Associate Harmonic Immersions
in 3-Space

TILLA KLOTZ MILNOR

1. Introduction

The immersion of a surface S with definite prescribed metric g is harmonic
into Euclidean 3-space E> (or into Minkowski 3-space E>') if and only if
the three coordinate functions of the immersion satisfy Laplace’s equation
with respect to coordinates isothermal for g. Similarly, the immersion of a
surface S with indefinite prescribed metric g is harmonic into £*° (or into
E*1Yif and only if the three coordinate functions of the immersion satisfy
the wave equation with respect to coordinates isothermal for g.

Since the immersion of a surface S with definite or indefinite prescribed
metric g is harmonic into £ if and only if it is harmonic into E>!, we re-
fer throughout this paper to a harmonic immersion Z: (S, g) » E*/ where
the index j can assume either value 0 or 1. The results below are meant, in
part, to illustrate that the Minkowski geometry of a harmonic immersion
Z:(S,g)— E*/ is at least as interesting as its Euclidean geometry.

An immersion Z: S — E*°is minimal if and only if Z:(S,1% - E>/is
harmonic, where 7° is the metric induced on S by E*°. Similarly, an im-
mersion Z: S — E>!is minimal if and only if Z: (S, 7!)— E*/ is harmonic,
where I!is the metric induced on S by E*!. Since 7%and 7' are seldom pro-
portional, the harmonic immersions into £*/ which are minimal into £°
differ from those minimal into E*1.

In this paper, we are most concerned with harmonic immersions Z: (S, g) —
E*/ with indefinite prescribed metric g. We look at harmonic immersions
Z: (S, g) — E >/ with definite prescribed metric g solely to compare and con-
trast results. When g is definite, the properties of harmonic Z: (S, g) —» E*/
tend to generalize the behavior of minimal Z: S —» E*? (see [3]). When g is
indefinite, the properties of harmonic Z: (S, g) » E>/ tend to generalize the
behavior of timelike minimal Z: (S, g) » E>! (see [5] and [6]).

In Section 3 we define associate families of harmonic immersions into
E*/. For definite g, the construction imitates the classical definition of as-
sociate families of minimal immersions in E%¢ (see [2]). For indefinite g,
the construction specializes to the definition of associate families of timelike
minimal immersions into E*!, which are studied more closely in [6].
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We will show that the associate pairing of harmonic immersions into £3/
preserves Euclidean unit normals, Gauss curvature, energy-1 metrics, and
equiareal metrics. Wherever det 7' #0, the associate pairing also preserves
Minkowski unit normals, Gauss curvature, energy-1 metrics, and equiareal
metrics. This remains true no matter which oriented direction is chosen to
be positive timelike when changing E*>%to E>!, for both definite and indefi-
nite prescribed metric g.

The theorem proved is that all immersions associate to an entire harmonic
immersion into E>/ are entire over a fixed plane. The result is straightfor-
ward when g is definite, following easily from Bers’ proof in [1] of Bern-
stein’s theorem. When g is indefinite, more substantial argument is needed,
based on the use of global coordinates provided by the Hilbert-Holmgren
theorem for harmonic maps in [5].

The results of this paper are used in [6] to generate families of entire time-
like minimal surfaces in E>!. We also develop in [6] a construction that as-
signs, to any harmonic Z: (S, g) » E>/ with indefinite g which is locally
a graph over some fixed plane, a timelike minimal immersion Z: S — E*!
which is locally a graph over the spacelike coordinate plane. (If Z is entire,
then so is Z.) The assignment procedure allows one to define a local Weier-
strass representation for any harmonic immersion Z: (S, g) —» E>/ with in-
definite g. The representation is determined by the Euclidean Gauss unit
normal map for Z and the two real-valued Weierstrass functions for Z. For
details and examples, see [6].

2. Background

View E*/ as R? with the scalar product

V, WY = vywy+0awy +(=1)v3 w3,
where j =0 gives the Euclidean and j =1 the Minkowski scalar product. A
vector V in E*1is spacelike if <V, V!> 0, timelike if (V, VY <0, and null
if ¢V, V) =0.

The surface S is assumed to be C®, oriented, and connected. Given a C®
immersion Z:§— R?, we also write Z2:S—E>° and Z:S— E>! since the
same underlying map is involved. To study immersions Z: S — E>/ for j =
0, 1, we use the fundamental forms

I’=(dZ,dZ), II'=—(dZ,dv’y,
where the unit normal »/ is given in terms of local coordinates x, y on S by
i J (1K
\|det 7] v/ = Ly
Zy
Gauss curvature X/ and mean curvature H/ are given by
Kf/=det II’/det I/,  H’'=tr,;(Il).
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Definition of »!, IT', K, and H! above requires that det I' # 0. Thus
we study the Minkowski geometry of an immersion Z: S —» E>/ only where
det 7' # 0. In particular, the condition det 7! # 0 is to be understood in any
statement involving »!, IT!, K', or H. If detI'>0, 2:S— E>!is called
spacelike. 1f det I' <0, Z: S — E3>!is called timelike.

Assume always that the metric g prescribed on S is nondegenerate, so that
det g #0. A mapping Z: (S, g) - E>/ is harmonic if and only if

(1) . Lyx Zyy =0
for all local coordinates x, y on S, in terms of which
) g=Ndx?*+dy?)

for some N\ = A(x,y), where the choice of signs in (1) and (2) must match.
Coordinates x, y on S for which (2) is valid are called g-isothermal.

When g is indefinite, it is more useful to observe that Z: (S, g) » E>/ is
harmonic if and only if Z,, =0 for all local coordinates x, y on S, in terms
of which g=2udx dy for some p=pu(x,y). Such coordinates are called g-
null. Thus, for indefinite g, Z: (S, g) —» E*/ is harmonic if and only if Z has
the expression

3) Z(x,y)=X(x)+Y(»)

near any point in the domain of local g-null coordinates x, y on S. If x, y are
also Euclidean arc length parameters for 3(x) and Y(y) respectively, then
x, y are called 7%-Tchebychev g-null coordinates. Such 7%Tchebychev g-null
coordinates are always available locally, given a harmonic immersion Z:
(S, g) » E*/ with indefinite g. Moreover, x, y are uniquely determined over
their domain on S up to additive constants and switches to y, —x or —x, —y
or —y,Xx.

An immersion Z: S — E>/ is entire if Z(S) is the graph of a C* real-
valued function over some whole plane. An entire immersion is always an
imbedding, with S simply connected. We recall the following theorem from
[5] in which 9" is an arbitrary pseudo-Riemannian manifold of dimension
n=2.

HILBERT-HOLMGREN THEOREM FOR HARMONIC MAPS. If Z:(S,g)—~
M" is harmonic with g indefinite and the metric h induced on S by " com-
plete and Riemannian, then the universal cover S of S with the lift § of g is
conformally equivalent to the Minkowski 2-plane E>'. Moreover, the in-
trinsic curvature of h cannot be bounded away from zero.

REMARK 1. The proof of the Hilbert-Holmgren theorem in [5] establishes
a conformal diffeomorphism between the x, y-plane with the metric dx dy
and (S, £), under which x, y become global #-Tchebychev g-null coordinates
on S. For an entire harmonic Z: (S, g) - E*/ with indefinite g, 7° is com-
plete and S= S, so there always exist global 7°%Tchebychev g-null coordi-
nates x, y on S with x and y assuming all real values. It follows that every
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entire harmonic Z: (S, g) —» E*/ with indefinite g has a global expression of
the form (3), with x and y Euclidean arc length parameters for 9(x) and
Y(y) respectively. Classically, Z(S) is referred to as a franslation surface,
since all of Z(S) is swept out by translating the curve % (x) by the fixed vec-
tor Y(k) for all real values of the constant k. However, we prefer to think
of (3) expressed in terms of I7%Tchebychev g-null coordinates x, y as the
Weierstrass representation of the immersion. We show in [6] that 9 (x) and
Y(y) in (3) are locally determined by »°(x, ) and the Weierstrass functions
A(x) and B(y) for the “assigned” timelike minimal immersion. (See §4 of
[6] for details.) Note meanwhile that any entire timelike minimal immersion
Z:S— E>! has a representation of the form (3) over the whole x, y-plane
with x, y I%Tchebychev I'-null coordinates on S.

If Z:(S, g) = E*/ is harmonic, then whether g is definite or indefinite, Z:
(S, 0g)— E*/ is harmonic for any function ¢ which never vanishes. Con-
venient choices of ¢ lead to useful conformal normalizations of g, among
them the energy-1 metric I'Y and the equiareal metric IT/, which are described

as follows. As always, j=0,1. _ . _
For any immersion Z: (S, g) —» E>/, define %/ and 3¢’/ by

X/ =%(g,I')y=det //detg,  23C/=23C(g,I')=tr, I'.
The energy-1 metric T'V is given wherever 3¢/ 0 by
IV =3C/g.
In any statement involving I_‘f, we presume that 3/ # 0. The equiareal met-
ric TI/ is given wherever X’ # 0 by
I/ =|3/|/2g.
In any statement involving I1/, we presume that 3/ 0.

The induced metric I/ of an immersion Z: S — E*/ is given in terms of
local coordinates x, y on S by

/=E/dx*+2F/dxdy+ G’ dy?,
where
E'=(2Z,,2,Y, F/'=(2,,2,)Y, G/=(Z,,Z,Y.
If g is definite, use of g-isothermal coordinates x, y gives

g=Ndx*+dy?),

4) ot i - o .
N/ = E/G/—(F/)?, 2NFC/ =E/+ G/,

so that

5) 2T = (E/+ G’)(dx?*+dy?),

I1V =sign \|EYG/ — (F/)*|"(dx*+ dy?).

If g is indefinite, use of g-null coordinates x, y gives
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© g=2pdxdy,
—u23Cj=EjGj—(Fj)2, ﬂ:}cj_:FJ',

so that

o I =2F/dxdy,

I1/ =2 sign p|E/G’ — (F/)*|Y*dx dy.

It is easy to check that X/ =30/ =1if g=1’, so that 'V=II'=[’. Thus
it is no surprise that properties of I'/ and IT/ for a harmonic immersion Z:
(S, g) » E>/ often mimic the properties that I/ has for a minimal immersion
Z: S — E>J. For general information about energy-1 and equiareal metrics,
see [3] or [4].

3. Associate Harmonic Immersions

Consider first the case in which the prescribed metric g on S is definite. Given
a harmonic Z: (S, g) » E*/, use g-isothermal coordinates x, y locally on S
so that

Zyz=2y+2Z,,=0,

where 20/9z =d/dx—id/dy and 2d/0Z = d/dx+id/dy. Then
o €22,

is holomorphic in z =x+1iy, and Z has the local expression

V4
z=ReS bdz+C

20
for a constant vector C (see [3]). _
For any real 0, define the associate immersion Z4: (D, g) —» E>/ by setting

®) Zg:Ree”’SZ ddz+C
20
over the domain D of x, y on S. Of course, Z =2, for § =0 mod 2. Here
bo=e"d=2(Zg), = (Z)x—i(Zo)y

gives
©) (Zg)x=c0s 6 Zy+sinf Z,,

(Z4)y,=—sinb Z, +cos 6 Z,,
SO (Zg)xx+(Zp),, =0 and Zy: (D, g)— E>/ is harmonic. By (4), (5), and
(9), we have _ ‘

det I} =det I,
Ki=%(g, I))=%/,  3C)=3C(g,Ij) =3¢,
r/=rJ, IIj=TII.

Since (Zy) x and (Zg), span the same oriented plane as Z, and Z,, the unit
normals v/ = v’ do not vary with 8. Thus the second fundamental form of
Ze 1s given by
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IT) = (Zg) x> ¥/ dx*+2{(Zg)ry, v7¥ dx dy +{(Zy),y, v7Y dy?,
and (Zg) = —(Zy),, yields
det ITj=det [T/ < 0.

Finally, the Gauss curvatures satisfy Kj =K, with sign K/ = —sign(det I/)
wherever K’ # 0.

REMARK 2. If 2: S — E*°%js minimal then x, y are I %isothermal, and 7%=
I'°=11% in (5) shows that the associate immersions Z,: D — E>? given by
(8) have I = I'? = T = I°, making them minimal and isometric in E>°,
Similarly, if Z: S — E31js spacehke and minimal, then the associate immer-
sions Z4: S —» E*! are spacelike, minimal, and isometric in E>!. (See [6] for
details.)

Consider next the case in which the prescribed metric g on S is indefinite.
Given a harmonic immersion Z: (S, g) —» E>/, use g-null coordinates locally
on S so that (3) holds. For any constant ¢ > 0, define the associate immersion
Z.: (S, g) - E>/ by setting

(10) Zo(x,y)=cX(x)+Y(»)/c

over the domain D of x, y so that Z,=Z for c=1. Here Z.: (D, g) > E>/is
harmonic simce (Z.),,=0.

REMARK 3. The choice of different g-null coordinates on D may reparam-
etrize the associate family (sending Z. to Z,.) but the same set of immer-
sions is determined. Nonetheless, we assume a fixed choice of null coordi-
nates x, y on S when discussing Z...

The first fundamental form I/ for Z.: (S, g) » E>/ is given in terms of the
g-null coordinates x, y over D by
Il =c?E/ dx*42F/ dx dy+(G’/c?) dy?,
so that ' .
det I =det I".

Application of (6) and (7) to Z, gives
Ki=K(g, I)=%’, 3Cl=30(g,I])=13C,
r/=TY, TII{=I.
Since ¢cX’(x) and YY) /c span the same oriented plane as X’(x) and Y'(y),

the unit normals »/ =»’ do not vary with c. Thus the second fundamental
form of Z. is

I = (cX”, vIy dx?+(Y"/c, v/y dy?,
so that _
det IT]=det I/,
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and the Gauss curvatures satisfy K/ = K’. Here det /I can have any sign, so
the sign of K is not determined by the sign of det I, even if g =1, so that
Z:S— E>!is minimal.

REMARK 4. If Z:S— E>!is a timelike minimal immersion then x, y are
I'-null, and 7' =T"'=TII'in (7) shows that the associate immersions Z.: D -
E3! given by (10) have I' =T} =TIl =1, making them timelike, minimal,
and isometric in E>!. By Remark 1, the timelike minimal immersions Z,:
S — E>! can be globally defined on S in case the timelike minimal immer-
sion Z: S — E>!is entire over some plane.

4. Entire Harmonic Immersions

We now show that immersions associate to an entire immersion are them-
selves entire. Assume henceforth that u, v, w are fixed Cartesian coordinates
in E>7 so that the u, v-coordinate plane is the spacelike coordinate plane ®
in E>!. Let T: E*»/ - @ denote orthogonal projection onto ®. The lemma
below is needed to handle the case in which the metric g prescribed on S is
definite.

LEMMA. If a harmonic Z: (S, g) - E>/ with definite g is entire over @,
then there are global g-isothermal coordinates x,y on S assuming all real
values in terms of which

(1) Z(x,y)=(ax+by+t, ax+By+71,w(x,¥)),

where w(x, y) is a harmonic function and the constants a, b, t, o, 3, T sat-
isfy aB—ab#0.

Proof. Here (S, g) is conformally equivalent to some simply connected do-
main I in the x, y-plane. Using x, y over D as global g-isothermal coordi-
nates on S, Z=T-%Z is a harmonic diffeomorphism Z: (D, g) » @. If we
write Z(x, y) = (u, v), then Lemma 3.2 in [1] implies that the harmonic func-
tions # and v are each the real parts of one-to-one holomorphic functions
on ». Moreover, by Lemma 3.3 in [1], © must be the whole x, y-plane. Since
the only one-to-one holomorphic maps from E%*° into E*>? are onto and
linear, # and v are linear. L]

THEOREM. Ifa harmonic immersion Z: (S, g) — E*/ is entire over a plare,
then its associate immersions are globally defined on S and are entire over
the same plane.

Proof. Since our arguments make no reference to Minkowski geometry, there
is no loss of generality in assuming that < is entire over the u, v-coordinate
plane ® in u, v, w-space E*>°, with T the orthogonal projection of £ onto
®. Then Z=T-Z is a diffeomorphism of S onto @.
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If g is definite, use the g-isothermal coordinates x, y provided by the lem-
ma. For each fixed value of 0,( (8), (9), and (11) show that Z,=T-Z, is given
by

Zy=(ax+by, ax+By)cos 0+ (bx—ay, Bx—ay)sinf+ Cy

over the whole x, y-plane, with Cy a constant vector in ®. Since Z, is linear
with nonvanishing Jacobian, it is onto @, making Z, entire.

If g is indefinite, introduce global 7°Tchebychev g-null coordinates x, y
on S so that (3) holds, as described in Remark 1. Then the diffeomorphism
Z =T-Z of the x, y-plane onto @ has the form

(12) Z(x,y)=X(x)+Y(y).

With no loss of generality, assume that Z(0, 0) = 9(0) = Y(0) = (0, 0, 0) so
that Z(0,0) = X(0) =Y(0) = (0, 0). Reorient S if necessary so the normals
»%(x, y) for Z point upward. Because Z is a diffeomorphism of the x, y-
plane onto @, we know the following.

(1) The curve X(x) (resp. Y(»)) is simple, regular, and divides ® into
two distinct nonempty, open “half-planes” whose union is the com-
plement of X(x) (resp. Y(»)) in ®.

(2) The “rays” of X(x) or Y(y) over [0, ) and (—o0, 0] are divergent,
leaving every compact subset of @.

Because X (0) =Y(0)=(0,0), X(x) and Y(y) cannot lie to opposite sides
of any line £ in ®. Suppose now that X(x) and Y(y) both lie to one (open)
side of a line ¢ in ®. Then (0, 0) cannot lie on {. Let W be the vector joining
(0, 0) to the point on ¢ closest to (0, 0). If A, and A\, are the components of
X(x) and Y(y) in the W direction, then \, <|W| and \, <|W/| imply that
2W is not of the form X(x)+Y(y) for any value of x, y. Since Z is onto @,
this contradiction proves the following.

(3) Either X(x) or Y(») has a point on any line in @®.

Let C be the circle #*+v?=1in @ with C, and C, the nonempty arcs on
C containing the oriented directions of X’(x) and Y’(y) respectively. Since
Z is a diffeomorphism, X’(x) and Y’(y) are never parallel. Thus the four
arcs +C,, =C, are pairwise disjoint, putting C, and C, together within a
half-closed semi-circular arc on C. Rotate the u, v-plane as needed so the
midpoint of C, lies at u =0, v=1. Thus v >0 on C,, and since the normals
v%(x, y) for Z point upward (with %C’(x), Y’(»), and »°(x, y) aright-handed
triple), # >0 must hold on C,.

Because u >0 on C,, X(x) describes the graph of some function v = f(u)
in ®@. The function f(u) is defined for all real values of u. Otherwise, X (x)
lies to one side of a line ¢ parallel to the v axis in @. Suppose that X (x)
lies to the left of ¢, since the argument is identical if X (x) lies to the right
of £. Because X(0)=(0,0), ¢ lies to the right of (0,0). If C, reduces to a
point, (1) and Y(0) = (0,0) imply that Y(y) describes the v axis, so that
X(x) and Y(y) are to the same side of ¢, contradicting (3). If C, has positive
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length, X(x) cannot lie outside of the closed trianguar region A bounded by
¢ and the lines joining (0, 0) to the endpoints of C, for any particular value
X > 0. Otherwise, for some X between 0 and X, X’(X) would have an oriented
direction outside of C,, contradicting the definition of C,. But then the ray
of X(x) over [0, ) liesin A, contradicting (2). Note that f’(u«) for any uis
always the slope of some X'(x). If C, has positive length then there must be
a constant M > 0, so that | f'(u)|< M for all u.

The argument showing that Y(y) describes the graph of some function
u=g(v) in @ for all values of v is identical, except that C, might consist of
a single point other than u=1, v=0. If so, since C, is centered at u =0,
v =1, the length of C, is less than =, showing that |g’(v)| must be bounded.
As above, (1) implies that g(v) is defined for all values of v. We summarize
as follows.

(4) X(x) is the graph of a function x = f(u) defined for all #, and unless
C, reduces to the point u=0, v=1, |f’(u)]<M for some constant
M>0.

(5) Y(y) is the graph of a function # = g(v) defined for all v, and unless
C, reduces to the point u =1, v=0, |g’(v)| <1/M for some constant
M>0.

Note that unless C, = {(1, 0)} or C,={(0, 1)}, the same constant M > 0 can
be used in (4) and {5).

Consider now the mapping Z.= T-Z, from the x, y-plane into @, where
Z.: (S, g8)— E>/ is the associate immersion to Z globally defined on S for
some fixed ¢ > 0 by (10). Then (12) provides the expression

(13) Z(x,y)=cX(x)+Y(y)/c=(cX)(x)+(Y/c)()

for Z. over the whole x, y-plane. Note that

{1} (cX)'(x) and (Y/c)’'(y) have the same oriented directions as X’(x)
and Y’(y) respectively, so that Z. is a local diffeomorphism.

To show that Z. is entire, we will prove that Z. is one-to-one and onto ®.
Suppose then that Z.(xy, y;) = Z.(x3, y,) for some (xy, y;) # (x3,¥2), 50
that (13) gives

(14) (eX)(x1) = (cX) (x2) = (Y/c)(¥2) — (X/c)(y).

By (1), (cX)(x) and (Y/c)(y) are simple curves, so that neither side in (14)
can vanish unless x; = x, and y; = y,, a contradiction. Thus both x, # x, and
Y1# Y, so there must exist an X between x; and x, and a y between y, and
¥, with (cX)’(x) parallel to (Y/c)’ (¥), which contradicts {1}. We conclude
that

{2} Z.is one-to-one and a diffeomorphism of the x, y-plane onto its im-
agein ®. i O

REMARK 5. It may seem that Z.oZ~!: ® > ® must be a quasi-conformal
diffeomorphism onto its image (which must therefore be @), since the map
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stretches by constant nonzero amounts in the direction X’(x) and Y'(y) re-
spectively. However, the angle between X’(x) and Y’(y) can be arbitrarily
close to zero. Consider, for example, the case in which X(x) is a (1/V2)-
speed parametrization of v=wu? and Y(y) a (1/V2)-speed parametrization
of the v axis, with Y’(y) upward in @. Then X’(x) approaches Y’(y) as
x — o0, Of course, the map Z,.»Z ~! given by (12) and (13) is a diffeomorphism
of @ onto @, but it is not quasi-conformal. Moreover, using (1) and (10) in
[6], one easily constructs a timelike minimal Z: x, y-plane —» E>! that is en-
tire over the spacelike coordinate plane ® and gives rise to the X(x) and
Y () just described.

Since (cX)(x) (resp. (Y/c)(»)) is the image of X(x) (resp. Y(y)) under
the diffeomorphism of @ onto itself which stretches @ by the amount c (resp.
1/c), (1) and (2) yield the following.

{3} The simple, regular curve cX(x) (resp. (Y/c)(»)) divides @ into two
open “half-planes” whose union is the complement of (cX)(x) (resp.
(Y/c)(»)) in @. B

{4} The “rays” of (cX)(x) and (Y/c)(y) over [0, ) and (—oo, 0] are di-
vergent, leaving any compact subset of @.

{5} (cX)(x)isthe graph of a function v = F(u) defined for all #, and un-
less C, reduces to the point u=0, v=1, |F'(u)| <M for some con-
stant M > 0.

{6} (Y/c)(y») is the graph of a function u = G(v) defined for all v, and
unless C, reduces to the point u=1, v=0, |G’(v)|<1/M for some
constant M > 0.

Again, unless C, = {(1,0)} or C,={(0, 1)}, the same constant M >0 can be
used in {5} and {6]}.

Because (¢X)(0) =(Y/c)(0)=(0,0), (cX)(x) and (Y/c)(y) cannot lie to
opposite open sides of any line ¢ in ®. If (cX)(x) and (Y/c)(») both lie to
one open side of £ in @, then (0, 0) lies to that side of ¢ too. Arguing as in
the proof of (3), one sees that 2(c+1/c)W is not of the form X(x)+Y(y)
for any value of x, y, a contradiction. Thus we have the following.

{7} Either (cX)(x) or (Y/c)(y) has a point on any line in ®.

It is easy to check that Z, is onto @ if C, and C, both reduce to a point.
Then (cX)(x) and (Y/c)(y) describe the whole lines through (0, 0) of dif-
ferent slopes, so movement of (cX)(x) parallel to itself with (cX)(0) going
to (Y/c)(y) clearly sweeps out all of ®. If just one arc C, or C, reduces to a
point, we can assume it is C,. (Otherwise, work from the outset with the co-
ordinates —y, x in place of x, y.) Then C, is the point #=0, v=1, so that
(Y/c)(») describes the whole v axis. If Z, is not onto @ then there is a ver-
tical line ¢ in @ which does not meet cX(x) or (Y/c)(y), contradicting {7}.
Again, Z,. is one-to-one.

More notation is needed to complete the proof if C, and C, both have
positive length. Let R' = R!(x) and R?= R?(y) be the rays of (cX)(x) and
(Y/c)(») respectively over [0, ). Let R*=R3(x) and R*=R*(y) be the
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rays of (cX)(x) and (Y/c)(») respectively over (—oo, 0]. For any real con-
stant k, consider the ray

ri = [ REX)=(X)(x)+(Y/0) (k) if i=1,3,
“TLRED) = (X)) +(Y/e)(y) if i=2,4,

so that Ri =R’ for i=1,2, 3, 4. By {4}, we know that the rays R}, are all di-
vergent. Moreover, since translation leaves the length of an arc unchanged,
the following holds.

{8} The length of R} over any fixed interval [a, &] is independent of k for
eachi=1,2,3,4.

Since (¢X)(x) and (Y/c)(») meet exactly once and transversally at (0, 0),
the intersection of the half-planes determined by (cX)(x) and (Y/c)(»)in
{3} yields four disjoint, nonempty, open “quadrants” !, Q?, 3, and Q*
whose union is the complement of the union of (cX)(x) and (Y/c)(») in ®.
We index these quadrants so Q! is bounded by R! and R?, Q*by R?and R?,
Q3 by R? and R4, and Q* by R*and R!. By {7}, no line in ® is completely
contained in a single quadrant Q.

Assuming that C, and Cy have positive length, let M be the constant in
{5} and {6}. Let C!, @2, @3, and C* be the closed sectors of ® bounded by
the lines v = +Mu, indexed so that R’ lies in @' for each i=1,2,3, 4. Let
Ci(g) denote the parallel translate of @’ taking (0, 0) to q.

To show that any p in Q!lies in Z.(S), let ¢ be the line of slope —M through
p. Since R'lies in @'and R?in @2, p lies to the right of the line v = —Mu in
®, as does all of ¢. Suppose ¢ hits R2. (Otherwise, {7} forces ¢ to hit R, and
the argument is identical.) If ¢ hits R? only at points below p, there is a great-
est value 7 of y for which R?(y) lies on ¢. By {6}, R?(y) for y > ¥ must stay
in C2(R?(y)) without hitting ¢. Thus R?(y) for y > ¥ stays to the right of p,
putting p in Q3 a contradiction. We conclude that ¢ hits R? at a point R*(¥)
above p.

If p lies on R!(¥), we are done. Otherwise, R'(y) lies above p, since R} is
contained in C!(R2(¥)). Choose X >0 so large that the distance of R!(X)
from the circle C through p centered at (0, 0) is-greater than the length of
any R} over [0, y]. Then the ray RZ which meets R} at the point R3(p)=
RL(X) has length over [0, 7] less than the distance of its initial point R'(x)
from G, and p must lie to the left of R} in the region R bounded by R', R},
R?, and R2. Since all points on the simple closed boundary of R lie in the
simply connected set Z.(S), p must lie in Z.(S) as well.

Identical reasoning shows that each p in Q3 lies in Z.(S). For p in Qor
Q% one uses the analogous argument, taking a line ¢ through p with slope
M rather than —M. Because every p in @ lies in a @ or on (cX)(x) or on
(Y/c)(»), we are done. O
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