),
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Proof. The proof of Lemma 8 involves some standard calculations which
we omit. We let V={s:Res=—L, —w <Ims <~} on the boundary of R,.
Then w(0, V; R,) denotes the harmonic measure of ¥ with respect to Ry and
evaluated at the origin.

Write S* for the half-strip {s: Res>—L, |Ims|<=}. It follows from the
reflection principle that

w(0,V;Ry) <w(0,V;S)
=2w(0,H;S),

where S is the strip {s:|Ims|<#}and H={s:Res<—L and |Im s|=7} is
the boundary of S to the left of V.
The Poisson integral formula for S gives

2w0(0,H; S) =

4 L/2 0 £
e “‘ e dg

—w e2t4el

4L/2 0
< € e‘L[S ezdé]

T —o0

4
=—e L2,
T

We conformally map R, to A, fixing the origin and sending the real axis
onto the interval (—1, 1). Then u,(s) and u,(s) in R, give rise to harmonic
functions u;(z) and u,(z) in A. Moreover, by conformal invariance of har-
monic measure, u;(e”) and u,(e’) vanish when ¢ lies outside (—4,8) or
(r—8, 7 +6) where 6 =4e~1/2,

Hence, for 0<r<1,

1 pr2r .
u(xir)= 7 So ul(e")(P<r, lF g—) dt

1 27 . 1—r?
<— ) dt
2 (So e )d>1——2rsin6+r2

1—r2
1-2rsiné+r?’

=u;(0)

where ®(r, §) is the Poisson kernel in the unit disc. Similarly,

1—r?

5.2 +i .
52 ur(£1r) > u>(0) 14+2rsiné+r2

Thus, for —1<r<1,

u(iry w1 (0) /1+2|r|sind+r?
uy(ir) ~ u,(0) 1—2|r|sin6+r2)

1+4+siné
C
(l—sina)

<C(1+49)
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if 6 < /6. So, under the correspondence between R, and A,
uy(ir)
uy(ir)

for —w <r <= if e/>>24/x. This proves Lemma 8. O

<C(1+16e71/%)

Proof of Lemma 7. The sequences «; and 3; are chosen inductively. We sup-
pose therefore that «; and 3; (i=1,2,..., N) have been chosen, and we re-
call that D, denotes the corresponding domain according to Definition 2.
What follows works equally well when N =0, D, = D and we wish to choose
oy and By. To begin with, we recall from (3.1) that if Q is simply connected
then

480,z

1
(5.3) d(0,2;0) = 7 log Ty

As h decreases to 0, h(1+e~")/(1—e~") decreases to 2. Therefore, if € is
positive then there exists a positive 6 such that, for 0 </ <4,

2 14+e7" 2
4 log — = .
(5.4) og P <log(1_e_h><log 7 +log(1+¢)
We choose € so that log(l1+¢)=2"" and choose a positive & so that (5.4)
holds.
Since d,x =k +1 for each k, we have that a,« is separated from a,«; bya
rectangle of width 27 and length £+1. We set

p(k) = $(ar+aze41)

so that certainly »(k) increases to infinity with k. Thus, since g(0, z; Dy)
approaches zero as Rez tends to infinity, we may choose o), greater than
ay so that, if Rez >v(an,1), then

(5.5) g(0,z; Dy) <e™28
and so that
(5.6) log(1+16e~v+1/4y < 2=N-1,

Set Oy ={z in Dy:Rez>v(apn,1)}. It follows from (5.3), (5.4), and (5.5)
that for z in Qp,

1 2 1 2 1
(5.7) a—logm<d(0,z,ﬂ),v)<—2—log g(O,Z,f,DN)+2N+1.
Thus, an,1 has been chosen so that %Iog(Z/g) gives a good approximation
to hyperbolic distance in Q. It remains to choose By 1.

For a positive integer n, we let D” denote the domain which corresponds
to Dy in Definition 2 with the choice of By, = n. By allowing #n to vary
over the positive integers, we produce a sequence of domains {D"}. Our
objective is to show that if # = n, is chosen sufficiently large then (5.1) holds,
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in which case we put 8y.,;=n,. The sequence of domains {D"} converges
to D, in the sense of kernel convergence and, for large »,

U @, cD".
k=1

Suppose that f,(z) maps D" conformally onto A with £, (0) =0, f,;(0) posi-
tive, and that f(z) maps Dy to A normalised in the same way. The Cara-
théodory kernel theorem (cf. [6, Chap. 3]) yields that, for z in Q; (k=1, 2,
..y 0N 11), WE have

1
(5.8) |d(0,2; D) ~d(0,2;D")| < 5

if n=n,, say.

It remains to show that, by choosing » sufficiently large, we can also ar-
range that (5.8) holds for z in Q; when &> oy, .

We choose a positive €’ so that log(1—e’) > —27V~1, Again by kernel con-
vergence of f,(z) to f(z), it follows that for n=n,,

g(0, »(an+1); D)

5.9 1—¢’
>-9) €< 20, (avsr); D)

<l+¢€.

Since the rectangle

N +1

(04
R0={Z:V(C€N+1)"— 1;+1 <Rez<v(aN+1)+ and IImZ|<7T}
is contained in Dy, and since both Green’s functions are harmonic there and
vanish on the sides of Ry where |Imz|=, it follows from Lemma 8 and
(5.9) that

_ 1—¢ < g(0,z;D")
1+16e—ov+1/4 ~ g(0,z; DN)

for Rez =v(ay41) and |Im z| < 7. Because of (5.6) and the choice of ¢’, both
log(1/c;) and log ¢, are less than 277,

Both Green’s functions g(0, z; D") and g(0, z; Dy) are defined in Qp and
vanish on the boundary of Q, where Re z > v(ap ) strictly. On the remain-
ing boundary, that is on {z:Rez=r(ay4;) and |Imz| <}, we have

(5.10) c18(0,2; DyN) <g(0,2; D")<c,8(0,2; Dy).

Hence (5.10) holds on the boundary of Q, and by the maximum principle
throughout Qy.

Since certainly logc, <2 and g(0, z; Dy) <e 28 in Qp by (5.5), we have
that g(0,z; D") <é throughout Qp. Therefore (5.7) holds for the Green’s
function for D" as well as for Dp. That is,

<(14+€e)(1+16e~N+1/4) =¢,

Ci

1 2 1 2 1
5.11 —log ——8MM— ;DY < =1 .
(5.11) 5 og 2(0.2.D") <d(0,z; D" < > og 2(0.2: D7) +2N+l

From the inequalities (5.7), (5.10), and (5.11), we obtain that for z in Oy (in
particular for z in @, where k> an.1),
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2 1

1
d(0,z; D") < —log

+
2 g(0,z; D"y 2N+l
1 2 1 1 1
<zlog————+<log—+
2 2 e0,2;0y) 2 B¢ TN
1
<d(0,z; ®N)+ﬁ;
1 2
d0,z;D") > =log ————————
( ) 2 8 £(0,z;D")
1 2 1
>—log ———— — —logc
2 20,20y 2 5
1
>d(0,z; gDN)—EN.
Thus, if n=n,, we have
(5.12) d(0,23 D3) —d (0,23 D)< 57
whenever z is in Q for &k = ay .. We choose 8y, =max(n,, n,}. It then fol-
lows from (5.8) and (5.12) that (5.1) holds. Ol
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