On the BP Homology and
Cohomology of P?"A P?™

GEORGE NAKOS

1. Statement of Results

Let BP be the Brown-Peterson spectrum associated with the prime 2 and let
BP,() and BP*( ) be the corresponding reduced homology and cohomology
theories. Let P2" be the 2n-dimensional real projective space. There is a Kiin-
neth short exact sequence due to Landweber [3] for both BP,(P?*"A P2™)
and BP*(P?"A P?™) which is split exact in this case. For instance, for the
BP-cohomology one has

BP*(P?*'A P?™) =X ~! Torgp-(BP*(P?"), BP*(P?™))
@®BP*(P?")®pp: BP*(P™).

The tensor product module is well understood. It is the ideal generated by
xy in the polynomial algebra BP*[ x, y] modulo the ideal (([2]x)y, x([2]»)),
where [2]x denotes the two-series in x. Furthermore, the tensor product has
been computed as an abelian group in each degree larger than 2 max{m, r}
[1; 2]. This computation has led to a strong non-immersion theorem for real
projective spaces into Euclidean spaces [2].

Our goal in this note is to compute the Tor groups as BP-modules. We
shall prove the following propositions.

)

PROPOSITION 1. BP°¥(P?" A P?") = £ ~! Torpp.(BP*(P?"), BP*(P*"))
is isomorphic as a BP*module to a copy of T?™maxtmm—1gp+(p2min{m,njy

PROPOSITION 2. BP,4q(P?' A P?") = Z! Tor®F+(BP,(P>"), BP,(P*")) is
isomorphic as a BP,-module to a copy of L?BP,(P2minlm nly

We shall prove Proposition 1 in detail. The dual computation for homology
follows the same line of proof and only a brief sketch will be given. As a by-
product of the computation we get all of the v,-torsion of the tensor prod-
uct. Explicitly, we have the following corollary.

COROLLARY 9. The v,-torsion submodule of BP*(P*")®gp+-BP*(P*™) is
the ideal generated by xy(x—y).
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2. Method and Proof

We shall assume that m = n throughout this section.

First we recall some standard notation along with some well-known facts
[4]. The coefficient ring BP* is isomorphic to Z,[vy, v,,...]. The degree
" (= —codegree) of each generator v, is —2(2”"—1). BP*(CP®) is the power
series over BP* on a 2-dimensional generator x and BP*(CP") is a truncated
polynomial algebra over BP* with x”*! = 0. The inclusion P?"< P?"*!com-
posed with the circle bundle projection P?"+!— CP" defines a nontrivial
map P?"— CP". By using the Atiyah-Hirzebruch spectral sequence, it is
easy to see that x maps nontrivially in BP2(P2") and that the induced map is
an epimorphism in BP*( ). The relation x”*! =0 holds in BP*(P?") (here, x
is the image of x). On the other hand, the composite map

P~ P®—CP®%CP®

is trivial and x maps to zero and to [2]x, the two-series. Thus [2]x =0 in
BP*(P2"). It is easy to show that

) BP(P>") = (x) S BP*[x]/(x"*1, [2]x).

Full details are in Lemma 3.5 of [1].

Our approach to computing the Tor modules is a direct one. We use the
definition of the Tor and tensor products. Equation (2) implies that the map
f: B®> Blis a BP*free resolution for BP*(P?"), where f(x’) = ([2]x)x' ™'
with BY= B! BP*free on x/, i=1,2, ..., n. It is very convenient to maintain
the multiplicative notation throughout (so xx* is x**1, etc.). If we tensor
with BP*(P2") over BP*, we have

(3) d=f®1: A= B°Qgp«BP*(P?") > A' = B'@pgp- BP*(P*™).
The kernel and cokernel of d are
Torgp+-(BP*(P?"), BP*(P?")) and BP*(P*")®gp-BP*(P*"),

respectively. We may define the complex (A4*, d): 0 » A° > A' - 0. Then what
we need is the homology H(A*, d).

B! and B? are formally isomorphic and all the groups are finite in each
degree. Therefore the orders of Tor and ® are equal in each degree. One
way of proving Proposition 1 is to produce enough elements of Tor and then
compare the order of the submodule generated by these elements with the
order of &® in each degree. If they are equal, then one has all of Tor. Even
more easily, one can filter the complex (A4*, d), compute the homology of the
associated graded object, and “lift” all the cycles of the graded d to cycles
of d itself.

Let BP*(P2")=BP*[y]1/(y™*',[2]y), and let F¥4¢ (e =0, 1) be the BP*
submodule of A° generated by x'y/, i +j = k. This defines a finite decreasing
filtration of A*:

Fn+m+lA*= {0} C... EFZA*:—A*
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In (3), d is filtration-preserving and we derive the usual spectral sequence
(E}*, d,) of the filtered complex. This spectral sequence is of cohomologiczl
type with differentials of bidegree (r,1—r). Its E-term is the graded mod-
ule of H(A*, d) with respect to the induced filtration. In standard notation,
we have

(4) E(I)(J:FkAk+l/Fk+lAk+1’ E{c,l_:Hk+!(FkA*/Fk+lA*)’
and
(5) E£’1=Fka+1(A*, d)/Fk+1Hk+I(A*, d)

Note that EX'=0if k+/#0 or 1. So we may assume that k+/ is either
Oorl.

All the differentials are induced by d. More precisely, they all follow from
relation (7) below. If [2]y =3 ¢<,a,y° "), then we know that

6) a;e BP_,,, @ay=2, a;=v;mod(2).
For x'y/e A° we have
d(x"yf)=([2]x)x"‘1yj=< > asx”‘)xi"‘yf
(7) O<s
= (ES asxs)xiyj+ 2x'yl =x'yJ 1§s a,(x—y%).

Therefore, if i +j =k then
(8) d(x'y’y=vxy/(x—y)+P(x,y),

where P(x, y) is a polynomial in x and y with terms of filtration greater than
k+1.

LEMMA 1. If k+1=0 or 1, then E§' = E{' is isomorphic to a BP*/(2)-
free module generated by x'y*~', with i and k in the following ranges:
() I=si<k—-lifk=m,n+l,
(i) Isi<snifn+l<k=<=m;and
(iii) k—m=<isnifm<k=m+n.

Proof. 1t is trivial to check that the x’y*~%’s generate E&! (for k+/=0o0r1)
in the above ranges. Moreover, the only relations come from [2]y =0 in
BP*(P2™). More precisely, (8) shows that dy: E& % — Ef!1=% is zero and
2x'yk=i=0in Ef'= EF'.

Next, we need to compute the E5*term of the spectral sequence. We shall
fix k and let (r,£) € ((1,k—1),(1,n),(k—m,n)}. Let a, ,=3!_, bix'y*!
denote the general element of Ef> %, The sum is homogeneous and b, € BP*.
By (8) we have

t . - t Iy .
di(a, )= 3 bid)(x'y* ) =v; 3 bix'y* T (x—y)
I=r i=r

®)

(-1 _ '
=v; 3 (b;—bi )x T yk-ip b, x!yk=t_p xyk-r¥l O

i=r
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LEMMA 2. If k<m then d||E} =% is a monomorphism.

Proof. If k <m and n+1, then a typical element in E{ =% is an element of

the form a; 4_;. Since x'*'y¥~7520 for 1<i<k—2, by=by=---=by_,€
BP*/(2) by Equation (9) and Lemma 1. But xy*#0, so b;=0¢€ BP*/(2). If
n+1<k < m then one uses the same argument for an a; ,. O

LEMMA 3. Ifm<k<m+nthen (x—y)X'_(_,x'y*"1=0.

Proof. The left-hand side is

m+n—k .
xk—myk—-n(x_y) E x_;ym+n—k—J =xk—myk—n(ym+n—-k+l__xm+n—k+1)

Jj=0
=0. 1

LEMMA 4. For each k in m<n<m+n, the kernel of d\|E{>~* is gener-
ated by g, =3"_;_m x'y*~1 over BP¥/(2).

Proof. Ifa,, e kernel(d), then Equation (9) holds for (r, ¢) = (k—m, n) and
xi*1yk=ixQ for k—m=<i<n—1. Hence by_,,=--=b,, and Ak —m,n 1S 2
BP*/(2)-multiple of g,. This in turn is in the kernel of d; by Lemma 3. [

Now, Lemmas 2 and 4 immediately yield the following lemma.

LEMMA 5. (@) If2<k<mthen E¥~*=0.If m<k<m+n then EX % is
the BP*/(2)-free module generated by g;.

(b) E5 'k is the BP*/(2)-module generated by x‘y*~', with the relations
v (x Tlyk—i=l_xiyk=Iy=0 for k=3.

LEMMA 6. The n elements
n - -
g= 3 xiyk!
i=k—m

are in Torgp-(BP*(P2"), BP*(P™)).

Proof. By (7) we have

dgr)= X xS agx’-y*)

i=k—m i<s
(10) ) | |
= X xpFix-») T a4y,
i=k—m I<s
which is zero by Lemma 3 and the fact that —y**!=(x—y)(x+--- +y%)
for s =n. ]

COROLLARY 7. The spectral sequence collapses and E>*=EZ.

Proof. The differentials raise the codegree by 1, so EX =% can only be the
source and not the target of a differential. But all of E5* =% consists of per-
manent cycles, by Lemmas 5 and 6. ]
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Actually, we can account for all relations in the Tor module.

LEMMA 8. The g, satisfy Xo<ss8k+s=0.

Proof.
n n
— ks —j _ s+1 11, k—1
2 As8k+s= 2 ag E xjy /= 2 asx E X Yy ’
O=<s O<s j=k+s—m O0<s [=k—m
since x"*1=0. But the last expression is zero by relation (7) and Lemma 3.

]

Lemmas 5, 6, and 8 show that we have enough generators and relations to
get all of Tor. More precisely,

TOI'BP*(BP*(PZ”)’ BP*(sz)) ~ EZmax[m,n} (BPZminlm,n}),

and Proposition 1 follows from (1).

In homology the situation is completely dual. For instance, we have a BP,-
free resolution as follows: g: £ ~'BP,(CP") - L ~'BP,(CP"), with gener-
ators zy,23,...,2, in degrees 1,3,...,2n—1 and g(z;) = Yo<;a;z;_;. After
tensoring with BP, (P>") we need (as before) the kernel and cokernel of g®1.
A filtration for both the domain and the range of g&®1 is defined dually; that
is, at the kth stage we only keep the generators z;w; with i+ j <k (the w;’s
generate BP,(CP'™)). Again we have the dual spectral sequence of the fil-
tered complex (of homological type). The ranges of the indices of the gener-
ators are conveniently arranged as follows:

() 1si<k—-1lifk=sn+1;

(ii) 1=sisnifn+l<k<m;and

(iii) k—m=<i=nifmn+l<k=sn+m.

The first differential d! is a monomorphism if n+1 < k& < m, or if m and
n+l<k<m+n. If 2 <k <n+1, then the kernel of d' is generated by
S4-1z;wi_;. One easily computes the E2, .-term and proves collapse by not-
ing that the above elements are elements in TorBP*(BP,(P?"), BP.(P%™).
The BP,-module relations for Z!BP,(P2™"7 1}y are easily verified. Propo-
sition 2 now follows from the Landweber split exact sequence in homology.

3. The v,-Torsion in the Tensor Product

Lemmas 5 and 7 give us a nice description of the tensor product. One can
read off all of the v,-torsion part in it.

COROLLARY 9. The vj-torsion in BP,(P*")®gp,BP,(P*") is the ideal
(xy(x—y)).
Proof. Let h=xy(x—y). Then relation (10), together with

a,=v;mod(2) and a;h= —azh(x+y)—a3h(x2+xy.+y2) —ee,

show that v,/ is a sum of elements of higher filtration (with a factor of #).
But the filtration is finite, so 4 is v;-torsion.



216 GEORGE NAKOS

On the other hand, by the relations --- = v, x'y*~ =y x'~1y*~1*1= ... of
Lemma 5, we see that v;x’y*~' is zero in E** if and only if k=n+2 (by
checking in the ranges of Lemma 1). We conclude that x‘y*~/is v,-torsion if
k = n+2. Alternatively, we can see this from

xiyk—i:xfyk—n-—l(yn—f-i-l_xn—i+1) € (h).

However, if k < n+1 then the generators x'y*=1 are not v;-torsion (since
vix'y*~'is nonzero even modulo filtration for any r in N). O

Let g be a polynomial in x and y in the tensor product that is v;-torsion. Let
k be the minimal degree of the monomials x’y” in g. Then k = 3. We denote
by g the image of ¢ in EX ~*, which we may assume nontrivial or we can go
up in filtration. Let §=3; a;x'y*~*; the coefficients may be taken to be 0
or 1. Since x'y*~' is v,-torsion for k = n+2, we may assume that k <n+1.
We then have

aixiyk—i+ai+lxi+lyk—f—l = (ai+ai+l)xi+1yk-—i—lmod(h).
By applying the above relation repeatedly we see that
g=(ay+--+a,_)x*'ymod(h).

If the sum @, + --- +a;_ is even, everything in filtration & is in (4) and mul-
tiplication by v, will bring us to higher filtrations where we can repeat the
process. If it is odd then we get a contradiction, since even though ¢ is v;-
torsion, v{x* 'y 0 modulo filtration in the current range.

COROLLARY 10. There is a BP*~module filtration of
BP*(Pzn)®BP* BP*(PZm)

such that the associated graded module is BP*/(2, v,)-free on x'y* =" in the
range k =min{m, n}+2.

Since the Tor product is (up to filtration) BP*/(2)-free on guaxim nj+1s «+-»
gm+ns counting orders in the tensor product becomes very easy. One can
easily verify the orders of some of the groups in [4] for BP or BP2 without
the use of ku* or of the tensor product.
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